storage.c 6.99 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#include <stdint.h>
#include <string.h>
#include <stm32f4xx_hal.h>

#include "misc.h"
#include "systick.h"
#include "mpconfig.h"
#include "qstr.h"
#include "obj.h"
#include "led.h"
#include "flash.h"
#include "storage.h"

#define CACHE_MEM_START_ADDR (0x10000000) // CCM data RAM, 64k
#define FLASH_PART1_START_BLOCK (0x100)
#define FLASH_PART1_NUM_BLOCKS (224) // 16k+16k+16k+64k=112k
#define FLASH_MEM_START_ADDR (0x08004000) // sector 1, 16k

19
20
21
#define FLASH_FLAG_DIRTY        (1)
#define FLASH_FLAG_FORCE_WRITE  (2)
#define FLASH_FLAG_ERASED       (4)
22
static bool flash_is_initialised = false;
23
static __IO uint8_t flash_flags = 0;
24
25
26
27
28
29
static uint32_t flash_cache_sector_id;
static uint32_t flash_cache_sector_start;
static uint32_t flash_cache_sector_size;
static uint32_t flash_tick_counter_last_write;

static void flash_cache_flush(void) {
30
31
32
33
34
    if (flash_flags & FLASH_FLAG_DIRTY) {
        flash_flags |= FLASH_FLAG_FORCE_WRITE;
        while (flash_flags & FLASH_FLAG_DIRTY) {
           NVIC->STIR = FLASH_IRQn;
        }
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    }
}

static uint8_t *flash_cache_get_addr_for_write(uint32_t flash_addr) {
    uint32_t flash_sector_start;
    uint32_t flash_sector_size;
    uint32_t flash_sector_id = flash_get_sector_info(flash_addr, &flash_sector_start, &flash_sector_size);
    if (flash_cache_sector_id != flash_sector_id) {
        flash_cache_flush();
        memcpy((void*)CACHE_MEM_START_ADDR, (const void*)flash_sector_start, flash_sector_size);
        flash_cache_sector_id = flash_sector_id;
        flash_cache_sector_start = flash_sector_start;
        flash_cache_sector_size = flash_sector_size;
    }
49
50
51
    flash_flags |= FLASH_FLAG_DIRTY;
    led_state(PYB_LED_R1, 1); // indicate a dirty cache with LED on
    flash_tick_counter_last_write = HAL_GetTick();
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    return (uint8_t*)CACHE_MEM_START_ADDR + flash_addr - flash_sector_start;
}

static uint8_t *flash_cache_get_addr_for_read(uint32_t flash_addr) {
    uint32_t flash_sector_start;
    uint32_t flash_sector_size;
    uint32_t flash_sector_id = flash_get_sector_info(flash_addr, &flash_sector_start, &flash_sector_size);
    if (flash_cache_sector_id == flash_sector_id) {
        // in cache, copy from there
        return (uint8_t*)CACHE_MEM_START_ADDR + flash_addr - flash_sector_start;
    }
    // not in cache, copy straight from flash
    return (uint8_t*)flash_addr;
}

void storage_init(void) {
    if (!flash_is_initialised) {
69
        flash_flags = 0;
70
71
        flash_cache_sector_id = 0;
        flash_tick_counter_last_write = 0;
72
        flash_is_initialised = true;
73
    }
74
75
76
77
78
79

    // Enable the flash IRQ, which is used to also call our storage IRQ handler
    // It needs to go at a higher priority than all those components that rely on
    // the flash storage (eg higher than USB MSC).
    HAL_NVIC_SetPriority(FLASH_IRQn, 1, 1);
    HAL_NVIC_EnableIRQ(FLASH_IRQn);
80
81
82
83
84
85
86
87
88
89
}

uint32_t storage_get_block_size(void) {
    return FLASH_BLOCK_SIZE;
}

uint32_t storage_get_block_count(void) {
    return FLASH_PART1_START_BLOCK + FLASH_PART1_NUM_BLOCKS;
}

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
void storage_irq_handler(void) {
    if (!(flash_flags & FLASH_FLAG_DIRTY)) {
        return;
    }

    // This code uses interrupts to erase the flash
    /*
    if (flash_erase_state == 0) {
        flash_erase_it(flash_cache_sector_start, (const uint32_t*)CACHE_MEM_START_ADDR, flash_cache_sector_size / 4);
        flash_erase_state = 1;
        return;
    }

    if (flash_erase_state == 1) {
        // wait for erase
        // TODO add timeout
        #define flash_erase_done() (__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY) == RESET)
        if (!flash_erase_done()) {
            return;
        }
        flash_erase_state = 2;
    }
    */

    // This code erases the flash directly, waiting for it to finish
    if (!(flash_flags & FLASH_FLAG_ERASED)) {
        flash_erase(flash_cache_sector_start, (const uint32_t*)CACHE_MEM_START_ADDR, flash_cache_sector_size / 4);
        flash_flags |= FLASH_FLAG_ERASED;
        return;
    }

    // If not a forced write, wait at least 5 seconds after last write to flush
    // On file close and flash unmount we get a forced write, so we can afford to wait a while
    if ((flash_flags & FLASH_FLAG_FORCE_WRITE) || sys_tick_has_passed(flash_tick_counter_last_write, 5000)) {
        // sync the cache RAM buffer by writing it to the flash page
        flash_write(flash_cache_sector_start, (const uint32_t*)CACHE_MEM_START_ADDR, flash_cache_sector_size / 4);
        // clear the flash flags now that we have a clean cache
        flash_flags = 0;
        // indicate a clean cache with LED off
        led_state(PYB_LED_R1, 0);
    }
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
}

void storage_flush(void) {
    flash_cache_flush();
}

static void build_partition(uint8_t *buf, int boot, int type, uint32_t start_block, uint32_t num_blocks) {
    buf[0] = boot;

    if (num_blocks == 0) {
        buf[1] = 0;
        buf[2] = 0;
        buf[3] = 0;
    } else {
        buf[1] = 0xff;
        buf[2] = 0xff;
        buf[3] = 0xff;
    }

    buf[4] = type;

    if (num_blocks == 0) {
        buf[5] = 0;
        buf[6] = 0;
        buf[7] = 0;
    } else {
        buf[5] = 0xff;
        buf[6] = 0xff;
        buf[7] = 0xff;
    }

    buf[8] = start_block;
    buf[9] = start_block >> 8;
    buf[10] = start_block >> 16;
    buf[11] = start_block >> 24;

    buf[12] = num_blocks;
    buf[13] = num_blocks >> 8;
    buf[14] = num_blocks >> 16;
    buf[15] = num_blocks >> 24;
}

bool storage_read_block(uint8_t *dest, uint32_t block) {
    //printf("RD %u\n", block);
    if (block == 0) {
        // fake the MBR so we can decide on our own partition table

        for (int i = 0; i < 446; i++) {
            dest[i] = 0;
        }

        build_partition(dest + 446, 0, 0x01 /* FAT12 */, FLASH_PART1_START_BLOCK, FLASH_PART1_NUM_BLOCKS);
        build_partition(dest + 462, 0, 0, 0, 0);
        build_partition(dest + 478, 0, 0, 0, 0);
        build_partition(dest + 494, 0, 0, 0, 0);

        dest[510] = 0x55;
        dest[511] = 0xaa;

        return true;

    } else if (FLASH_PART1_START_BLOCK <= block && block < FLASH_PART1_START_BLOCK + FLASH_PART1_NUM_BLOCKS) {
        // non-MBR block, get data from flash memory, possibly via cache
        uint32_t flash_addr = FLASH_MEM_START_ADDR + (block - FLASH_PART1_START_BLOCK) * FLASH_BLOCK_SIZE;
        uint8_t *src = flash_cache_get_addr_for_read(flash_addr);
        memcpy(dest, src, FLASH_BLOCK_SIZE);
        return true;

    } else {
        // bad block number
        return false;
    }
}

bool storage_write_block(const uint8_t *src, uint32_t block) {
    //printf("WR %u\n", block);
    if (block == 0) {
        // can't write MBR, but pretend we did
        return true;

    } else if (FLASH_PART1_START_BLOCK <= block && block < FLASH_PART1_START_BLOCK + FLASH_PART1_NUM_BLOCKS) {
        // non-MBR block, copy to cache
        uint32_t flash_addr = FLASH_MEM_START_ADDR + (block - FLASH_PART1_START_BLOCK) * FLASH_BLOCK_SIZE;
        uint8_t *dest = flash_cache_get_addr_for_write(flash_addr);
        memcpy(dest, src, FLASH_BLOCK_SIZE);
        return true;

    } else {
        // bad block number
        return false;
    }
}