timer.c 55 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27
28
29
30
31
32
33
34
#include <stdint.h>
#include <stdio.h>
#include <string.h>

#include <stm32f4xx_hal.h>
#include "usbd_cdc_msc_hid.h"
#include "usbd_cdc_interface.h"

35
36
37
#include "py/nlr.h"
#include "py/runtime.h"
#include "py/gc.h"
38
#include MICROPY_HAL_H
39
40
#include "timer.h"
#include "servo.h"
41
#include "pin.h"
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
/// \moduleref pyb
/// \class Timer - periodically call a function
///
/// Timers can be used for a great variety of tasks.  At the moment, only
/// the simplest case is implemented: that of calling a function periodically.
///
/// Each timer consists of a counter that counts up at a certain rate.  The rate
/// at which it counts is the peripheral clock frequency (in Hz) divided by the
/// timer prescaler.  When the counter reaches the timer period it triggers an
/// event, and the counter resets back to zero.  By using the callback method,
/// the timer event can call a Python function.
///
/// Example usage to toggle an LED at a fixed frequency:
///
///     tim = pyb.Timer(4)              # create a timer object using timer 4
///     tim.init(freq=2)                # trigger at 2Hz
///     tim.callback(lambda t:pyb.LED(1).toggle())
///
/// Further examples:
///
///     tim = pyb.Timer(4, freq=100)    # freq in Hz
64
///     tim = pyb.Timer(4, prescaler=0, period=99)
65
66
///     tim.counter()                   # get counter (can also set)
///     tim.prescaler(2)                # set prescaler (can also get)
67
///     tim.period(199)                 # set period (can also get)
68
69
70
71
72
73
74
///     tim.callback(lambda t: ...)     # set callback for update interrupt (t=tim instance)
///     tim.callback(None)              # clear callback
///
/// *Note:* Timer 3 is reserved for internal use.  Timer 5 controls
/// the servo driver, and Timer 6 is used for timed ADC/DAC reading/writing.
/// It is recommended to use the other timers in your programs.

75
76
77
78
// The timers can be used by multiple drivers, and need a common point for
// the interrupts to be dispatched, so they are all collected here.
//
// TIM3:
79
//  - flash storage controller, to flush the cache
80
81
82
83
84
//  - USB CDC interface, interval, to check for new data
//  - LED 4, PWM to set the LED intensity
//
// TIM5:
//  - servo controller, PWM
85
86
87
88
//
// TIM6:
//  - ADC, DAC for read_timed and write_timed

89
90
91
92
93
94
95
96
97
98
typedef enum {
    CHANNEL_MODE_PWM_NORMAL,
    CHANNEL_MODE_PWM_INVERTED,
    CHANNEL_MODE_OC_TIMING,
    CHANNEL_MODE_OC_ACTIVE,
    CHANNEL_MODE_OC_INACTIVE,
    CHANNEL_MODE_OC_TOGGLE,
    CHANNEL_MODE_OC_FORCED_ACTIVE,
    CHANNEL_MODE_OC_FORCED_INACTIVE,
    CHANNEL_MODE_IC,
99
100
101
    CHANNEL_MODE_ENC_A,
    CHANNEL_MODE_ENC_B,
    CHANNEL_MODE_ENC_AB,
102
103
104
105
106
} pyb_channel_mode;

STATIC const struct {
    qstr        name;
    uint32_t    oc_mode;
107
} channel_mode_info[] = {
108
109
110
111
112
113
114
115
116
    { MP_QSTR_PWM,                TIM_OCMODE_PWM1 },
    { MP_QSTR_PWM_INVERTED,       TIM_OCMODE_PWM2 },
    { MP_QSTR_OC_TIMING,          TIM_OCMODE_TIMING },
    { MP_QSTR_OC_ACTIVE,          TIM_OCMODE_ACTIVE },
    { MP_QSTR_OC_INACTIVE,        TIM_OCMODE_INACTIVE },
    { MP_QSTR_OC_TOGGLE,          TIM_OCMODE_TOGGLE },
    { MP_QSTR_OC_FORCED_ACTIVE,   TIM_OCMODE_FORCED_ACTIVE },
    { MP_QSTR_OC_FORCED_INACTIVE, TIM_OCMODE_FORCED_INACTIVE },
    { MP_QSTR_IC,                 0 },
117
118
119
    { MP_QSTR_ENC_A,              TIM_ENCODERMODE_TI1 },
    { MP_QSTR_ENC_B,              TIM_ENCODERMODE_TI2 },
    { MP_QSTR_ENC_AB,             TIM_ENCODERMODE_TI12 },
120
121
122
123
124
125
126
127
128
129
130
};

typedef struct _pyb_timer_channel_obj_t {
    mp_obj_base_t base;
    struct _pyb_timer_obj_t *timer;
    uint8_t channel;
    uint8_t mode;
    mp_obj_t callback;
    struct _pyb_timer_channel_obj_t *next;
} pyb_timer_channel_obj_t;

131
132
typedef struct _pyb_timer_obj_t {
    mp_obj_base_t base;
133
134
    uint8_t tim_id;
    uint8_t is_32bit;
135
136
137
    mp_obj_t callback;
    TIM_HandleTypeDef tim;
    IRQn_Type irqn;
138
    pyb_timer_channel_obj_t *channel;
139
} pyb_timer_obj_t;
140

141
142
143
// The following yields TIM_IT_UPDATE when channel is zero and
// TIM_IT_CC1..TIM_IT_CC4 when channel is 1..4
#define TIMER_IRQ_MASK(channel) (1 << (channel))
144
#define TIMER_CNT_MASK(self)    ((self)->is_32bit ? 0xffffffff : 0xffff)
145
146
#define TIMER_CHANNEL(self)     ((((self)->channel) - 1) << 2)

147
148
TIM_HandleTypeDef TIM3_Handle;
TIM_HandleTypeDef TIM5_Handle;
149
TIM_HandleTypeDef TIM6_Handle;
150

151
// Used to divide down TIM3 and periodically call the flash storage IRQ
152
STATIC uint32_t tim3_counter = 0;
153

154
#define PYB_TIMER_OBJ_ALL_NUM MP_ARRAY_SIZE(MP_STATE_PORT(pyb_timer_obj_all))
155

156
STATIC uint32_t timer_get_source_freq(uint32_t tim_id);
157
158
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in);
STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback);
159
STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback);
160

161
162
163
void timer_init0(void) {
    tim3_counter = 0;
    for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
164
        MP_STATE_PORT(pyb_timer_obj_all)[i] = NULL;
165
166
167
    }
}

168
169
170
// unregister all interrupt sources
void timer_deinit(void) {
    for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
171
        pyb_timer_obj_t *tim = MP_STATE_PORT(pyb_timer_obj_all)[i];
172
173
174
175
176
177
        if (tim != NULL) {
            pyb_timer_deinit(tim);
        }
    }
}

178
179
180
181
182
183
// TIM3 is set-up for the USB CDC interface
void timer_tim3_init(void) {
    // set up the timer for USBD CDC
    __TIM3_CLK_ENABLE();

    TIM3_Handle.Instance = TIM3;
184
    TIM3_Handle.Init.Period = (USBD_CDC_POLLING_INTERVAL*1000) - 1; // TIM3 fires every USBD_CDC_POLLING_INTERVAL ms
185
    TIM3_Handle.Init.Prescaler = timer_get_source_freq(3) / 1000000 - 1; // TIM3 runs at 1MHz
186
    TIM3_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    TIM3_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
    HAL_TIM_Base_Init(&TIM3_Handle);

    HAL_NVIC_SetPriority(TIM3_IRQn, 6, 0);
    HAL_NVIC_EnableIRQ(TIM3_IRQn);

    if (HAL_TIM_Base_Start(&TIM3_Handle) != HAL_OK) {
        /* Starting Error */
    }
}

/* unused
void timer_tim3_deinit(void) {
    // reset TIM3 timer
    __TIM3_FORCE_RESET();
    __TIM3_RELEASE_RESET();
}
*/

// TIM5 is set-up for the servo controller
207
// This function inits but does not start the timer
208
209
210
211
212
213
214
215
216
217
void timer_tim5_init(void) {
    // TIM5 clock enable
    __TIM5_CLK_ENABLE();

    // set up and enable interrupt
    HAL_NVIC_SetPriority(TIM5_IRQn, 6, 0);
    HAL_NVIC_EnableIRQ(TIM5_IRQn);

    // PWM clock configuration
    TIM5_Handle.Instance = TIM5;
218
    TIM5_Handle.Init.Period = 2000 - 1; // timer cycles at 50Hz
219
    TIM5_Handle.Init.Prescaler = (timer_get_source_freq(5) / 100000) - 1; // timer runs at 100kHz
220
    TIM5_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
221
    TIM5_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
222

223
224
225
    HAL_TIM_PWM_Init(&TIM5_Handle);
}

226
227
228
229
230
231
232
233
234
// Init TIM6 with a counter-overflow at the given frequency (given in Hz)
// TIM6 is used by the DAC and ADC for auto sampling at a given frequency
// This function inits but does not start the timer
void timer_tim6_init(uint freq) {
    // TIM6 clock enable
    __TIM6_CLK_ENABLE();

    // Timer runs at SystemCoreClock / 2
    // Compute the prescaler value so TIM6 triggers at freq-Hz
235
    uint32_t period = MAX(1, timer_get_source_freq(6) / freq);
236
237
238
239
240
241
242
243
244
245
    uint32_t prescaler = 1;
    while (period > 0xffff) {
        period >>= 1;
        prescaler <<= 1;
    }

    // Time base clock configuration
    TIM6_Handle.Instance = TIM6;
    TIM6_Handle.Init.Period = period - 1;
    TIM6_Handle.Init.Prescaler = prescaler - 1;
246
    TIM6_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // unused for TIM6
247
248
249
250
    TIM6_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; // unused for TIM6
    HAL_TIM_Base_Init(&TIM6_Handle);
}

251
252
253
254
// Interrupt dispatch
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
    if (htim == &TIM3_Handle) {
        USBD_CDC_HAL_TIM_PeriodElapsedCallback();
255
256
257
258
259
260
261

        // Periodically raise a flash IRQ for the flash storage controller
        if (tim3_counter++ >= 500 / USBD_CDC_POLLING_INTERVAL) {
            tim3_counter = 0;
            NVIC->STIR = FLASH_IRQn;
        }

262
263
264
265
266
    } else if (htim == &TIM5_Handle) {
        servo_timer_irq_callback();
    }
}

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
// Get the frequency (in Hz) of the source clock for the given timer.
// On STM32F405/407/415/417 there are 2 cases for how the clock freq is set.
// If the APB prescaler is 1, then the timer clock is equal to its respective
// APB clock.  Otherwise (APB prescaler > 1) the timer clock is twice its
// respective APB clock.  See DM00031020 Rev 4, page 115.
STATIC uint32_t timer_get_source_freq(uint32_t tim_id) {
    uint32_t source;
    if (tim_id == 1 || (8 <= tim_id && tim_id <= 11)) {
        // TIM{1,8,9,10,11} are on APB2
        source = HAL_RCC_GetPCLK2Freq();
        if ((uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3) != RCC_HCLK_DIV1) {
            source *= 2;
        }
    } else {
        // TIM{2,3,4,5,6,7,12,13,14} are on APB1
        source = HAL_RCC_GetPCLK1Freq();
        if ((uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1) != RCC_HCLK_DIV1) {
            source *= 2;
        }
    }
    return source;
}

290
291
292
/******************************************************************************/
/* Micro Python bindings                                                      */

293
294
STATIC const mp_obj_type_t pyb_timer_channel_type;

Dave Hylands's avatar
Dave Hylands committed
295
296
297
298
// This is the largest value that we can multiply by 100 and have the result
// fit in a uint32_t.
#define MAX_PERIOD_DIV_100  42949672

299
300
301
302
303
304
305
306
307
308
309
310
// computes prescaler and period so TIM triggers at freq-Hz
STATIC uint32_t compute_prescaler_period_from_freq(pyb_timer_obj_t *self, mp_obj_t freq_in, uint32_t *period_out) {
    uint32_t source_freq = timer_get_source_freq(self->tim_id);
    uint32_t prescaler = 1;
    uint32_t period;
    if (0) {
    #if MICROPY_PY_BUILTINS_FLOAT
    } else if (MP_OBJ_IS_TYPE(freq_in, &mp_type_float)) {
        float freq = mp_obj_get_float(freq_in);
        if (freq <= 0) {
            goto bad_freq;
        }
311
312
313
314
315
        while (freq < 1 && prescaler < 6553) {
            prescaler *= 10;
            freq *= 10;
        }
        period = (float)source_freq / freq;
316
317
318
319
320
321
322
323
    #endif
    } else {
        mp_int_t freq = mp_obj_get_int(freq_in);
        if (freq <= 0) {
            goto bad_freq;
            bad_freq:
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "must have positive freq"));
        }
324
        period = source_freq / freq;
325
    }
326
    period = MAX(1, period);
327
    while (period > TIMER_CNT_MASK(self)) {
328
329
330
331
332
333
334
335
336
337
338
339
        // if we can divide exactly, do that first
        if (period % 5 == 0) {
            prescaler *= 5;
            period /= 5;
        } else if (period % 3 == 0) {
            prescaler *= 3;
            period /= 3;
        } else {
            // may not divide exactly, but loses minimal precision
            prescaler <<= 1;
            period >>= 1;
        }
340
341
342
343
344
    }
    *period_out = (period - 1) & TIMER_CNT_MASK(self);
    return (prescaler - 1) & 0xffff;
}

Dave Hylands's avatar
Dave Hylands committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
// Helper function for determining the period used for calculating percent
STATIC uint32_t compute_period(pyb_timer_obj_t *self) {
    // In center mode,  compare == period corresponds to 100%
    // In edge mode, compare == (period + 1) corresponds to 100%
    uint32_t period = (__HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self));
    if (period != 0xffffffff) {
        if (self->tim.Init.CounterMode == TIM_COUNTERMODE_UP ||
            self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN) {
            // Edge mode
            period++;
        }
    }
    return period;
}

360
// Helper function to compute PWM value from timer period and percent value.
Dave Hylands's avatar
Dave Hylands committed
361
362
363
// 'percent_in' can be an int or a float between 0 and 100 (out of range
// values are clamped).
STATIC uint32_t compute_pwm_value_from_percent(uint32_t period, mp_obj_t percent_in) {
364
365
366
    uint32_t cmp;
    if (0) {
    #if MICROPY_PY_BUILTINS_FLOAT
Dave Hylands's avatar
Dave Hylands committed
367
368
369
370
371
372
373
374
375
    } else if (MP_OBJ_IS_TYPE(percent_in, &mp_type_float)) {
        float percent = mp_obj_get_float(percent_in);
        if (percent <= 0.0) {
            cmp = 0;
        } else if (percent >= 100.0) {
            cmp = period;
        } else {
            cmp = percent / 100.0 * ((float)period);
        }
376
377
378
379
380
    #endif
    } else {
        // For integer arithmetic, if period is large and 100*period will
        // overflow, then divide period before multiplying by cmp.  Otherwise
        // do it the other way round to retain precision.
Dave Hylands's avatar
Dave Hylands committed
381
382
383
384
385
386
387
        mp_int_t percent = mp_obj_get_int(percent_in);
        if (percent <= 0) {
            cmp = 0;
        } else if (percent >= 100) {
            cmp = period;
        } else if (period > MAX_PERIOD_DIV_100) {
            cmp = (uint32_t)percent * (period / 100);
388
        } else {
Dave Hylands's avatar
Dave Hylands committed
389
            cmp = ((uint32_t)percent * period) / 100;
390
391
392
393
394
        }
    }
    return cmp;
}

Dave Hylands's avatar
Dave Hylands committed
395
396
397
398
// Helper function to compute percentage from timer perion and PWM value.
STATIC mp_obj_t compute_percent_from_pwm_value(uint32_t period, uint32_t cmp) {
    #if MICROPY_PY_BUILTINS_FLOAT
    float percent;
399
    if (cmp >= period) {
Dave Hylands's avatar
Dave Hylands committed
400
401
402
403
404
405
406
        percent = 100.0;
    } else {
        percent = (float)cmp * 100.0 / ((float)period);
    }
    return mp_obj_new_float(percent);
    #else
    mp_int_t percent;
407
    if (cmp >= period) {
Dave Hylands's avatar
Dave Hylands committed
408
        percent = 100;
409
410
    } else if (cmp > MAX_PERIOD_DIV_100) {
        percent = cmp / (period / 100);
Dave Hylands's avatar
Dave Hylands committed
411
412
413
414
415
416
417
    } else {
        percent = cmp * 100 / period;
    }
    return mp_obj_new_int(percent);
    #endif
}

418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
// Computes the 8-bit value for the DTG field in the BDTR register.
//
// 1 tick = 1 count of the timer's clock (source_freq) divided by div.
// 0-128 ticks in inrements of 1
// 128-256 ticks in increments of 2
// 256-512 ticks in increments of 8
// 512-1008 ticks in increments of 16
STATIC uint32_t compute_dtg_from_ticks(mp_int_t ticks) {
    if (ticks <= 0) {
        return 0;
    }
    if (ticks < 128) {
        return ticks;
    }
    if (ticks < 256) {
        return 0x80 | ((ticks - 128) / 2);
    }
    if (ticks < 512) {
        return 0xC0 | ((ticks - 256) / 8);
    }
    if (ticks < 1008) {
        return 0xE0 | ((ticks - 512) / 16);
    }
    return 0xFF;
}

// Given the 8-bit value stored in the DTG field of the BDTR register, compute
// the number of ticks.
STATIC mp_int_t compute_ticks_from_dtg(uint32_t dtg) {
    if ((dtg & 0x80) == 0) {
        return dtg & 0x7F;
    }
    if ((dtg & 0xC0) == 0x80) {
        return 128 + ((dtg & 0x3F) * 2);
    }
    if ((dtg & 0xE0) == 0xC0) {
        return 256 + ((dtg & 0x1F) * 8);
    }
    return 512 + ((dtg & 0x1F) * 16);
}

STATIC void config_deadtime(pyb_timer_obj_t *self, mp_int_t ticks) {
    TIM_BreakDeadTimeConfigTypeDef deadTimeConfig;
    deadTimeConfig.OffStateRunMode  = TIM_OSSR_DISABLE;
    deadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
    deadTimeConfig.LockLevel        = TIM_LOCKLEVEL_OFF;
    deadTimeConfig.DeadTime         = compute_dtg_from_ticks(ticks);
    deadTimeConfig.BreakState       = TIM_BREAK_DISABLE;
    deadTimeConfig.BreakPolarity    = TIM_BREAKPOLARITY_LOW;
    deadTimeConfig.AutomaticOutput  = TIM_AUTOMATICOUTPUT_DISABLE;
    HAL_TIMEx_ConfigBreakDeadTime(&self->tim, &deadTimeConfig);
}

471
STATIC void pyb_timer_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
472
473
474
    pyb_timer_obj_t *self = self_in;

    if (self->tim.State == HAL_TIM_STATE_RESET) {
475
        mp_printf(print, "Timer(%u)", self->tim_id);
476
    } else {
477
478
479
480
        uint32_t prescaler = self->tim.Instance->PSC & 0xffff;
        uint32_t period = __HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self);
        // for efficiency, we compute and print freq as an int (not a float)
        uint32_t freq = timer_get_source_freq(self->tim_id) / ((prescaler + 1) * (period + 1));
481
        mp_printf(print, "Timer(%u, freq=%u, prescaler=%u, period=%u, mode=%s, div=%u",
482
            self->tim_id,
483
484
485
            freq,
            prescaler,
            period,
486
487
488
489
            self->tim.Init.CounterMode == TIM_COUNTERMODE_UP     ? "UP" :
            self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN   ? "DOWN" : "CENTER",
            self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV4 ? 4 :
            self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV2 ? 2 : 1);
490
        if (IS_TIM_ADVANCED_INSTANCE(self->tim.Instance)) {
491
492
            mp_printf(print, ", deadtime=%u",
                compute_ticks_from_dtg(self->tim.Instance->BDTR & TIM_BDTR_DTG));
493
        }
494
        mp_print_str(print, ")");
495
496
    }
}
497

498
499
500
501
502
/// \method init(*, freq, prescaler, period)
/// Initialise the timer.  Initialisation must be either by frequency (in Hz)
/// or by prescaler and period:
///
///     tim.init(freq=100)                  # set the timer to trigger at 100Hz
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
///     tim.init(prescaler=83, period=999)  # set the prescaler and period directly
///
/// Keyword arguments:
///
///   - `freq` - specifies the periodic frequency of the timer. You migh also
///              view this as the frequency with which the timer goes through
///              one complete cycle.
///
///   - `prescaler` [0-0xffff] - specifies the value to be loaded into the
///                 timer's Prescaler Register (PSC). The timer clock source is divided by
///     (`prescaler + 1`) to arrive at the timer clock. Timers 2-7 and 12-14
///     have a clock source of 84 MHz (pyb.freq()[2] * 2), and Timers 1, and 8-11
///     have a clock source of 168 MHz (pyb.freq()[3] * 2).
///
///   - `period` [0-0xffff] for timers 1, 3, 4, and 6-15. [0-0x3fffffff] for timers 2 & 5.
///              Specifies the value to be loaded into the timer's AutoReload
///     Register (ARR). This determines the period of the timer (i.e. when the
///     counter cycles). The timer counter will roll-over after `period + 1`
///     timer clock cycles.
///
///   - `mode` can be one of:
///     - `Timer.UP` - configures the timer to count from 0 to ARR (default)
///     - `Timer.DOWN` - configures the timer to count from ARR down to 0.
///     - `Timer.CENTER` - confgures the timer to count from 0 to ARR and
///       then back down to 0.
///
///   - `div` can be one of 1, 2, or 4. Divides the timer clock to determine
///       the sampling clock used by the digital filters.
///
///   - `callback` - as per Timer.callback()
///
534
535
536
537
538
539
540
541
///   - `deadtime` - specifies the amount of "dead" or inactive time between
///       transitions on complimentary channels (both channels will be inactive)
///       for this time). `deadtime` may be an integer between 0 and 1008, with
///       the following restrictions: 0-128 in steps of 1. 128-256 in steps of
///       2, 256-512 in steps of 8, and 512-1008 in steps of 16. `deadime`
///       measures ticks of `source_freq` divided by `div` clock ticks.
///       `deadtime` is only available on timers 1 and 8.
///
542
///  You must either specify freq or both of period and prescaler.
543
544
545
546
547
548
549
550
STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_freq,         MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_prescaler,    MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
        { MP_QSTR_period,       MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
        { MP_QSTR_mode,         MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = TIM_COUNTERMODE_UP} },
        { MP_QSTR_div,          MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
        { MP_QSTR_callback,     MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
551
        { MP_QSTR_deadtime,     MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
552
    };
553

554
    // parse args
555
556
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
557

558
559
    // set the TIM configuration values
    TIM_Base_InitTypeDef *init = &self->tim.Init;
560

561
562
563
564
    if (args[0].u_obj != mp_const_none) {
        // set prescaler and period from desired frequency
        init->Prescaler = compute_prescaler_period_from_freq(self, args[0].u_obj, &init->Period);
    } else if (args[1].u_int != 0xffffffff && args[2].u_int != 0xffffffff) {
565
        // set prescaler and period directly
566
567
        init->Prescaler = args[1].u_int;
        init->Period = args[2].u_int;
568
569
570
571
    } else {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "must specify either freq, or prescaler and period"));
    }

572
573
574
575
    init->CounterMode = args[3].u_int;
    if (!IS_TIM_COUNTER_MODE(init->CounterMode)) {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid mode (%d)", init->CounterMode));
    }
576

577
578
    init->ClockDivision = args[4].u_int == 2 ? TIM_CLOCKDIVISION_DIV2 :
                          args[4].u_int == 4 ? TIM_CLOCKDIVISION_DIV4 :
579
                                               TIM_CLOCKDIVISION_DIV1;
580

581
    init->RepetitionCounter = 0;
582

583
    // enable TIM clock
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
    switch (self->tim_id) {
        case 1: __TIM1_CLK_ENABLE(); break;
        case 2: __TIM2_CLK_ENABLE(); break;
        case 3: __TIM3_CLK_ENABLE(); break;
        case 4: __TIM4_CLK_ENABLE(); break;
        case 5: __TIM5_CLK_ENABLE(); break;
        case 6: __TIM6_CLK_ENABLE(); break;
        case 7: __TIM7_CLK_ENABLE(); break;
        case 8: __TIM8_CLK_ENABLE(); break;
        case 9: __TIM9_CLK_ENABLE(); break;
        case 10: __TIM10_CLK_ENABLE(); break;
        case 11: __TIM11_CLK_ENABLE(); break;
        case 12: __TIM12_CLK_ENABLE(); break;
        case 13: __TIM13_CLK_ENABLE(); break;
        case 14: __TIM14_CLK_ENABLE(); break;
    }
600
601

    // set IRQ priority (if not a special timer)
602
603
604
    if (self->tim_id != 3 && self->tim_id != 5) {
        HAL_NVIC_SetPriority(self->irqn, 0xe, 0xe); // next-to lowest priority
    }
605

606
    // init TIM
607
    HAL_TIM_Base_Init(&self->tim);
608
609
610
    if (IS_TIM_ADVANCED_INSTANCE(self->tim.Instance)) {
        config_deadtime(self, args[6].u_int);
    }
611
    if (args[5].u_obj == mp_const_none) {
612
613
        HAL_TIM_Base_Start(&self->tim);
    } else {
614
        pyb_timer_callback(self, args[5].u_obj);
615
616
    }

617
618
619
    return mp_const_none;
}

620
621
622
623
/// \classmethod \constructor(id, ...)
/// Construct a new timer object of the given id.  If additional
/// arguments are given, then the timer is initialised by `init(...)`.
/// `id` can be 1 to 14, excluding 3.
624
STATIC mp_obj_t pyb_timer_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
625
626
627
628
629
    // check arguments
    mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);

    // create new Timer object
    pyb_timer_obj_t *tim = m_new_obj(pyb_timer_obj_t);
630
631
    memset(tim, 0, sizeof(*tim));

632
633
    tim->base.type = &pyb_timer_type;
    tim->callback = mp_const_none;
634
    tim->channel = NULL;
635
636
637

    // get TIM number
    tim->tim_id = mp_obj_get_int(args[0]);
638
    tim->is_32bit = false;
639
640
641

    switch (tim->tim_id) {
        case 1: tim->tim.Instance = TIM1; tim->irqn = TIM1_UP_TIM10_IRQn; break;
642
        case 2: tim->tim.Instance = TIM2; tim->irqn = TIM2_IRQn; tim->is_32bit = true; break;
643
644
        case 3: nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "Timer 3 is for internal use only")); // TIM3 used for low-level stuff; go via regs if necessary
        case 4: tim->tim.Instance = TIM4; tim->irqn = TIM4_IRQn; break;
645
        case 5: tim->tim.Instance = TIM5; tim->irqn = TIM5_IRQn; tim->is_32bit = true; break;
646
647
648
649
650
651
652
653
654
655
656
657
        case 6: tim->tim.Instance = TIM6; tim->irqn = TIM6_DAC_IRQn; break;
        case 7: tim->tim.Instance = TIM7; tim->irqn = TIM7_IRQn; break;
        case 8: tim->tim.Instance = TIM8; tim->irqn = TIM8_UP_TIM13_IRQn; break;
        case 9: tim->tim.Instance = TIM9; tim->irqn = TIM1_BRK_TIM9_IRQn; break;
        case 10: tim->tim.Instance = TIM10; tim->irqn = TIM1_UP_TIM10_IRQn; break;
        case 11: tim->tim.Instance = TIM11; tim->irqn = TIM1_TRG_COM_TIM11_IRQn; break;
        case 12: tim->tim.Instance = TIM12; tim->irqn = TIM8_BRK_TIM12_IRQn; break;
        case 13: tim->tim.Instance = TIM13; tim->irqn = TIM8_UP_TIM13_IRQn; break;
        case 14: tim->tim.Instance = TIM14; tim->irqn = TIM8_TRG_COM_TIM14_IRQn; break;
        default: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Timer %d does not exist", tim->tim_id));
    }

658
659
660
661
662
    // set the global variable for interrupt callbacks
    if (tim->tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) {
        MP_STATE_PORT(pyb_timer_obj_all)[tim->tim_id - 1] = tim;
    }

663
664
665
666
667
668
669
670
    if (n_args > 1 || n_kw > 0) {
        // start the peripheral
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
        pyb_timer_init_helper(tim, n_args - 1, args + 1, &kw_args);
    }

    return (mp_obj_t)tim;
671
672
}

673
STATIC mp_obj_t pyb_timer_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
674
    return pyb_timer_init_helper(args[0], n_args - 1, args + 1, kw_args);
675
}
676
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_init_obj, 1, pyb_timer_init);
677

678
// timer.deinit()
679
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in) {
680
681
    pyb_timer_obj_t *self = self_in;

682
    // Disable the base interrupt
683
684
    pyb_timer_callback(self_in, mp_const_none);

685
686
687
688
689
690
691
692
693
694
695
    pyb_timer_channel_obj_t *chan = self->channel;
    self->channel = NULL;

    // Disable the channel interrupts
    while (chan != NULL) {
        pyb_timer_channel_callback(chan, mp_const_none);
        pyb_timer_channel_obj_t *prev_chan = chan;
        chan = chan->next;
        prev_chan->next = NULL;
    }

696
    self->tim.State = HAL_TIM_STATE_RESET;
697
698
699
    self->tim.Instance->CCER = 0x0000; // disable all capture/compare outputs
    self->tim.Instance->CR1 = 0x0000; // disable the timer and reset its state

700
701
702
703
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_deinit_obj, pyb_timer_deinit);

704
705
/// \method channel(channel, mode, ...)
///
706
707
/// If only a channel number is passed, then a previously initialized channel
/// object is returned (or `None` if there is no previous channel).
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
///
/// Othwerwise, a TimerChannel object is initialized and returned.
///
/// Each channel can be configured to perform pwm, output compare, or
/// input capture. All channels share the same underlying timer, which means
/// that they share the same timer clock.
///
/// Keyword arguments:
///
///   - `mode` can be one of:
///     - `Timer.PWM` - configure the timer in PWM mode (active high).
///     - `Timer.PWM_INVERTED` - configure the timer in PWM mode (active low).
///     - `Timer.OC_TIMING` - indicates that no pin is driven.
///     - `Timer.OC_ACTIVE` - the pin will be made active when a compare
///        match occurs (active is determined by polarity)
///     - `Timer.OC_INACTIVE` - the pin will be made inactive when a compare
///        match occurs.
///     - `Timer.OC_TOGGLE` - the pin will be toggled when an compare match occurs.
///     - `Timer.OC_FORCED_ACTIVE` - the pin is forced active (compare match is ignored).
///     - `Timer.OC_FORCED_INACTIVE` - the pin is forced inactive (compare match is ignored).
///     - `Timer.IC` - configure the timer in Input Capture mode.
729
730
731
///     - `Timer.ENC_A` --- configure the timer in Encoder mode. The counter only changes when CH1 changes.
///     - `Timer.ENC_B` --- configure the timer in Encoder mode. The counter only changes when CH2 changes.
///     - `Timer.ENC_AB` --- configure the timer in Encoder mode. The counter changes when CH1 or CH2 changes.
732
733
734
735
736
737
738
739
740
741
///
///   - `callback` - as per TimerChannel.callback()
///
///   - `pin` None (the default) or a Pin object. If specified (and not None)
///           this will cause the alternate function of the the indicated pin
///      to be configured for this timer channel. An error will be raised if
///      the pin doesn't support any alternate functions for this timer channel.
///
/// Keyword arguments for Timer.PWM modes:
///
742
///   - `pulse_width` - determines the initial pulse width value to use.
743
///   - `pulse_width_percent` - determines the initial pulse width percentage to use.
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
///
/// Keyword arguments for Timer.OC modes:
///
///   - `compare` - determines the initial value of the compare register.
///
///   - `polarity` can be one of:
///     - `Timer.HIGH` - output is active high
///     - `Timer.LOW` - output is acive low
///
/// Optional keyword arguments for Timer.IC modes:
///
///   - `polarity` can be one of:
///     - `Timer.RISING` - captures on rising edge.
///     - `Timer.FALLING` - captures on falling edge.
///     - `Timer.BOTH` - captures on both edges.
///
760
761
762
///   Note that capture only works on the primary channel, and not on the
///   complimentary channels.
///
763
764
765
766
767
768
769
770
/// Notes for Timer.ENC modes:
///
///   - Requires 2 pins, so one or both pins will need to be configured to use
///     the appropriate timer AF using the Pin API.
///   - Read the encoder value using the timer.counter() method.
///   - Only works on CH1 and CH2 (and not on CH1N or CH2N)
///   - The channel number is ignored when setting the encoder mode.
///
771
772
773
774
775
/// PWM Example:
///
///     timer = pyb.Timer(2, freq=1000)
///     ch2 = timer.channel(2, pyb.Timer.PWM, pin=pyb.Pin.board.X2, pulse_width=210000)
///     ch3 = timer.channel(3, pyb.Timer.PWM, pin=pyb.Pin.board.X3, pulse_width=420000)
776
777
778
779
780
781
782
783
784
785
STATIC mp_obj_t pyb_timer_channel(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_mode,                MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_callback,            MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_pin,                 MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_pulse_width,         MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_pulse_width_percent, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_compare,             MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_polarity,            MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
    };
786

787
788
    pyb_timer_obj_t *self = pos_args[0];
    mp_int_t channel = mp_obj_get_int(pos_args[1]);
789
790

    if (channel < 1 || channel > 4) {
791
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid channel (%d)", channel));
792
793
794
795
796
797
798
799
800
801
802
803
    }

    pyb_timer_channel_obj_t *chan = self->channel;
    pyb_timer_channel_obj_t *prev_chan = NULL;

    while (chan != NULL) {
        if (chan->channel == channel) {
            break;
        }
        prev_chan = chan;
        chan = chan->next;
    }
804
805
806

    // If only the channel number is given return the previously allocated
    // channel (or None if no previous channel).
807
    if (n_args == 2 && kw_args->used == 0) {
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
        if (chan) {
            return chan;
        }
        return mp_const_none;
    }

    // If there was already a channel, then remove it from the list. Note that
    // the order we do things here is important so as to appear atomic to
    // the IRQ handler.
    if (chan) {
        // Turn off any IRQ associated with the channel.
        pyb_timer_channel_callback(chan, mp_const_none);

        // Unlink the channel from the list.
        if (prev_chan) {
            prev_chan->next = chan->next;
        }
        self->channel = chan->next;
        chan->next = NULL;
    }

    // Allocate and initialize a new channel
830
831
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
832
833
834
835
836
837

    chan = m_new_obj(pyb_timer_channel_obj_t);
    memset(chan, 0, sizeof(*chan));
    chan->base.type = &pyb_timer_channel_type;
    chan->timer = self;
    chan->channel = channel;
838
839
    chan->mode = args[0].u_int;
    chan->callback = args[1].u_obj;
840

841
    mp_obj_t pin_obj = args[2].u_obj;
842
843
844
845
846
847
848
849
850
851
    if (pin_obj != mp_const_none) {
        if (!MP_OBJ_IS_TYPE(pin_obj, &pin_type)) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "pin argument needs to be be a Pin type"));
        }
        const pin_obj_t *pin = pin_obj;
        const pin_af_obj_t *af = pin_find_af(pin, AF_FN_TIM, self->tim_id);
        if (af == NULL) {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %s doesn't have an af for TIM%d", qstr_str(pin->name), self->tim_id));
        }
        // pin.init(mode=AF_PP, af=idx)
852
        const mp_obj_t args2[6] = {
853
854
855
856
857
            (mp_obj_t)&pin_init_obj,
            pin_obj,
            MP_OBJ_NEW_QSTR(MP_QSTR_mode),  MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_PP),
            MP_OBJ_NEW_QSTR(MP_QSTR_af),    MP_OBJ_NEW_SMALL_INT(af->idx)
        };
858
        mp_call_method_n_kw(0, 2, args2);
859
860
861
862
863
864
865
866
867
868
869
870
871
872
    }

    // Link the channel to the timer before we turn the channel on.
    // Note that this needs to appear atomic to the IRQ handler (the write
    // to self->channel is atomic, so we're good, but I thought I'd mention
    // in case this was ever changed in the future).
    chan->next = self->channel;
    self->channel = chan;

    switch (chan->mode) {

        case CHANNEL_MODE_PWM_NORMAL:
        case CHANNEL_MODE_PWM_INVERTED: {
            TIM_OC_InitTypeDef oc_config;
873
            oc_config.OCMode = channel_mode_info[chan->mode].oc_mode;
874
            if (args[4].u_obj != mp_const_none) {
875
                // pulse width percent given
Dave Hylands's avatar
Dave Hylands committed
876
                uint32_t period = compute_period(self);
877
                oc_config.Pulse = compute_pwm_value_from_percent(period, args[4].u_obj);
878
            } else {
879
                // use absolute pulse width value (defaults to 0 if nothing given)
880
                oc_config.Pulse = args[3].u_int;
881
            }
882
883
884
885
886
887
888
889
890
891
892
893
            oc_config.OCPolarity   = TIM_OCPOLARITY_HIGH;
            oc_config.OCNPolarity  = TIM_OCNPOLARITY_HIGH;
            oc_config.OCFastMode   = TIM_OCFAST_DISABLE;
            oc_config.OCIdleState  = TIM_OCIDLESTATE_SET;
            oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;

            HAL_TIM_PWM_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan));
            if (chan->callback == mp_const_none) {
                HAL_TIM_PWM_Start(&self->tim, TIMER_CHANNEL(chan));
            } else {
                HAL_TIM_PWM_Start_IT(&self->tim, TIMER_CHANNEL(chan));
            }
894
895
896
897
            // Start the complimentary channel too (if its supported)
            if (IS_TIM_CCXN_INSTANCE(self->tim.Instance, TIMER_CHANNEL(chan))) {
                HAL_TIMEx_PWMN_Start(&self->tim, TIMER_CHANNEL(chan));
            }
898
899
900
901
902
903
904
905
906
907
            break;
        }

        case CHANNEL_MODE_OC_TIMING:
        case CHANNEL_MODE_OC_ACTIVE:
        case CHANNEL_MODE_OC_INACTIVE:
        case CHANNEL_MODE_OC_TOGGLE:
        case CHANNEL_MODE_OC_FORCED_ACTIVE:
        case CHANNEL_MODE_OC_FORCED_INACTIVE: {
            TIM_OC_InitTypeDef oc_config;
908
            oc_config.OCMode       = channel_mode_info[chan->mode].oc_mode;
909
910
            oc_config.Pulse        = args[5].u_int;
            oc_config.OCPolarity   = args[6].u_int;
911
912
913
            if (oc_config.OCPolarity == 0xffffffff) {
                oc_config.OCPolarity = TIM_OCPOLARITY_HIGH;
            }
914
915
916
917
918
            if (oc_config.OCPolarity == TIM_OCPOLARITY_HIGH) {
                oc_config.OCNPolarity  = TIM_OCNPOLARITY_HIGH;
            } else {
                oc_config.OCNPolarity  = TIM_OCNPOLARITY_LOW;
            }
919
920
921
922
923
            oc_config.OCFastMode   = TIM_OCFAST_DISABLE;
            oc_config.OCIdleState  = TIM_OCIDLESTATE_SET;
            oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;

            if (!IS_TIM_OC_POLARITY(oc_config.OCPolarity)) {
924
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", oc_config.OCPolarity));
925
926
927
928
929
930
931
            }
            HAL_TIM_OC_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan));
            if (chan->callback == mp_const_none) {
                HAL_TIM_OC_Start(&self->tim, TIMER_CHANNEL(chan));
            } else {
                HAL_TIM_OC_Start_IT(&self->tim, TIMER_CHANNEL(chan));
            }
932
933
934
935
            // Start the complimentary channel too (if its supported)
            if (IS_TIM_CCXN_INSTANCE(self->tim.Instance, TIMER_CHANNEL(chan))) {
                HAL_TIMEx_OCN_Start(&self->tim, TIMER_CHANNEL(chan));
            }
936
937
938
939
940
941
            break;
        }

        case CHANNEL_MODE_IC: {
            TIM_IC_InitTypeDef ic_config;

942
            ic_config.ICPolarity  = args[6].u_int;
943
944
945
946
947
948
949
950
            if (ic_config.ICPolarity == 0xffffffff) {
                ic_config.ICPolarity = TIM_ICPOLARITY_RISING;
            }
            ic_config.ICSelection = TIM_ICSELECTION_DIRECTTI;
            ic_config.ICPrescaler = TIM_ICPSC_DIV1;
            ic_config.ICFilter    = 0;

            if (!IS_TIM_IC_POLARITY(ic_config.ICPolarity)) {
951
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", ic_config.ICPolarity));
952
953
954
955
956
957
958
959
960
961
            }
            HAL_TIM_IC_ConfigChannel(&self->tim, &ic_config, TIMER_CHANNEL(chan));
            if (chan->callback == mp_const_none) {
                HAL_TIM_IC_Start(&self->tim, TIMER_CHANNEL(chan));
            } else {
                HAL_TIM_IC_Start_IT(&self->tim, TIMER_CHANNEL(chan));
            }
            break;
        }

962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
        case CHANNEL_MODE_ENC_A:
        case CHANNEL_MODE_ENC_B:
        case CHANNEL_MODE_ENC_AB: {
            TIM_Encoder_InitTypeDef enc_config;

            enc_config.EncoderMode = channel_mode_info[chan->mode].oc_mode;
            enc_config.IC1Polarity  = args[6].u_int;
            if (enc_config.IC1Polarity == 0xffffffff) {
                enc_config.IC1Polarity = TIM_ICPOLARITY_RISING;
            }
            enc_config.IC2Polarity  = enc_config.IC1Polarity;
            enc_config.IC1Selection = TIM_ICSELECTION_DIRECTTI;
            enc_config.IC2Selection = TIM_ICSELECTION_DIRECTTI;
            enc_config.IC1Prescaler = TIM_ICPSC_DIV1;
            enc_config.IC2Prescaler = TIM_ICPSC_DIV1;
            enc_config.IC1Filter    = 0;
            enc_config.IC2Filter    = 0;

            if (!IS_TIM_IC_POLARITY(enc_config.IC1Polarity)) {
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", enc_config.IC1Polarity));
            }
            // Only Timers 1, 2, 3, 4, 5, and 8 support encoder mode
            if (self->tim.Instance != TIM1
            &&  self->tim.Instance != TIM2
            &&  self->tim.Instance != TIM3
            &&  self->tim.Instance != TIM4
            &&  self->tim.Instance != TIM5
            &&  self->tim.Instance != TIM8 ) {
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "encoder not supported on timer %d", self->tim_id));
            }
992
993
994
995

            // Disable & clear the timer interrupt so that we don't trigger
            // an interrupt by initializing the timer.
            __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
996
997
            HAL_TIM_Encoder_Init(&self->tim, &enc_config);
            __HAL_TIM_SetCounter(&self->tim, 0);
998
999
1000
1001
1002
            if (self->callback != mp_const_none) {
                __HAL_TIM_CLEAR_FLAG(&self->tim, TIM_IT_UPDATE);
                __HAL_TIM_ENABLE_IT(&self->tim, TIM_IT_UPDATE);
            }
            HAL_TIM_Encoder_Start(&self->tim, TIM_CHANNEL_ALL);
1003
1004
1005
            break;
        }

1006
        default:
1007
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid mode (%d)", chan->mode));
1008
1009
1010
1011
    }

    return chan;
}
1012
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_channel_obj, 2, pyb_timer_channel);
1013

1014
1015
/// \method counter([value])
/// Get or set the timer counter.
1016
STATIC mp_obj_t pyb_timer_counter(mp_uint_t n_args, const mp_obj_t *args) {
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
    pyb_timer_obj_t *self = args[0];
    if (n_args == 1) {
        // get
        return mp_obj_new_int(self->tim.Instance->CNT);
    } else {
        // set
        __HAL_TIM_SetCounter(&self->tim, mp_obj_get_int(args[1]));
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_counter_obj, 1, 2, pyb_timer_counter);

1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
/// \method source_freq()
/// Get the frequency of the source of the timer.
STATIC mp_obj_t pyb_timer_source_freq(mp_obj_t self_in) {
    pyb_timer_obj_t *self = self_in;
    uint32_t source_freq = timer_get_source_freq(self->tim_id);
    return mp_obj_new_int(source_freq);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_source_freq_obj, pyb_timer_source_freq);

/// \method freq([value])
/// Get or set the frequency for the timer (changes prescaler and period if set).
STATIC mp_obj_t pyb_timer_freq(mp_uint_t n_args, const mp_obj_t *args) {
    pyb_timer_obj_t *self = args[0];
    if (n_args == 1) {
        // get
        uint32_t prescaler = self->tim.Instance->PSC & 0xffff;
        uint32_t period = __HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self);
        uint32_t source_freq = timer_get_source_freq(self->tim_id);
        uint32_t divide = ((prescaler + 1) * (period + 1));
1048
1049
        #if MICROPY_PY_BUILTINS_FLOAT
        if (source_freq % divide != 0) {
1050
            return mp_obj_new_float((float)source_freq / (float)divide);
1051
1052
1053
1054
        } else
        #endif
        {
            return mp_obj_new_int(source_freq / divide);
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
        }
    } else {
        // set
        uint32_t period;
        uint32_t prescaler = compute_prescaler_period_from_freq(self, args[1], &period);
        self->tim.Instance->PSC = prescaler;
        __HAL_TIM_SetAutoreload(&self->tim, period);
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_freq_obj, 1, 2, pyb_timer_freq);

1067
1068
/// \method prescaler([value])
/// Get or set the prescaler for the timer.
1069
STATIC mp_obj_t pyb_timer_prescaler(mp_uint_t n_args, const mp_obj_t *args) {
1070
1071
1072
1073
1074
1075
    pyb_timer_obj_t *self = args[0];
    if (n_args == 1) {
        // get
        return mp_obj_new_int(self->tim.Instance->PSC & 0xffff);
    } else {
        // set
1076
        self->tim.Instance->PSC = mp_obj_get_int(args[1]) & 0xffff;
1077
1078
1079
1080
1081
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_prescaler_obj, 1, 2, pyb_timer_prescaler);

1082
1083
/// \method period([value])
/// Get or set the period of the timer.
1084
STATIC mp_obj_t pyb_timer_period(mp_uint_t n_args, const mp_obj_t *args) {
1085
1086
1087
    pyb_timer_obj_t *self = args[0];
    if (n_args == 1) {
        // get
1088
        return mp_obj_new_int(__HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self));
1089
1090
    } else {
        // set
1091
        __HAL_TIM_SetAutoreload(&self->tim, mp_obj_get_int(args[1]) & TIMER_CNT_MASK(self));
1092
1093
1094
1095
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_period_obj, 1, 2, pyb_timer_period);
1096

1097
1098
1099
1100
/// \method callback(fun)
/// Set the function to be called when the timer triggers.
/// `fun` is passed 1 argument, the timer object.
/// If `fun` is `None` then the callback will be disabled.
1101
1102
1103
1104
1105
1106
1107
STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback) {
    pyb_timer_obj_t *self = self_in;
    if (callback == mp_const_none) {
        // stop interrupt (but not timer)
        __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
        self->callback = mp_const_none;
    } else if (mp_obj_is_callable(callback)) {
1108
        __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
1109
        self->callback = callback;
1110
1111
1112
1113
        // start timer, so that it interrupts on overflow, but clear any
        // pending interrupts which may have been set by initializing it.
        __HAL_TIM_CLEAR_FLAG(&self->tim, TIM_IT_UPDATE);
        HAL_TIM_Base_Start_IT(&self->tim); // This will re-enable the IRQ
1114
        HAL_NVIC_EnableIRQ(self->irqn);
1115
1116
    } else {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "callback must be None or a callable object"));
1117
    }
1118
    return mp_const_none;
1119
}
1120
1121
1122
1123
1124
1125
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_callback_obj, pyb_timer_callback);

STATIC const mp_map_elem_t pyb_timer_locals_dict_table[] = {
    // instance methods
    { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_timer_init_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_timer_deinit_obj },
1126
    { MP_OBJ_NEW_QSTR(MP_QSTR_channel), (mp_obj_t)&pyb_timer_channel_obj },
1127
    { MP_OBJ_NEW_QSTR(MP_QSTR_counter), (mp_obj_t)&pyb_timer_counter_obj },
1128
1129
    { MP_OBJ_NEW_QSTR(MP_QSTR_source_freq), (mp_obj_t)&pyb_timer_source_freq_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_timer_freq_obj },
1130
1131
1132
    { MP_OBJ_NEW_QSTR(MP_QSTR_prescaler), (mp_obj_t)&pyb_timer_prescaler_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_period), (mp_obj_t)&pyb_timer_period_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&pyb_timer_callback_obj },
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
    { MP_OBJ_NEW_QSTR(MP_QSTR_UP),                  MP_OBJ_NEW_SMALL_INT(TIM_COUNTERMODE_UP) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_DOWN),                MP_OBJ_NEW_SMALL_INT(TIM_COUNTERMODE_DOWN) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_CENTER),              MP_OBJ_NEW_SMALL_INT(TIM_COUNTERMODE_CENTERALIGNED1) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_PWM),                 MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_PWM_NORMAL) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_PWM_INVERTED),        MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_PWM_INVERTED) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_TIMING),           MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_TIMING) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_ACTIVE),           MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_ACTIVE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_INACTIVE),         MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_INACTIVE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_TOGGLE),           MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_TOGGLE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_FORCED_ACTIVE),    MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_FORCED_ACTIVE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_FORCED_INACTIVE),  MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_FORCED_INACTIVE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_IC),                  MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_IC) },
1145
1146
1147
    { MP_OBJ_NEW_QSTR(MP_QSTR_ENC_A),               MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_ENC_A) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_ENC_B),               MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_ENC_B) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_ENC_AB),              MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_ENC_AB) },
1148
1149
1150
1151
1152
    { MP_OBJ_NEW_QSTR(MP_QSTR_HIGH),                MP_OBJ_NEW_SMALL_INT(TIM_OCPOLARITY_HIGH) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_LOW),                 MP_OBJ_NEW_SMALL_INT(TIM_OCPOLARITY_LOW) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_RISING),              MP_OBJ_NEW_SMALL_INT(TIM_ICPOLARITY_RISING) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_FALLING),             MP_OBJ_NEW_SMALL_INT(TIM_ICPOLARITY_FALLING) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_BOTH),                MP_OBJ_NEW_SMALL_INT(TIM_ICPOLARITY_BOTHEDGE) },
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_locals_dict, pyb_timer_locals_dict_table);

const mp_obj_type_t pyb_timer_type = {
    { &mp_type_type },
    .name = MP_QSTR_Timer,
    .print = pyb_timer_print,
    .make_new = pyb_timer_make_new,
    .locals_dict = (mp_obj_t)&pyb_timer_locals_dict,
};

1164
1165
1166
1167
1168
1169
/// \moduleref pyb
/// \class TimerChannel - setup a channel for a timer.
///
/// Timer channels are used to generate/capture a signal using a timer.
///
/// TimerChannel objects are created using the Timer.channel() method.
1170
STATIC void pyb_timer_channel_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
1171
1172
    pyb_timer_channel_obj_t *self = self_in;

1173
    mp_printf(print, "TimerChannel(timer=%u, channel=%u, mode=%s)",
1174
1175
          self->timer->tim_id,
          self->channel,
1176
          qstr_str(channel_mode_info[self->mode].name));
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
}

/// \method capture([value])
/// Get or set the capture value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// capture is the logical name to use when the channel is in input capture mode.

/// \method compare([value])
/// Get or set the compare value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// compare is the logical name to use when the channel is in output compare mode.

/// \method pulse_width([value])
/// Get or set the pulse width value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// pulse_width is the logical name to use when the channel is in PWM mode.
Dave Hylands's avatar
Dave Hylands committed
1193
1194
1195
///
/// In edge aligned mode, a pulse_width of `period + 1` corresponds to a duty cycle of 100%
/// In center aligned mode, a pulse width of `period` corresponds to a duty cycle of 100%
1196
STATIC mp_obj_t pyb_timer_channel_capture_compare(mp_uint_t n_args, const mp_obj_t *args) {
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
    pyb_timer_channel_obj_t *self = args[0];
    if (n_args == 1) {
        // get
        return mp_obj_new_int(__HAL_TIM_GetCompare(&self->timer->tim, TIMER_CHANNEL(self)) & TIMER_CNT_MASK(self->timer));
    } else {
        // set
        __HAL_TIM_SetCompare(&self->timer->tim, TIMER_CHANNEL(self), mp_obj_get_int(args[1]) & TIMER_CNT_MASK(self->timer));
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_capture_compare_obj, 1, 2, pyb_timer_channel_capture_compare);

1209
1210
1211
1212
1213
1214
/// \method pulse_width_percent([value])
/// Get or set the pulse width percentage associated with a channel.  The value
/// is a number between 0 and 100 and sets the percentage of the timer period
/// for which the pulse is active.  The value can be an integer or
/// floating-point number for more accuracy.  For example, a value of 25 gives
/// a duty cycle of 25%.
1215
STATIC mp_obj_t pyb_timer_channel_pulse_width_percent(mp_uint_t n_args, const mp_obj_t *args) {
1216
    pyb_timer_channel_obj_t *self = args[0];
Dave Hylands's avatar
Dave Hylands committed
1217
    uint32_t period = compute_period(self->timer);
1218
1219
1220
    if (n_args == 1) {
        // get
        uint32_t cmp = __HAL_TIM_GetCompare(&self->timer->tim, TIMER_CHANNEL(self)) & TIMER_CNT_MASK(self->timer);
Dave Hylands's avatar
Dave Hylands committed
1221
        return compute_percent_from_pwm_value(period, cmp);
1222
1223
    } else {
        // set
1224
        uint32_t cmp = compute_pwm_value_from_percent(period, args[1]);
1225
1226
1227
1228
        __HAL_TIM_SetCompare(&self->timer->tim, TIMER_CHANNEL(self), cmp & TIMER_CNT_MASK(self->timer));
        return mp_const_none;
    }
}
1229
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_pulse_width_percent_obj, 1, 2, pyb_timer_channel_pulse_width_percent);
1230

1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
/// \method callback(fun)
/// Set the function to be called when the timer channel triggers.
/// `fun` is passed 1 argument, the timer object.
/// If `fun` is `None` then the callback will be disabled.
STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback) {
    pyb_timer_channel_obj_t *self = self_in;
    if (callback == mp_const_none) {
        // stop interrupt (but not timer)
        __HAL_TIM_DISABLE_IT(&self->timer->tim, TIMER_IRQ_MASK(self->channel));
        self->callback = mp_const_none;
    } else if (mp_obj_is_callable(callback)) {
        self->callback = callback;
        HAL_NVIC_EnableIRQ(self->timer->irqn);
        // start timer, so that it interrupts on overflow
        switch (self->mode) {
            case CHANNEL_MODE_PWM_NORMAL:
            case CHANNEL_MODE_PWM_INVERTED:
                HAL_TIM_PWM_Start_IT(&self->timer->tim, TIMER_CHANNEL(self));
                break;
            case CHANNEL_MODE_OC_TIMING:
            case CHANNEL_MODE_OC_ACTIVE:
            case CHANNEL_MODE_OC_INACTIVE:
            case CHANNEL_MODE_OC_TOGGLE:
            case CHANNEL_MODE_OC_FORCED_ACTIVE:
            case CHANNEL_MODE_OC_FORCED_INACTIVE:
                HAL_TIM_OC_Start_IT(&self->timer->tim, TIMER_CHANNEL(self));
                break;
            case CHANNEL_MODE_IC:
                HAL_TIM_IC_Start_IT(&self->timer->tim, TIMER_CHANNEL(self));
                break;
        }
    } else {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "callback must be None or a callable object"));
    }
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_channel_callback_obj, pyb_timer_channel_callback);

STATIC const mp_map_elem_t pyb_timer_channel_locals_dict_table[] = {
    // instance methods
    { MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&pyb_timer_channel_callback_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_pulse_width), (mp_obj_t)&pyb_timer_channel_capture_compare_obj },
1273
    { MP_OBJ_NEW_QSTR(MP_QSTR_pulse_width_percent), (mp_obj_t)&pyb_timer_channel_pulse_width_percent_obj },
1274
1275
1276
1277
1278
    { MP_OBJ_NEW_QSTR(MP_QSTR_capture), (mp_obj_t)&pyb_timer_channel_capture_compare_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_compare), (mp_obj_t)&pyb_timer_channel_capture_compare_obj },
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_channel_locals_dict, pyb_timer_channel_locals_dict_table);

1279
STATIC const mp_obj_type_t pyb_timer_channel_type = {
1280
1281
1282
1283
1284
1285
    { &mp_type_type },
    .name = MP_QSTR_TimerChannel,
    .print = pyb_timer_channel_print,
    .locals_dict = (mp_obj_t)&pyb_timer_channel_locals_dict,
};

1286
STATIC void timer_handle_irq_channel(pyb_timer_obj_t *tim, uint8_t channel, mp_obj_t callback) {
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
    uint32_t irq_mask = TIMER_IRQ_MASK(channel);

    if (__HAL_TIM_GET_FLAG(&tim->tim, irq_mask) != RESET) {
        if (__HAL_TIM_GET_ITSTATUS(&tim->tim, irq_mask) != RESET) {
            // clear the interrupt
            __HAL_TIM_CLEAR_IT(&tim->tim, irq_mask);

            // execute callback if it's set
            if (callback != mp_const_none) {
                // When executing code within a handler we must lock the GC to prevent
                // any memory allocations.  We must also catch any exceptions.
                gc_lock();
                nlr_buf_t nlr;
                if (nlr_push(&nlr) == 0) {
                    mp_call_function_1(callback, tim);
                    nlr_pop();
                } else {
                    // Uncaught exception; disable the callback so it doesn't run again.
                    tim->callback = mp_const_none;
                    __HAL_TIM_DISABLE_IT(&tim->tim, irq_mask);
                    if (channel == 0) {
1308
                        printf("uncaught exception in Timer(%u) interrupt handler\n", tim->tim_id);
1309
                    } else {
1310
                        printf("uncaught exception in Timer(%u) channel %u interrupt handler\n", tim->tim_id, channel);
1311
                    }
1312
                    mp_obj_print_exception(&mp_plat_print, (mp_obj_t)nlr.ret_val);
1313
1314
1315
1316
1317
1318
1319
                }
                gc_unlock();
            }
        }
    }
}

1320
1321
1322
void timer_irq_handler(uint tim_id) {
    if (tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) {
        // get the timer object
1323
        pyb_timer_obj_t *tim = MP_STATE_PORT(pyb_timer_obj_all)[tim_id - 1];
1324
1325

        if (tim == NULL) {
1326
1327
1328
            // Timer object has not been set, so we can't do anything.
            // This can happen under normal circumstances for timers like
            // 1 & 10 which use the same IRQ.
1329
1330
            return;
        }
1331

1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
        // Check for timer (versus timer channel) interrupt.
        timer_handle_irq_channel(tim, 0, tim->callback);
        uint32_t handled = TIMER_IRQ_MASK(0);

        // Check to see if a timer channel interrupt was pending
        pyb_timer_channel_obj_t *chan = tim->channel;
        while (chan != NULL) {
            timer_handle_irq_channel(tim, chan->channel, chan->callback);
            handled |= TIMER_IRQ_MASK(chan->channel);
            chan = chan->next;
        }

        // Finally, clear any remaining interrupt sources. Otherwise we'll
        // just get called continuously.
1346
        uint32_t unhandled = tim->tim.Instance->DIER & 0xff & ~handled;