Commit 20006dbb authored by Damien George's avatar Damien George
Browse files

Make VM stack grow upwards, and so no reversed args arrays.

Change state layout in VM so the stack starts at state[0] and grows
upwards.  Locals are at the top end of the state and number downwards.
This cleans up a lot of the interface connecting the VM to C: now all
functions that take an array of Micro Python objects are in order (ie no
longer in reverse).

Also clean up C API with keyword arguments (call_n and call_n_kw
replaced with single call method that takes keyword arguments).  And now
make_new takes keyword arguments.

emitnative.c has not yet been changed to comply with the new order of
stack layout.
parent 8655065f
......@@ -45,12 +45,11 @@ static mp_obj_t mp_builtin___build_class__(int n_args, const mp_obj_t *args) {
// TODO do proper metaclass resolution for multiple base objects
// create the new class using a call to the meta object
// (arguments must be backwards in the array)
mp_obj_t meta_args[3];
meta_args[2] = args[1]; // class name
meta_args[0] = args[1]; // class name
meta_args[1] = mp_obj_new_tuple(n_args - 2, args + 2); // tuple of bases
meta_args[0] = class_locals; // dict of members
mp_obj_t new_class = rt_call_function_n(meta, 3, meta_args);
meta_args[2] = class_locals; // dict of members
mp_obj_t new_class = rt_call_function_n_kw(meta, 3, 0, meta_args);
// store into cell if neede
if (cell != mp_const_none) {
......@@ -153,10 +152,10 @@ static mp_obj_t mp_builtin_divmod(mp_obj_t o1_in, mp_obj_t o2_in) {
if (MP_OBJ_IS_SMALL_INT(o1_in) && MP_OBJ_IS_SMALL_INT(o2_in)) {
mp_small_int_t i1 = MP_OBJ_SMALL_INT_VALUE(o1_in);
mp_small_int_t i2 = MP_OBJ_SMALL_INT_VALUE(o2_in);
mp_obj_t revs_args[2];
revs_args[1] = MP_OBJ_NEW_SMALL_INT(i1 / i2);
revs_args[0] = MP_OBJ_NEW_SMALL_INT(i1 % i2);
return rt_build_tuple(2, revs_args);
mp_obj_t args[2];
args[0] = MP_OBJ_NEW_SMALL_INT(i1 / i2);
args[1] = MP_OBJ_NEW_SMALL_INT(i1 % i2);
return rt_build_tuple(2, args);
} else {
nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_TypeError, "unsupported operand type(s) for divmod(): '%s' and '%s'", mp_obj_get_type_str(o1_in), mp_obj_get_type_str(o2_in)));
}
......@@ -327,20 +326,14 @@ static mp_obj_t mp_builtin_sum(int n_args, const mp_obj_t *args) {
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_builtin_sum_obj, 1, 2, mp_builtin_sum);
static mp_obj_t mp_builtin_sorted(mp_obj_t args, mp_map_t *kwargs) {
mp_obj_t *args_items = NULL;
uint args_len = 0;
assert(MP_OBJ_IS_TYPE(args, &tuple_type));
mp_obj_tuple_get(args, &args_len, &args_items);
assert(args_len >= 1);
if (args_len > 1) {
static mp_obj_t mp_builtin_sorted(uint n_args, const mp_obj_t *args, mp_map_t *kwargs) {
assert(n_args >= 1);
if (n_args > 1) {
nlr_jump(mp_obj_new_exception_msg(MP_QSTR_TypeError,
"must use keyword argument for key function"));
}
mp_obj_t self = list_type.make_new((mp_obj_t)&list_type, 1, args_items);
mp_obj_t new_args = rt_build_tuple(1, &self);
mp_obj_list_sort(new_args, kwargs);
mp_obj_t self = list_type.make_new((mp_obj_t)&list_type, 1, 0, args);
mp_obj_list_sort(1, &self, kwargs);
return self;
}
......
......@@ -1156,7 +1156,8 @@ static void emit_native_call_function(emit_t *emit, int n_positional, int n_keyw
vtype_kind_t vtype_fun;
emit_pre_pop_reg(emit, &vtype_fun, REG_ARG_1); // the function
assert(vtype_fun == VTYPE_PYOBJ);
emit_call_with_imm_arg(emit, RT_F_CALL_FUNCTION_N, rt_call_function_n, n_positional, REG_ARG_2);
// XXX rt_call_function_n now merged with rt_call_function_n_kw
//emit_call_with_imm_arg(emit, RT_F_CALL_FUNCTION_N, rt_call_function_n, n_positional, REG_ARG_2);
//}
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
......@@ -1181,7 +1182,8 @@ static void emit_native_call_method(emit_t *emit, int n_positional, int n_keywor
*/
emit_pre(emit);
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_positional + 2); // pointer to items in reverse order, including meth and self
emit_call_with_imm_arg(emit, RT_F_CALL_METHOD_N, rt_call_method_n, n_positional, REG_ARG_1);
// XXX rt_call_method_n now merged with rt_call_method_n_kw
//emit_call_with_imm_arg(emit, RT_F_CALL_METHOD_N, rt_call_method_n, n_positional, REG_ARG_1);
//}
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
......
......@@ -63,7 +63,7 @@ bool mp_obj_is_callable(mp_obj_t o_in) {
return false;
} else {
mp_obj_base_t *o = o_in;
return o->type->call_n != NULL;
return o->type->call != NULL;
}
}
......
......@@ -83,19 +83,18 @@ typedef mp_obj_t (*mp_fun_2_t)(mp_obj_t, mp_obj_t);
typedef mp_obj_t (*mp_fun_3_t)(mp_obj_t, mp_obj_t, mp_obj_t);
typedef mp_obj_t (*mp_fun_t)(void);
typedef mp_obj_t (*mp_fun_var_t)(int n, const mp_obj_t *);
typedef mp_obj_t (*mp_fun_kw_t)(mp_obj_t, struct _mp_map_t*);
typedef mp_obj_t (*mp_fun_kw_t)(uint n, const mp_obj_t *, struct _mp_map_t *);
typedef enum {
PRINT_STR, PRINT_REPR
} mp_print_kind_t;
typedef void (*mp_print_fun_t)(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t o, mp_print_kind_t kind);
typedef mp_obj_t (*mp_make_new_fun_t)(mp_obj_t type_in, int n_args, const mp_obj_t *args); // args are in reverse order in the array
typedef mp_obj_t (*mp_call_n_fun_t)(mp_obj_t fun, int n_args, const mp_obj_t *args); // args are in reverse order in the array
typedef mp_obj_t (*mp_call_n_kw_fun_t)(mp_obj_t fun, int n_args, int n_kw, const mp_obj_t *args); // args are in reverse order in the array
typedef mp_obj_t (*mp_make_new_fun_t)(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args);
typedef mp_obj_t (*mp_call_fun_t)(mp_obj_t fun, uint n_args, uint n_kw, const mp_obj_t *args);
typedef mp_obj_t (*mp_unary_op_fun_t)(int op, mp_obj_t);
typedef mp_obj_t (*mp_binary_op_fun_t)(int op, mp_obj_t, mp_obj_t);
typedef void (*mp_load_attr_fun_t)(mp_obj_t self_in, qstr attr, mp_obj_t *dest); // for fail, do nothing; for attr, dest[1] = value; for method, dest[0] = self, dest[1] = method
typedef void (*mp_load_attr_fun_t)(mp_obj_t self_in, qstr attr, mp_obj_t *dest); // for fail, do nothing; for attr, dest[0] = value; for method, dest[0] = method, dest[1] = self
typedef bool (*mp_store_attr_fun_t)(mp_obj_t self_in, qstr attr, mp_obj_t value); // return true if store succeeded
typedef struct _mp_method_t {
......@@ -144,8 +143,7 @@ struct _mp_obj_type_t {
mp_print_fun_t print;
mp_make_new_fun_t make_new; // to make an instance of the type
mp_call_n_fun_t call_n;
mp_call_n_kw_fun_t call_n_kw;
mp_call_fun_t call;
mp_unary_op_fun_t unary_op; // can return NULL if op not supported
mp_binary_op_fun_t binary_op; // can return NULL if op not supported
......@@ -222,13 +220,11 @@ mp_obj_t mp_obj_new_gen_wrap(uint n_locals, uint n_stack, mp_obj_t fun);
mp_obj_t mp_obj_new_gen_instance(const byte *bytecode, uint n_state, int n_args, const mp_obj_t *args);
mp_obj_t mp_obj_new_closure(mp_obj_t fun, mp_obj_t closure_tuple);
mp_obj_t mp_obj_new_tuple(uint n, const mp_obj_t *items);
mp_obj_t mp_obj_new_tuple_reverse(uint n, const mp_obj_t *items);
mp_obj_t mp_obj_new_list(uint n, mp_obj_t *items);
mp_obj_t mp_obj_new_list_reverse(uint n, mp_obj_t *items);
mp_obj_t mp_obj_new_dict(int n_args);
mp_obj_t mp_obj_new_set(int n_args, mp_obj_t *items);
mp_obj_t mp_obj_new_slice(mp_obj_t start, mp_obj_t stop, mp_obj_t step);
mp_obj_t mp_obj_new_bound_meth(mp_obj_t self, mp_obj_t meth);
mp_obj_t mp_obj_new_bound_meth(mp_obj_t meth, mp_obj_t self);
mp_obj_t mp_obj_new_module(qstr module_name);
mp_obj_t mp_obj_get_type(mp_obj_t o_in);
......@@ -296,7 +292,7 @@ extern const mp_obj_type_t list_type;
mp_obj_t mp_obj_list_append(mp_obj_t self_in, mp_obj_t arg);
void mp_obj_list_get(mp_obj_t self_in, uint *len, mp_obj_t **items);
void mp_obj_list_store(mp_obj_t self_in, mp_obj_t index, mp_obj_t value);
mp_obj_t mp_obj_list_sort(mp_obj_t args, struct _mp_map_t *kwargs);
mp_obj_t mp_obj_list_sort(uint n_args, const mp_obj_t *args, struct _mp_map_t *kwargs);
// map (the python builtin, not the dict implementation detail)
extern const mp_obj_type_t map_type;
......
......@@ -22,8 +22,9 @@ static void bool_print(void (*print)(void *env, const char *fmt, ...), void *env
}
}
// args are reverse in the array
static mp_obj_t bool_make_new(mp_obj_t type_in, int n_args, const mp_obj_t *args) {
static mp_obj_t bool_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// TODO check n_kw == 0
switch (n_args) {
case 0: return mp_const_false;
case 1: if (rt_is_true(args[0])) { return mp_const_true; } else { return mp_const_false; }
......
#include <stdlib.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "nlr.h"
......@@ -14,32 +15,36 @@ typedef struct _mp_obj_bound_meth_t {
mp_obj_t self;
} mp_obj_bound_meth_t;
// args are in reverse order in the array
mp_obj_t bound_meth_call_n(mp_obj_t self_in, int n_args, const mp_obj_t *args) {
mp_obj_t bound_meth_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
mp_obj_bound_meth_t *self = self_in;
if (n_args == 0) {
return rt_call_function_n(self->meth, 1, &self->self);
} else if (n_args == 1) {
mp_obj_t args2[2];
args2[1] = self->self;
args2[0] = args[0];
return rt_call_function_n(self->meth, 2, args2);
// need to insert self->self before all other args and then call self->meth
int n_total = n_args + 2 * n_kw;
if (n_total <= 4) {
// use stack to allocate temporary args array
mp_obj_t args2[5];
args2[0] = self->self;
memcpy(args2 + 1, args, n_total * sizeof(mp_obj_t));
return rt_call_function_n_kw(self->meth, n_args + 1, n_kw, &args2[0]);
} else {
// TODO not implemented
assert(0);
return mp_const_none;
//return rt_call_function_2(self->meth, n_args + 1, self->self + args);
// use heap to allocate temporary args array
mp_obj_t *args2 = m_new(mp_obj_t, 1 + n_total);
args2[0] = self->self;
memcpy(args2 + 1, args, n_total * sizeof(mp_obj_t));
mp_obj_t res = rt_call_function_n_kw(self->meth, n_args + 1, n_kw, &args2[0]);
m_del(mp_obj_t, args2, 1 + n_total);
return res;
}
}
const mp_obj_type_t bound_meth_type = {
{ &mp_const_type },
"bound_method",
.call_n = bound_meth_call_n,
.call = bound_meth_call,
};
mp_obj_t mp_obj_new_bound_meth(mp_obj_t self, mp_obj_t meth) {
mp_obj_t mp_obj_new_bound_meth(mp_obj_t meth, mp_obj_t self) {
mp_obj_bound_meth_t *o = m_new_obj(mp_obj_bound_meth_t);
o->base.type = &bound_meth_type;
o->meth = meth;
......
......@@ -16,26 +16,33 @@ typedef struct _mp_obj_closure_t {
mp_obj_t *closed;
} mp_obj_closure_t;
// args are in reverse order in the array
mp_obj_t closure_call_n(mp_obj_t self_in, int n_args, const mp_obj_t *args) {
mp_obj_t closure_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
mp_obj_closure_t *self = self_in;
// concatenate args and closed-over-vars, in reverse order
// TODO perhaps cache this array so we don't need to create it each time we are called
mp_obj_t *args2 = m_new(mp_obj_t, self->n_closed + n_args);
memcpy(args2, args, n_args * sizeof(mp_obj_t));
for (int i = 0; i < self->n_closed; i++) {
args2[n_args + i] = self->closed[self->n_closed - 1 - i];
}
// need to concatenate closed-over-vars and args
// call the function with the new vars array
return rt_call_function_n(self->fun, n_args + self->n_closed, args2);
int n_total = self->n_closed + n_args + 2 * n_kw;
if (n_total <= 5) {
// use stack to allocate temporary args array
mp_obj_t args2[5];
memcpy(args2, self->closed, self->n_closed * sizeof(mp_obj_t));
memcpy(args2 + self->n_closed, args, (n_args + 2 * n_kw) * sizeof(mp_obj_t));
return rt_call_function_n_kw(self->fun, self->n_closed + n_args, n_kw, args2);
} else {
// use heap to allocate temporary args array
mp_obj_t *args2 = m_new(mp_obj_t, n_total);
memcpy(args2, self->closed, self->n_closed * sizeof(mp_obj_t));
memcpy(args2 + self->n_closed, args, (n_args + 2 * n_kw) * sizeof(mp_obj_t));
mp_obj_t res = rt_call_function_n_kw(self->fun, self->n_closed + n_args, n_kw, args2);
m_del(mp_obj_t, args2, n_total);
return res;
}
}
const mp_obj_type_t closure_type = {
{ &mp_const_type },
"closure",
.call_n = closure_call_n,
.call = closure_call,
};
mp_obj_t mp_obj_new_closure(mp_obj_t fun, mp_obj_t closure_tuple) {
......
......@@ -30,8 +30,9 @@ void complex_print(void (*print)(void *env, const char *fmt, ...), void *env, mp
}
}
// args are reverse in the array
static mp_obj_t complex_make_new(mp_obj_t type_in, int n_args, const mp_obj_t *args) {
static mp_obj_t complex_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// TODO check n_kw == 0
switch (n_args) {
case 0:
return mp_obj_new_complex(0, 0);
......@@ -47,19 +48,19 @@ static mp_obj_t complex_make_new(mp_obj_t type_in, int n_args, const mp_obj_t *a
case 2:
{
mp_float_t real, imag;
if (MP_OBJ_IS_TYPE(args[1], &complex_type)) {
mp_obj_complex_get(args[1], &real, &imag);
if (MP_OBJ_IS_TYPE(args[0], &complex_type)) {
mp_obj_complex_get(args[0], &real, &imag);
} else {
real = mp_obj_get_float(args[1]);
real = mp_obj_get_float(args[0]);
imag = 0;
}
if (MP_OBJ_IS_TYPE(args[0], &complex_type)) {
if (MP_OBJ_IS_TYPE(args[1], &complex_type)) {
mp_float_t real2, imag2;
mp_obj_complex_get(args[0], &real2, &imag2);
mp_obj_complex_get(args[1], &real2, &imag2);
real -= imag2;
imag += real2;
} else {
imag += mp_obj_get_float(args[0]);
imag += mp_obj_get_float(args[1]);
}
return mp_obj_new_complex(real, imag);
}
......
......@@ -38,8 +38,7 @@ static void dict_print(void (*print)(void *env, const char *fmt, ...), void *env
print(env, "}");
}
// args are reverse in the array
static mp_obj_t dict_make_new(mp_obj_t type_in, int n_args, const mp_obj_t *args) {
static mp_obj_t dict_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// TODO create from an iterable!
return rt_build_map(0);
}
......
......@@ -20,15 +20,12 @@ static mp_obj_t enumerate_iternext(mp_obj_t self_in);
/* TODO: enumerate is one of the ones that can take args or kwargs.
Sticking to args for now */
static mp_obj_t enumerate_make_new(mp_obj_t type_in, int n_args, const mp_obj_t *args) {
/* NOTE: args are backwards */
static mp_obj_t enumerate_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
assert(n_args > 0);
args += n_args - 1;
mp_obj_enumerate_t *o = m_new_obj(mp_obj_enumerate_t);
o->base.type = &enumerate_type;
o->iter = rt_getiter(args[0]);
o->cur = n_args > 1 ? mp_obj_get_int(args[-1]) : 0;
o->cur = n_args > 1 ? mp_obj_get_int(args[1]) : 0;
return o;
}
......
......@@ -7,6 +7,7 @@
#include "nlr.h"
#include "misc.h"
#include "mpconfig.h"
#include "mpqstr.h"
#include "obj.h"
#include "objtuple.h"
......@@ -43,20 +44,19 @@ void exception_print(void (*print)(void *env, const char *fmt, ...), void *env,
}
}
// args in reversed order
static mp_obj_t exception_call(mp_obj_t self_in, int n_args, const mp_obj_t *args) {
static mp_obj_t exception_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
mp_obj_exception_t *base = self_in;
mp_obj_exception_t *o = m_new_obj_var(mp_obj_exception_t, mp_obj_t*, n_args);
if (n_kw != 0) {
nlr_jump(mp_obj_new_exception_msg_1_arg(MP_QSTR_TypeError, "%s does not take keyword arguments", qstr_str(base->id)));
}
mp_obj_exception_t *o = m_new_obj_var(mp_obj_exception_t, mp_obj_t, n_args);
o->base.type = &exception_type;
o->id = base->id;
o->msg = 0;
o->args.len = n_args;
// TODO: factor out as reusable copy_reversed()
int j = 0;
for (int i = n_args - 1; i >= 0; i--) {
o->args.items[i] = args[j++];
}
memcpy(o->args.items, args, n_args * sizeof(mp_obj_t));
return o;
}
......@@ -64,7 +64,7 @@ const mp_obj_type_t exception_type = {
{ &mp_const_type },
"exception",
.print = exception_print,
.call_n = exception_call,
.call = exception_call,
};
mp_obj_t mp_obj_new_exception(qstr id) {
......
......@@ -14,16 +14,15 @@ typedef struct _mp_obj_filter_t {
mp_obj_t iter;
} mp_obj_filter_t;
static mp_obj_t filter_make_new(mp_obj_t type_in, int n_args, const mp_obj_t *args) {
/* NOTE: args are backwards */
if (n_args != 2) {
static mp_obj_t filter_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
if (n_args != 2 || n_kw != 0) {
nlr_jump(mp_obj_new_exception_msg(MP_QSTR_TypeError, "filter expected 2 arguments"));
}
assert(n_args == 2);
mp_obj_filter_t *o = m_new_obj(mp_obj_filter_t);
o->base.type = &filter_type;
o->fun = args[1];
o->iter = rt_getiter(args[0]);
o->fun = args[0];
o->iter = rt_getiter(args[1]);
return o;
}
......@@ -38,7 +37,7 @@ static mp_obj_t filter_iternext(mp_obj_t self_in) {
while ((next = rt_iternext(self->iter)) != mp_const_stop_iteration) {
mp_obj_t val;
if (self->fun != mp_const_none) {
val = rt_call_function_n(self->fun, 1, &next);
val = rt_call_function_n_kw(self->fun, 1, 0, &next);
} else {
val = next;
}
......
......@@ -24,8 +24,9 @@ static void float_print(void (*print)(void *env, const char *fmt, ...), void *en
print(env, "%.8g", o->value);
}
// args are reverse in the array
static mp_obj_t float_make_new(mp_obj_t type_in, int n_args, const mp_obj_t *args) {
static mp_obj_t float_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// TODO check n_kw == 0
switch (n_args) {
case 0:
return mp_obj_new_float(0);
......
......@@ -43,16 +43,28 @@ void check_nargs(mp_obj_fun_native_t *self, int n_args, int n_kw) {
}
}
mp_obj_t fun_native_call_n_kw(mp_obj_t self_in, int n_args, int n_kw, const mp_obj_t *args);
// args are in reverse order in the array
mp_obj_t fun_native_call_n(mp_obj_t self_in, int n_args, const mp_obj_t *args) {
mp_obj_t fun_native_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
assert(MP_OBJ_IS_TYPE(self_in, &fun_native_type));
mp_obj_fun_native_t *self = self_in;
// check number of arguments
check_nargs(self, n_args, 0);
check_nargs(self, n_args, n_kw);
if (self->is_kw) {
return fun_native_call_n_kw(self_in, n_args, 0, args);
}
if (self->n_args_min == self->n_args_max) {
// function allows keywords
// TODO if n_kw==0 then don't allocate any memory for map (either pass NULL or allocate it on the heap)
mp_map_t *kw_args = mp_map_new(n_kw);
for (int i = 0; i < 2 * n_kw; i += 2) {
qstr name = mp_obj_str_get(args[n_args + i]);
mp_map_lookup(kw_args, MP_OBJ_NEW_QSTR(name), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = args[n_args + i + 1];
}
mp_obj_t res = ((mp_fun_kw_t)self->fun)(n_args, args, kw_args);
// TODO clean up kw_args
return res;
} else if (self->n_args_min == self->n_args_max) {
// function requires a fixed number of arguments
// dispatch function call
......@@ -64,10 +76,10 @@ mp_obj_t fun_native_call_n(mp_obj_t self_in, int n_args, const mp_obj_t *args) {
return ((mp_fun_1_t)self->fun)(args[0]);
case 2:
return ((mp_fun_2_t)self->fun)(args[1], args[0]);
return ((mp_fun_2_t)self->fun)(args[0], args[1]);
case 3:
return ((mp_fun_3_t)self->fun)(args[2], args[1], args[0]);
return ((mp_fun_3_t)self->fun)(args[0], args[1], args[2]);
default:
assert(0);
......@@ -75,42 +87,16 @@ mp_obj_t fun_native_call_n(mp_obj_t self_in, int n_args, const mp_obj_t *args) {
}
} else {
// function takes a variable number of arguments
// TODO really the args need to be passed in as a Python tuple, as the form f(*[1,2]) can be used to pass var args
mp_obj_t *args_ordered = m_new(mp_obj_t, n_args);
for (int i = 0; i < n_args; i++) {
args_ordered[i] = args[n_args - i - 1];
}
// function takes a variable number of arguments, but no keywords
mp_obj_t res = ((mp_fun_var_t)self->fun)(n_args, args_ordered);
m_del(mp_obj_t, args_ordered, n_args);
return res;
return ((mp_fun_var_t)self->fun)(n_args, args);
}
}
mp_obj_t fun_native_call_n_kw(mp_obj_t self_in, int n_args, int n_kw, const mp_obj_t *args) {
mp_obj_fun_native_t *self = self_in;
check_nargs(self, n_args, n_kw);
mp_obj_t *vargs = mp_obj_new_tuple_reverse(n_args, args + 2*n_kw);
mp_map_t *kw_args = mp_map_new(n_kw);
for (int i = 0; i < 2*n_kw; i+=2) {
qstr name = mp_obj_str_get(args[i+1]);
mp_map_lookup(kw_args, MP_OBJ_NEW_QSTR(name), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = args[i];
}
mp_obj_t res = ((mp_fun_kw_t)self->fun)(vargs, kw_args);
// TODO clean up vargs and kw_args
return res;
}
const mp_obj_type_t fun_native_type = {
{ &mp_const_type },
"function",
.call_n = fun_native_call_n,
.call_n_kw = fun_native_call_n_kw,
.call = fun_native_call,
};
// fun must have the correct signature for n_args fixed arguments
......@@ -156,13 +142,15 @@ typedef struct _mp_obj_fun_bc_t {
const byte *bytecode; // bytecode for the function
} mp_obj_fun_bc_t;
// args are in reverse order in the array
mp_obj_t fun_bc_call_n(mp_obj_t self_in, int n_args, const mp_obj_t *args) {
mp_obj_t fun_bc_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
mp_obj_fun_bc_t *self = self_in;
if (n_args != self->n_args) {
nlr_jump(mp_obj_new_exception_msg_2_args(MP_QSTR_TypeError, "function takes %d positional arguments but %d were given", (const char*)(machine_int_t)self->n_args, (const char*)(machine_int_t)n_args));
}
if (n_kw != 0) {
nlr_jump(mp_obj_new_exception_msg(MP_QSTR_TypeError, "function does not take keyword arguments"));
}
// optimisation: allow the compiler to optimise this tail call for
// the common case when the globals don't need to be changed
......@@ -180,7 +168,7 @@ mp_obj_t fun_bc_call_n(mp_obj_t self_in, int n_args, const mp_obj_t *args) {
const mp_obj_type_t fun_bc_type = {
{ &mp_const_type },
"function",
.call_n = fun_bc_call_n,
.call = fun_bc_call,
};
mp_obj_t mp_obj_new_fun_bc(int n_args, uint n_state, const byte *code) {
......@@ -257,13 +245,15 @@ mp_obj_t convert_val_from_inline_asm(machine_uint_t val) {
return MP_OBJ_NEW_SMALL_INT(val);
}
// args are in reverse order in the array
mp_obj_t fun_asm_call_n(mp_obj_t self_in, int n_args, const mp_obj_t *args) {
mp_obj_t fun_asm_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
mp_obj_fun_asm_t *self = self_in;
if (n_args != self->n_args) {
nlr_jump(mp_obj_new_exception_msg_2_args(MP_QSTR_TypeError, "function takes %d positional arguments but %d were given", (const char*)(machine_int_t)self->n_args, (const char*)(machine_int_t)n_args));
}
if (n_kw != 0) {
nlr_jump(mp_obj_new_exception_msg(MP_QSTR_TypeError, "function does not take keyword arguments"));
}
machine_uint_t ret;
if (n_args == 0) {
......@@ -271,9 +261,9 @@ mp_obj_t fun_asm_call_n(mp_obj_t self_in, int n_args, const mp_obj_t *args) {
} else if (n_args == 1) {
ret = ((inline_asm_fun_1_t)self->fun)(convert_obj_for_inline_asm(args[0]));
} else if (n_args == 2) {
ret = ((inline_asm_fun_2_t)self->fun)(convert_obj_for_inline_asm(args[1]), convert_obj_for_inline_asm(args[0]));
ret = ((inline_asm_fun_2_t)self->fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]));
} else if (n_args == 3) {
ret = ((inline_asm_fun_3_t)self->fun)(convert_obj_for_inline_asm(args[2]), convert_obj_for_inline_asm(args[1]), convert_obj_for_inline_asm(args[0]));
ret = ((inline_asm_fun_3_t)self->fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]), convert_obj_for_inline_asm(args[2]));
} else {
assert(0);
ret = 0;
......@@ -285,7 +275,7 @@ mp_obj_t fun_asm_call_n(mp_obj_t self_in, int n_args, const mp_obj_t *args) {
static const mp_obj_type_t fun_asm_type = {
{ &mp_const_type },
"function",
.call_n = fun_asm_call_n,
.call = fun_asm_call,
};
mp_obj_t mp_obj_new_fun_asm(uint n_args, void *fun) {
......
......@@ -20,8 +20,7 @@ typedef struct _mp_obj_gen_wrap_t {
mp_obj_t *fun;
} mp_obj_gen_wrap_t;
// args are in reverse order in the array
mp_obj_t gen_wrap_call_n(mp_obj_t self_in, int n_args, const mp_obj_t *args) {
mp_obj_t gen_wrap_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
mp_obj_gen_wrap_t *self = self_in;
mp_obj_t self_fun = self->fun;
assert(MP_OBJ_IS_TYPE(self_fun, &fun_bc_type));
......@@ -32,6 +31,9 @@ mp_obj_t gen_wrap_call_n(mp_obj_t self_in, int n_args, const mp_obj_t *args) {
if (n_args != bc_n_args) {
nlr_jump(mp_obj_new_exception_msg_2_args(MP_QSTR_TypeError, "function takes %d positional arguments but %d were given", (const char*)(machine_int_t)bc_n_args, (const char*)(machine_int_t)n_args));
}
if (n_kw != 0) {
nlr_jump(mp_obj_new_exception_msg(MP_QSTR_TypeError, "function does not take keyword arguments"));
}
return mp_obj_new_gen_instance(bc_code, self->n_state, n_args, args);
}
......@@ -39,7 +41,7 @@ mp_obj_t gen_wrap_call_n(mp_obj_t self_in, int n_args, const mp_obj_t *args) {
const mp_obj_type_t gen_wrap_type = {
{ &mp_const_type },
"generator",
.call_n = gen_wrap_call_n,
.call = gen_wrap_call,
};
mp_obj_t mp_obj_new_gen_wrap(uint n_locals, uint n_stack, mp_obj_t fun) {
......@@ -58,6 +60,7 @@ typedef struct _mp_obj_gen_instance_t {