Commit b534e1b9 authored by Damien George's avatar Damien George
Browse files

py: Use variable length encoded uints in more places in bytecode.

Code-info size, block name, source name, n_state and n_exc_stack now use
variable length encoded uints.  This saves 7-9 bytes per bytecode
function for most functions.
parent dda46460
/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2014 Damien P. George
* Copyright (c) 2014 Paul Sokolovsky
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdbool.h>
#include <string.h>
#include <assert.h>
#include "mpconfig.h"
#include "nlr.h"
#include "misc.h"
#include "qstr.h"
#include "obj.h"
#include "objtuple.h"
#include "objfun.h"
#include "runtime0.h"
#include "runtime.h"
#include "bc.h"
#include "stackctrl.h"
#if 0 // print debugging info
#define DEBUG_PRINT (1)
#else // don't print debugging info
#define DEBUG_printf(...) (void)0
#endif
mp_uint_t mp_decode_uint(const byte **ptr) {
mp_uint_t unum = 0;
byte val;
const byte *p = *ptr;
do {
val = *p++;
unum = (unum << 7) | (val & 0x7f);
} while ((val & 0x80) != 0);
*ptr = p;
return unum;
}
STATIC NORETURN void fun_pos_args_mismatch(mp_obj_fun_bc_t *f, mp_uint_t expected, mp_uint_t given) {
#if MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE
// Generic message, to be reused for other argument issues
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
"argument num/types mismatch"));
#elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NORMAL
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"function takes %d positional arguments but %d were given", expected, given));
#elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_DETAILED
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"%s() takes %d positional arguments but %d were given",
mp_obj_fun_get_name(f), expected, given));
#endif
}
#if DEBUG_PRINT
STATIC void dump_args(const mp_obj_t *a, int sz) {
DEBUG_printf("%p: ", a);
for (int i = 0; i < sz; i++) {
DEBUG_printf("%p ", a[i]);
}
DEBUG_printf("\n");
}
#else
#define dump_args(...) (void)0
#endif
// code_state should have ->ip filled in (pointing past code info block),
// as well as ->n_state.
void mp_setup_code_state(mp_code_state *code_state, mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
// This function is pretty complicated. It's main aim is to be efficient in speed and RAM
// usage for the common case of positional only args.
mp_obj_fun_bc_t *self = self_in;
mp_uint_t n_state = code_state->n_state;
const byte *ip = code_state->ip;
code_state->code_info = self->bytecode;
code_state->sp = &code_state->state[0] - 1;
code_state->exc_sp = (mp_exc_stack_t*)(code_state->state + n_state) - 1;
// zero out the local stack to begin with
memset(code_state->state, 0, n_state * sizeof(*code_state->state));
const mp_obj_t *kwargs = args + n_args;
// var_pos_kw_args points to the stack where the var-args tuple, and var-kw dict, should go (if they are needed)
mp_obj_t *var_pos_kw_args = &code_state->state[n_state - 1 - self->n_pos_args - self->n_kwonly_args];
// check positional arguments
if (n_args > self->n_pos_args) {
// given more than enough arguments
if (!self->takes_var_args) {
fun_pos_args_mismatch(self, self->n_pos_args, n_args);
}
// put extra arguments in varargs tuple
*var_pos_kw_args-- = mp_obj_new_tuple(n_args - self->n_pos_args, args + self->n_pos_args);
n_args = self->n_pos_args;
} else {
if (self->takes_var_args) {
DEBUG_printf("passing empty tuple as *args\n");
*var_pos_kw_args-- = mp_const_empty_tuple;
}
// Apply processing and check below only if we don't have kwargs,
// otherwise, kw handling code below has own extensive checks.
if (n_kw == 0 && !self->has_def_kw_args) {
if (n_args >= self->n_pos_args - self->n_def_args) {
// given enough arguments, but may need to use some default arguments
for (mp_uint_t i = n_args; i < self->n_pos_args; i++) {
code_state->state[n_state - 1 - i] = self->extra_args[i - (self->n_pos_args - self->n_def_args)];
}
} else {
fun_pos_args_mismatch(self, self->n_pos_args - self->n_def_args, n_args);
}
}
}
// copy positional args into state
for (mp_uint_t i = 0; i < n_args; i++) {
code_state->state[n_state - 1 - i] = args[i];
}
// check keyword arguments
if (n_kw != 0 || self->has_def_kw_args) {
DEBUG_printf("Initial args: ");
dump_args(code_state->state + n_state - self->n_pos_args - self->n_kwonly_args, self->n_pos_args + self->n_kwonly_args);
mp_obj_t dict = MP_OBJ_NULL;
if (self->takes_kw_args) {
dict = mp_obj_new_dict(n_kw); // TODO: better go conservative with 0?
*var_pos_kw_args = dict;
}
for (mp_uint_t i = 0; i < n_kw; i++) {
qstr arg_name = MP_OBJ_QSTR_VALUE(kwargs[2 * i]);
for (mp_uint_t j = 0; j < self->n_pos_args + self->n_kwonly_args; j++) {
if (arg_name == self->args[j]) {
if (code_state->state[n_state - 1 - j] != MP_OBJ_NULL) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"function got multiple values for argument '%s'", qstr_str(arg_name)));
}
code_state->state[n_state - 1 - j] = kwargs[2 * i + 1];
goto continue2;
}
}
// Didn't find name match with positional args
if (!self->takes_kw_args) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "function does not take keyword arguments"));
}
mp_obj_dict_store(dict, kwargs[2 * i], kwargs[2 * i + 1]);
continue2:;
}
DEBUG_printf("Args with kws flattened: ");
dump_args(code_state->state + n_state - self->n_pos_args - self->n_kwonly_args, self->n_pos_args + self->n_kwonly_args);
// fill in defaults for positional args
mp_obj_t *d = &code_state->state[n_state - self->n_pos_args];
mp_obj_t *s = &self->extra_args[self->n_def_args - 1];
for (int i = self->n_def_args; i > 0; i--, d++, s--) {
if (*d == MP_OBJ_NULL) {
*d = *s;
}
}
DEBUG_printf("Args after filling default positional: ");
dump_args(code_state->state + n_state - self->n_pos_args - self->n_kwonly_args, self->n_pos_args + self->n_kwonly_args);
// Check that all mandatory positional args are specified
while (d < &code_state->state[n_state]) {
if (*d++ == MP_OBJ_NULL) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"function missing required positional argument #%d", &code_state->state[n_state] - d));
}
}
// Check that all mandatory keyword args are specified
// Fill in default kw args if we have them
for (mp_uint_t i = 0; i < self->n_kwonly_args; i++) {
if (code_state->state[n_state - 1 - self->n_pos_args - i] == MP_OBJ_NULL) {
mp_map_elem_t *elem = NULL;
if (self->has_def_kw_args) {
elem = mp_map_lookup(&((mp_obj_dict_t*)self->extra_args[self->n_def_args])->map, MP_OBJ_NEW_QSTR(self->args[self->n_pos_args + i]), MP_MAP_LOOKUP);
}
if (elem != NULL) {
code_state->state[n_state - 1 - self->n_pos_args - i] = elem->value;
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"function missing required keyword argument '%s'", qstr_str(self->args[self->n_pos_args + i])));
}
}
}
} else {
// no keyword arguments given
if (self->n_kwonly_args != 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
"function missing keyword-only argument"));
}
if (self->takes_kw_args) {
*var_pos_kw_args = mp_obj_new_dict(0);
}
}
// bytecode prelude: initialise closed over variables
for (mp_uint_t n_local = *ip++; n_local > 0; n_local--) {
mp_uint_t local_num = *ip++;
code_state->state[n_state - 1 - local_num] = mp_obj_new_cell(code_state->state[n_state - 1 - local_num]);
}
// now that we skipped over the prelude, set the ip for the VM
code_state->ip = ip;
DEBUG_printf("Calling: n_pos_args=%d, n_kwonly_args=%d\n", self->n_pos_args, self->n_kwonly_args);
dump_args(code_state->state + n_state - self->n_pos_args - self->n_kwonly_args, self->n_pos_args + self->n_kwonly_args);
dump_args(code_state->state, n_state);
}
...@@ -49,6 +49,8 @@ typedef struct _mp_code_state { ...@@ -49,6 +49,8 @@ typedef struct _mp_code_state {
//mp_exc_stack_t exc_state[0]; //mp_exc_stack_t exc_state[0];
} mp_code_state; } mp_code_state;
mp_uint_t mp_decode_uint(const byte **ptr);
mp_vm_return_kind_t mp_execute_bytecode(mp_code_state *code_state, volatile mp_obj_t inject_exc); mp_vm_return_kind_t mp_execute_bytecode(mp_code_state *code_state, volatile mp_obj_t inject_exc);
void mp_setup_code_state(mp_code_state *code_state, mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args); void mp_setup_code_state(mp_code_state *code_state, mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args);
void mp_bytecode_print(const void *descr, const byte *code, int len); void mp_bytecode_print(const void *descr, const byte *code, int len);
......
...@@ -85,6 +85,22 @@ void emit_bc_free(emit_t *emit) { ...@@ -85,6 +85,22 @@ void emit_bc_free(emit_t *emit) {
m_del_obj(emit_t, emit); m_del_obj(emit_t, emit);
} }
STATIC void emit_write_uint(emit_t* emit, byte*(*allocator)(emit_t*, int), mp_uint_t val) {
// We store each 7 bits in a separate byte, and that's how many bytes needed
byte buf[BYTES_FOR_INT];
byte *p = buf + sizeof(buf);
// We encode in little-ending order, but store in big-endian, to help decoding
do {
*--p = val & 0x7f;
val >>= 7;
} while (val != 0);
byte* c = allocator(emit, buf + sizeof(buf) - p);
while (p != buf + sizeof(buf) - 1) {
*c++ = *p++ | 0x80;
}
*c = *p;
}
// all functions must go through this one to emit code info // all functions must go through this one to emit code info
STATIC byte* emit_get_cur_to_write_code_info(emit_t* emit, int num_bytes_to_write) { STATIC byte* emit_get_cur_to_write_code_info(emit_t* emit, int num_bytes_to_write) {
//printf("emit %d\n", num_bytes_to_write); //printf("emit %d\n", num_bytes_to_write);
...@@ -103,13 +119,12 @@ STATIC void emit_align_code_info_to_machine_word(emit_t* emit) { ...@@ -103,13 +119,12 @@ STATIC void emit_align_code_info_to_machine_word(emit_t* emit) {
emit->code_info_offset = (emit->code_info_offset + sizeof(mp_uint_t) - 1) & (~(sizeof(mp_uint_t) - 1)); emit->code_info_offset = (emit->code_info_offset + sizeof(mp_uint_t) - 1) & (~(sizeof(mp_uint_t) - 1));
} }
STATIC void emit_write_code_info_qstr(emit_t* emit, qstr qstr) { STATIC void emit_write_code_info_uint(emit_t* emit, mp_uint_t val) {
byte* c = emit_get_cur_to_write_code_info(emit, 4); emit_write_uint(emit, emit_get_cur_to_write_code_info, val);
// TODO variable length encoding for qstr }
c[0] = qstr & 0xff;
c[1] = (qstr >> 8) & 0xff; STATIC void emit_write_code_info_qstr(emit_t* emit, qstr qst) {
c[2] = (qstr >> 16) & 0xff; emit_write_uint(emit, emit_get_cur_to_write_code_info, qst);
c[3] = (qstr >> 24) & 0xff;
} }
#if MICROPY_ENABLE_SOURCE_LINE #if MICROPY_ENABLE_SOURCE_LINE
...@@ -160,6 +175,10 @@ STATIC void emit_write_bytecode_byte(emit_t* emit, byte b1) { ...@@ -160,6 +175,10 @@ STATIC void emit_write_bytecode_byte(emit_t* emit, byte b1) {
c[0] = b1; c[0] = b1;
} }
STATIC void emit_write_bytecode_uint(emit_t* emit, mp_uint_t val) {
emit_write_uint(emit, emit_get_cur_to_write_bytecode, val);
}
STATIC void emit_write_bytecode_byte_byte(emit_t* emit, byte b1, uint b2) { STATIC void emit_write_bytecode_byte_byte(emit_t* emit, byte b1, uint b2) {
assert((b2 & (~0xff)) == 0); assert((b2 & (~0xff)) == 0);
byte* c = emit_get_cur_to_write_bytecode(emit, 2); byte* c = emit_get_cur_to_write_bytecode(emit, 2);
...@@ -167,22 +186,6 @@ STATIC void emit_write_bytecode_byte_byte(emit_t* emit, byte b1, uint b2) { ...@@ -167,22 +186,6 @@ STATIC void emit_write_bytecode_byte_byte(emit_t* emit, byte b1, uint b2) {
c[1] = b2; c[1] = b2;
} }
STATIC void emit_write_bytecode_uint(emit_t* emit, uint num) {
// We store each 7 bits in a separate byte, and that's how many bytes needed
byte buf[BYTES_FOR_INT];
byte *p = buf + sizeof(buf);
// We encode in little-ending order, but store in big-endian, to help decoding
do {
*--p = num & 0x7f;
num >>= 7;
} while (num != 0);
byte* c = emit_get_cur_to_write_bytecode(emit, buf + sizeof(buf) - p);
while (p != buf + sizeof(buf) - 1) {
*c++ = *p++ | 0x80;
}
*c = *p;
}
// Similar to emit_write_bytecode_uint(), just some extra handling to encode sign // Similar to emit_write_bytecode_uint(), just some extra handling to encode sign
STATIC void emit_write_bytecode_byte_int(emit_t* emit, byte b1, mp_int_t num) { STATIC void emit_write_bytecode_byte_int(emit_t* emit, byte b1, mp_int_t num) {
emit_write_bytecode_byte(emit, b1); emit_write_bytecode_byte(emit, b1);
...@@ -210,9 +213,9 @@ STATIC void emit_write_bytecode_byte_int(emit_t* emit, byte b1, mp_int_t num) { ...@@ -210,9 +213,9 @@ STATIC void emit_write_bytecode_byte_int(emit_t* emit, byte b1, mp_int_t num) {
*c = *p; *c = *p;
} }
STATIC void emit_write_bytecode_byte_uint(emit_t* emit, byte b, uint num) { STATIC void emit_write_bytecode_byte_uint(emit_t* emit, byte b, mp_uint_t val) {
emit_write_bytecode_byte(emit, b); emit_write_bytecode_byte(emit, b);
emit_write_bytecode_uint(emit, num); emit_write_uint(emit, emit_get_cur_to_write_bytecode, val);
} }
// aligns the pointer so it is friendly to GC // aligns the pointer so it is friendly to GC
...@@ -281,23 +284,18 @@ STATIC void emit_bc_start_pass(emit_t *emit, pass_kind_t pass, scope_t *scope) { ...@@ -281,23 +284,18 @@ STATIC void emit_bc_start_pass(emit_t *emit, pass_kind_t pass, scope_t *scope) {
emit->bytecode_offset = 0; emit->bytecode_offset = 0;
emit->code_info_offset = 0; emit->code_info_offset = 0;
// write code info size; use maximum space (4 bytes) to write it; TODO possible optimise this // Write code info size as compressed uint. If we are not in the final pass
{ // then space for this uint is reserved in emit_bc_end_pass.
byte* c = emit_get_cur_to_write_code_info(emit, 4); if (pass == MP_PASS_EMIT) {
mp_uint_t s = emit->code_info_size; emit_write_code_info_uint(emit, emit->code_info_size);
c[0] = s & 0xff;
c[1] = (s >> 8) & 0xff;
c[2] = (s >> 16) & 0xff;
c[3] = (s >> 24) & 0xff;
} }
// code info // write the name and source file of this function
emit_write_code_info_qstr(emit, scope->source_file);
emit_write_code_info_qstr(emit, scope->simple_name); emit_write_code_info_qstr(emit, scope->simple_name);
emit_write_code_info_qstr(emit, scope->source_file);
// bytecode prelude: local state size and exception stack size; 16 bit uints for now // bytecode prelude: local state size and exception stack size; 16 bit uints for now
{ {
byte* c = emit_get_cur_to_write_bytecode(emit, 4);
uint n_state = scope->num_locals + scope->stack_size; uint n_state = scope->num_locals + scope->stack_size;
if (n_state == 0) { if (n_state == 0) {
// Need at least 1 entry in the state, in the case an exception is // Need at least 1 entry in the state, in the case an exception is
...@@ -305,10 +303,8 @@ STATIC void emit_bc_start_pass(emit_t *emit, pass_kind_t pass, scope_t *scope) { ...@@ -305,10 +303,8 @@ STATIC void emit_bc_start_pass(emit_t *emit, pass_kind_t pass, scope_t *scope) {
// the highest slot in the state (fastn[0], see vm.c). // the highest slot in the state (fastn[0], see vm.c).
n_state = 1; n_state = 1;
} }
c[0] = n_state & 0xff; emit_write_bytecode_uint(emit, n_state);
c[1] = (n_state >> 8) & 0xff; emit_write_bytecode_uint(emit, scope->exc_stack_size);
c[2] = scope->exc_stack_size & 0xff;
c[3] = (scope->exc_stack_size >> 8) & 0xff;
} }
// bytecode prelude: initialise closed over variables // bytecode prelude: initialise closed over variables
...@@ -336,10 +332,27 @@ STATIC void emit_bc_end_pass(emit_t *emit) { ...@@ -336,10 +332,27 @@ STATIC void emit_bc_end_pass(emit_t *emit) {
} }
*emit_get_cur_to_write_code_info(emit, 1) = 0; // end of line number info *emit_get_cur_to_write_code_info(emit, 1) = 0; // end of line number info
emit_align_code_info_to_machine_word(emit); // align so that following bytecode is aligned
if (emit->pass == MP_PASS_CODE_SIZE) { if (emit->pass == MP_PASS_CODE_SIZE) {
// calculate size of code in bytes // Need to make sure we have enough room in the code-info block to write
// the size of the code-info block. Since the size is written as a
// compressed uint, we don't know its size until we write it! Thus, we
// take the biggest possible value it could be and write that here.
// Then there will be enough room to write the value, and any leftover
// space will be absorbed in the alignment at the end of the code-info
// block.
mp_uint_t max_code_info_size =
emit->code_info_offset // current code-info size
+ BYTES_FOR_INT // maximum space for compressed uint
+ BYTES_PER_WORD - 1; // maximum space for alignment padding
emit_write_code_info_uint(emit, max_code_info_size);
// Align code-info so that following bytecode is aligned on a machine word.
// We don't need to write anything here, it's just dead space between the
// code-info block and the bytecode block that follows it.
emit_align_code_info_to_machine_word(emit);
// calculate size of total code-info + bytecode, in bytes
emit->code_info_size = emit->code_info_offset; emit->code_info_size = emit->code_info_offset;
emit->bytecode_size = emit->bytecode_offset; emit->bytecode_size = emit->bytecode_offset;
emit->code_base = m_new0(byte, emit->code_info_size + emit->bytecode_size); emit->code_base = m_new0(byte, emit->code_info_size + emit->bytecode_size);
......
...@@ -143,8 +143,8 @@ mp_obj_t mp_make_function_var_between(int n_args_min, int n_args_max, mp_fun_var ...@@ -143,8 +143,8 @@ mp_obj_t mp_make_function_var_between(int n_args_min, int n_args_max, mp_fun_var
/* byte code functions */ /* byte code functions */
const char *mp_obj_code_get_name(const byte *code_info) { const char *mp_obj_code_get_name(const byte *code_info) {
qstr block_name = code_info[8] | (code_info[9] << 8) | (code_info[10] << 16) | (code_info[11] << 24); mp_decode_uint(&code_info); // skip code_info_size entry
return qstr_str(block_name); return qstr_str(mp_decode_uint(&code_info));
} }
const char *mp_obj_fun_get_name(mp_const_obj_t fun_in) { const char *mp_obj_fun_get_name(mp_const_obj_t fun_in) {
...@@ -172,21 +172,6 @@ STATIC void dump_args(const mp_obj_t *a, int sz) { ...@@ -172,21 +172,6 @@ STATIC void dump_args(const mp_obj_t *a, int sz) {
#define dump_args(...) (void)0 #define dump_args(...) (void)0
#endif #endif
STATIC NORETURN void fun_pos_args_mismatch(mp_obj_fun_bc_t *f, mp_uint_t expected, mp_uint_t given) {
#if MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE
// Generic message, to be reused for other argument issues
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
"argument num/types mismatch"));
#elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NORMAL
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"function takes %d positional arguments but %d were given", expected, given));
#elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_DETAILED
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"%s() takes %d positional arguments but %d were given",
mp_obj_fun_get_name(f), expected, given));
#endif
}
// With this macro you can tune the maximum number of function state bytes // With this macro you can tune the maximum number of function state bytes
// that will be allocated on the stack. Any function that needs more // that will be allocated on the stack. Any function that needs more
// than this will use the heap. // than this will use the heap.
...@@ -195,159 +180,6 @@ STATIC NORETURN void fun_pos_args_mismatch(mp_obj_fun_bc_t *f, mp_uint_t expecte ...@@ -195,159 +180,6 @@ STATIC NORETURN void fun_pos_args_mismatch(mp_obj_fun_bc_t *f, mp_uint_t expecte
// Set this to enable a simple stack overflow check. // Set this to enable a simple stack overflow check.
#define VM_DETECT_STACK_OVERFLOW (0) #define VM_DETECT_STACK_OVERFLOW (0)
// code_state should have ->ip filled in (pointing past code info block),
// as well as ->n_state.
void mp_setup_code_state(mp_code_state *code_state, mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
// This function is pretty complicated. It's main aim is to be efficient in speed and RAM
// usage for the common case of positional only args.
mp_obj_fun_bc_t *self = self_in;
mp_uint_t n_state = code_state->n_state;
const byte *ip = code_state->ip;
code_state->code_info = self->bytecode;
code_state->sp = &code_state->state[0] - 1;
code_state->exc_sp = (mp_exc_stack_t*)(code_state->state + n_state) - 1;
// zero out the local stack to begin with
memset(code_state->state, 0, n_state * sizeof(*code_state->state));
const mp_obj_t *kwargs = args + n_args;
// var_pos_kw_args points to the stack where the var-args tuple, and var-kw dict, should go (if they are needed)
mp_obj_t *var_pos_kw_args = &code_state->state[n_state - 1 - self->n_pos_args - self->n_kwonly_args];
// check positional arguments
if (n_args > self->n_pos_args) {
// given more than enough arguments
if (!self->takes_var_args) {
fun_pos_args_mismatch(self, self->n_pos_args, n_args);
}
// put extra arguments in varargs tuple
*var_pos_kw_args-- = mp_obj_new_tuple(n_args - self->n_pos_args, args + self->n_pos_args);
n_args = self->n_pos_args;
} else {
if (self->takes_var_args) {
DEBUG_printf("passing empty tuple as *args\n");
*var_pos_kw_args-- = mp_const_empty_tuple;
}
// Apply processing and check below only if we don't have kwargs,
// otherwise, kw handling code below has own extensive checks.
if (n_kw == 0 && !self->has_def_kw_args) {
if (n_args >= self->n_pos_args - self->n_def_args) {
// given enough arguments, but may need to use some default arguments
for (mp_uint_t i = n_args; i < self->n_pos_args; i++) {
code_state->state[n_state - 1 - i] = self->extra_args[i - (self->n_pos_args - self->n_def_args)];
}
} else {
fun_pos_args_mismatch(self, self->n_pos_args - self->n_def_args, n_args);
}
}
}
// copy positional args into state
for (mp_uint_t i = 0; i < n_args; i++) {
code_state->state[n_state - 1 - i] = args[i];
}
// check keyword arguments
if (n_kw != 0 || self->has_def_kw_args) {
DEBUG_printf("Initial args: ");
dump_args(code_state->state + n_state - self->n_pos_args - self->n_kwonly_args, self->n_pos_args + self->n_kwonly_args);
mp_obj_t dict = MP_OBJ_NULL;
if (self->takes_kw_args) {
dict = mp_obj_new_dict(n_kw); // TODO: better go conservative with 0?
*var_pos_kw_args = dict;
}
for (mp_uint_t i = 0; i < n_kw; i++) {
qstr arg_name = MP_OBJ_QSTR_VALUE(kwargs[2 * i]);
for (mp_uint_t j = 0; j < self->n_pos_args + self->n_kwonly_args; j++) {
if (arg_name == self->args[j]) {
if (code_state->state[n_state - 1 - j] != MP_OBJ_NULL) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"function got multiple values for argument '%s'", qstr_str(arg_name)));
}
code_state->state[n_state - 1 - j] = kwargs[2 * i + 1];
goto continue2;
}
}
// Didn't find name match with positional args
if (!self->takes_kw_args) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "function does not take keyword arguments"));
}
mp_obj_dict_store(dict, kwargs[2 * i], kwargs[2 * i + 1]);
continue2:;
}
DEBUG_printf("Args with kws flattened: ");
dump_args(code_state->state + n_state - self->n_pos_args - self->n_kwonly_args, self->n_pos_args + self->n_kwonly_args);
// fill in defaults for positional args
mp_obj_t *d = &code_state->state[n_state - self->n_pos_args];
mp_obj_t *s = &self->extra_args[self->n_def_args - 1];
for (int i = self->n_def_args; i > 0; i--, d++, s--) {
if (*d == MP_OBJ_NULL) {
*d = *s;
}
}
DEBUG_printf("Args after filling default positional: ");
dump_args(code_state->state + n_state - self->n_pos_args - self->n_kwonly_args, self->n_pos_args + self->n_kwonly_args);
// Check that all mandatory positional args are specified
while (d < &code_state->state[n_state]) {
if (*d++ == MP_OBJ_NULL) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"function missing required positional argument #%d", &code_state->state[n_state] - d));
}
}
// Check that all mandatory keyword args are specified
// Fill in default kw args if we have them
for (mp_uint_t i = 0; i < self->n_kwonly_args; i++) {
if (code_state->state[n_state - 1 - self->n_pos_args - i] == MP_OBJ_NULL) {