Commit 7703d719 authored by Damien George's avatar Damien George
Browse files

py, modcmath: Fix doc comment, and add some more of them.

parent 9749b2fb
...@@ -68,7 +68,7 @@ mp_obj_t mp_cmath_polar(mp_obj_t z_obj) { ...@@ -68,7 +68,7 @@ mp_obj_t mp_cmath_polar(mp_obj_t z_obj) {
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_polar_obj, mp_cmath_polar); STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_polar_obj, mp_cmath_polar);
/// \function rect(r, phi) /// \function rect(r, phi)
/// Returns the complex number with modules `r` and phase `phi`. /// Returns the complex number with modulus `r` and phase `phi`.
mp_obj_t mp_cmath_rect(mp_obj_t r_obj, mp_obj_t phi_obj) { mp_obj_t mp_cmath_rect(mp_obj_t r_obj, mp_obj_t phi_obj) {
mp_float_t r = mp_obj_get_float(r_obj); mp_float_t r = mp_obj_get_float(r_obj);
mp_float_t phi = mp_obj_get_float(phi_obj); mp_float_t phi = mp_obj_get_float(phi_obj);
...@@ -77,6 +77,7 @@ mp_obj_t mp_cmath_rect(mp_obj_t r_obj, mp_obj_t phi_obj) { ...@@ -77,6 +77,7 @@ mp_obj_t mp_cmath_rect(mp_obj_t r_obj, mp_obj_t phi_obj) {
STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_cmath_rect_obj, mp_cmath_rect); STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_cmath_rect_obj, mp_cmath_rect);
/// \function exp(z) /// \function exp(z)
/// Return the exponential of `z`.
mp_obj_t mp_cmath_exp(mp_obj_t z_obj) { mp_obj_t mp_cmath_exp(mp_obj_t z_obj) {
mp_float_t real, imag; mp_float_t real, imag;
mp_obj_get_complex(z_obj, &real, &imag); mp_obj_get_complex(z_obj, &real, &imag);
...@@ -86,6 +87,7 @@ mp_obj_t mp_cmath_exp(mp_obj_t z_obj) { ...@@ -86,6 +87,7 @@ mp_obj_t mp_cmath_exp(mp_obj_t z_obj) {
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_exp_obj, mp_cmath_exp); STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_exp_obj, mp_cmath_exp);
/// \function log(z) /// \function log(z)
/// Return the natural logarithm of `z`. The branch cut is along the negative real axis.
// TODO can take second argument, being the base // TODO can take second argument, being the base
mp_obj_t mp_cmath_log(mp_obj_t z_obj) { mp_obj_t mp_cmath_log(mp_obj_t z_obj) {
mp_float_t real, imag; mp_float_t real, imag;
...@@ -95,6 +97,7 @@ mp_obj_t mp_cmath_log(mp_obj_t z_obj) { ...@@ -95,6 +97,7 @@ mp_obj_t mp_cmath_log(mp_obj_t z_obj) {
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log_obj, mp_cmath_log); STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log_obj, mp_cmath_log);
/// \function log10(z) /// \function log10(z)
/// Return the base-10 logarithm of `z`. The branch cut is along the negative real axis.
mp_obj_t mp_cmath_log10(mp_obj_t z_obj) { mp_obj_t mp_cmath_log10(mp_obj_t z_obj) {
mp_float_t real, imag; mp_float_t real, imag;
mp_obj_get_complex(z_obj, &real, &imag); mp_obj_get_complex(z_obj, &real, &imag);
...@@ -103,6 +106,7 @@ mp_obj_t mp_cmath_log10(mp_obj_t z_obj) { ...@@ -103,6 +106,7 @@ mp_obj_t mp_cmath_log10(mp_obj_t z_obj) {
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log10_obj, mp_cmath_log10); STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log10_obj, mp_cmath_log10);
/// \function sqrt(z) /// \function sqrt(z)
/// Return the square-root of `z`.
mp_obj_t mp_cmath_sqrt(mp_obj_t z_obj) { mp_obj_t mp_cmath_sqrt(mp_obj_t z_obj) {
mp_float_t real, imag; mp_float_t real, imag;
mp_obj_get_complex(z_obj, &real, &imag); mp_obj_get_complex(z_obj, &real, &imag);
...@@ -113,6 +117,7 @@ mp_obj_t mp_cmath_sqrt(mp_obj_t z_obj) { ...@@ -113,6 +117,7 @@ mp_obj_t mp_cmath_sqrt(mp_obj_t z_obj) {
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_sqrt_obj, mp_cmath_sqrt); STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_sqrt_obj, mp_cmath_sqrt);
/// \function cos(z) /// \function cos(z)
/// Return the cosine of `z`.
mp_obj_t mp_cmath_cos(mp_obj_t z_obj) { mp_obj_t mp_cmath_cos(mp_obj_t z_obj) {
mp_float_t real, imag; mp_float_t real, imag;
mp_obj_get_complex(z_obj, &real, &imag); mp_obj_get_complex(z_obj, &real, &imag);
...@@ -121,6 +126,7 @@ mp_obj_t mp_cmath_cos(mp_obj_t z_obj) { ...@@ -121,6 +126,7 @@ mp_obj_t mp_cmath_cos(mp_obj_t z_obj) {
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_cos_obj, mp_cmath_cos); STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_cos_obj, mp_cmath_cos);
/// \function sin(z) /// \function sin(z)
/// Return the sine of `z`.
mp_obj_t mp_cmath_sin(mp_obj_t z_obj) { mp_obj_t mp_cmath_sin(mp_obj_t z_obj) {
mp_float_t real, imag; mp_float_t real, imag;
mp_obj_get_complex(z_obj, &real, &imag); mp_obj_get_complex(z_obj, &real, &imag);
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment