modpyb.c 14.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27
28
29
#include <stdint.h>
#include <stdio.h>

30
#include "stm32f4xx_hal.h"
31
32

#include "mpconfig.h"
33
34
#include "misc.h"
#include "nlr.h"
35
36
37
38
#include "qstr.h"
#include "obj.h"
#include "gc.h"
#include "gccollect.h"
Dave Hylands's avatar
Dave Hylands committed
39
#include "irq.h"
40
41
#include "systick.h"
#include "pyexec.h"
42
#include "led.h"
43
#include "pin.h"
44
#include "timer.h"
45
#include "extint.h"
46
#include "usrsw.h"
47
#include "rng.h"
48
#include "rtc.h"
Damien George's avatar
Damien George committed
49
50
#include "i2c.h"
#include "spi.h"
Damien George's avatar
Damien George committed
51
#include "uart.h"
Dave Hylands's avatar
Dave Hylands committed
52
#include "adc.h"
53
#include "storage.h"
Damien George's avatar
Damien George committed
54
#include "sdcard.h"
55
#include "accel.h"
56
#include "servo.h"
Damien George's avatar
Damien George committed
57
#include "dac.h"
58
#include "lcd.h"
59
#include "usb.h"
60
#include "pybstdio.h"
61
#include "ff.h"
62
#include "portmodules.h"
63

64
65
66
67
/// \module pyb - functions related to the pyboard
///
/// The `pyb` module contains specific functions related to the pyboard.

68
69
/// \function bootloader()
/// Activate the bootloader without BOOT* pins.
70
STATIC NORETURN mp_obj_t pyb_bootloader(void) {
71
    pyb_usb_dev_stop();
72
73
74
75
76
    storage_flush();

    HAL_RCC_DeInit();
    HAL_DeInit();

77
    __HAL_REMAPMEMORY_SYSTEMFLASH();
78
79
80
81
82
83

    // arm-none-eabi-gcc 4.9.0 does not correctly inline this
    // MSP function, so we write it out explicitly here.
    //__set_MSP(*((uint32_t*) 0x00000000));
    __ASM volatile ("movs r3, #0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp");

84
    ((void (*)(void)) *((uint32_t*) 0x00000004))();
85
86
87

    while (1);
}
88
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_bootloader_obj, pyb_bootloader);
89

90
91
/// \function info([dump_alloc_table])
/// Print out lots of information about the board.
92
STATIC mp_obj_t pyb_info(uint n_args, const mp_obj_t *args) {
93
94
95
96
97
98
99
100
101
    // get and print unique id; 96 bits
    {
        byte *id = (byte*)0x1fff7a10;
        printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
    }

    // get and print clock speeds
    // SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
    {
102
        printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n",
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
               HAL_RCC_GetSysClockFreq(),
               HAL_RCC_GetHCLKFreq(),
               HAL_RCC_GetPCLK1Freq(),
               HAL_RCC_GetPCLK2Freq());
    }

    // to print info about memory
    {
        printf("_etext=%p\n", &_etext);
        printf("_sidata=%p\n", &_sidata);
        printf("_sdata=%p\n", &_sdata);
        printf("_edata=%p\n", &_edata);
        printf("_sbss=%p\n", &_sbss);
        printf("_ebss=%p\n", &_ebss);
        printf("_estack=%p\n", &_estack);
        printf("_ram_start=%p\n", &_ram_start);
        printf("_heap_start=%p\n", &_heap_start);
        printf("_heap_end=%p\n", &_heap_end);
        printf("_ram_end=%p\n", &_ram_end);
    }

    // qstr info
    {
        uint n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
        qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
        printf("qstr:\n  n_pool=%u\n  n_qstr=%u\n  n_str_data_bytes=%u\n  n_total_bytes=%u\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
    }

    // GC info
    {
        gc_info_t info;
        gc_info(&info);
        printf("GC:\n");
136
137
138
        printf("  " UINT_FMT " total\n", info.total);
        printf("  " UINT_FMT " : " UINT_FMT "\n", info.used, info.free);
        printf("  1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block);
139
140
141
142
143
144
    }

    // free space on flash
    {
        DWORD nclst;
        FATFS *fatfs;
145
        f_getfree("/flash", &nclst, &fatfs);
146
147
148
        printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512));
    }

149
150
151
152
153
    if (n_args == 1) {
        // arg given means dump gc allocation table
        gc_dump_alloc_table();
    }

154
155
    return mp_const_none;
}
156
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_info_obj, 0, 1, pyb_info);
157

158
159
/// \function unique_id()
/// Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU.
160
161
162
163
164
165
STATIC mp_obj_t pyb_unique_id(void) {
    byte *id = (byte*)0x1fff7a10;
    return mp_obj_new_bytes(id, 12);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_unique_id_obj, pyb_unique_id);

166
167
/// \function freq()
/// Return a tuple of clock frequencies: (SYSCLK, HCLK, PCLK1, PCLK2).
168
169
170
171
172
173
174
175
176
177
178
179
// TODO should also be able to set frequency via this function
STATIC mp_obj_t pyb_freq(void) {
    mp_obj_t tuple[4] = {
       mp_obj_new_int(HAL_RCC_GetSysClockFreq()),
       mp_obj_new_int(HAL_RCC_GetHCLKFreq()),
       mp_obj_new_int(HAL_RCC_GetPCLK1Freq()),
       mp_obj_new_int(HAL_RCC_GetPCLK2Freq()),
    };
    return mp_obj_new_tuple(4, tuple);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_freq_obj, pyb_freq);

180
181
/// \function sync()
/// Sync all file systems.
182
183
184
185
186
187
STATIC mp_obj_t pyb_sync(void) {
    storage_flush();
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_sync_obj, pyb_sync);

188
189
/// \function millis()
/// Returns the number of milliseconds since the board was last reset.
190
191
192
193
194
195
196
197
198
199
///
/// Note that this may return a negative number. This allows you to always
/// do:
///     start = pyb.millis()
///     ...do some operation...
///     elapsed = pyb.millis() - start
///
/// and as long as the time of your operation is less than 24 days, you'll
/// always get the right answer and not have to worry about whether pyb.millis()
/// wraps around.
200
STATIC mp_obj_t pyb_millis(void) {
201
202
203
204
    // We want to "cast" the 32 bit unsigned into a small-int.  This means
    // copying the MSB down 1 bit (extending the sign down), which is
    // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
    return MP_OBJ_NEW_SMALL_INT(HAL_GetTick());
205
206
207
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_millis_obj, pyb_millis);

208
209
210
211
212
213
214
215
216
217
218
219
220
/// \function micros()
/// Returns the number of microseconds since the board was last reset.
///
/// Note that this may return a negative number. This allows you to always
/// do:
///     start = pyb.micros()
///     ...do some operation...
///     elapsed = pyb.micros() - start
///
/// and as long as the time of your operation is less than 35 minutes, you'll
/// always get the right answer and not have to worry about whether pyb.micros()
/// wraps around.
STATIC mp_obj_t pyb_micros(void) {
221
222
223
224
    // We want to "cast" the 32 bit unsigned into a small-int.  This means
    // copying the MSB down 1 bit (extending the sign down), which is
    // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
    return MP_OBJ_NEW_SMALL_INT(sys_tick_get_microseconds());
225
226
227
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_micros_obj, pyb_micros);

228
229
/// \function delay(ms)
/// Delay for the given number of milliseconds.
230
STATIC mp_obj_t pyb_delay(mp_obj_t ms_in) {
231
    mp_int_t ms = mp_obj_get_int(ms_in);
232
233
234
    if (ms >= 0) {
        HAL_Delay(ms);
    }
235
236
237
238
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_delay_obj, pyb_delay);

239
240
/// \function udelay(us)
/// Delay for the given number of microseconds.
241
STATIC mp_obj_t pyb_udelay(mp_obj_t usec_in) {
242
    mp_int_t usec = mp_obj_get_int(usec_in);
243
244
245
246
    if (usec > 0) {
        uint32_t count = 0;
        const uint32_t utime = (168 * usec / 4);
        while (++count <= utime) {
247
248
        }
    }
249
    return mp_const_none;
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_udelay_obj, pyb_udelay);

#if 0
STATIC void SYSCLKConfig_STOP(void) {
    /* After wake-up from STOP reconfigure the system clock */
    /* Enable HSE */
    RCC_HSEConfig(RCC_HSE_ON);

    /* Wait till HSE is ready */
    while (RCC_GetFlagStatus(RCC_FLAG_HSERDY) == RESET) {
    }

    /* Enable PLL */
    RCC_PLLCmd(ENABLE);

    /* Wait till PLL is ready */
    while (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) {
    }

    /* Select PLL as system clock source */
    RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);

    /* Wait till PLL is used as system clock source */
    while (RCC_GetSYSCLKSource() != 0x08) {
    }
}
#endif

STATIC mp_obj_t pyb_stop(void) {
#if 0
    PWR_EnterSTANDBYMode();
    //PWR_FlashPowerDownCmd(ENABLE); don't know what the logic is with this

    /* Enter Stop Mode */
    PWR_EnterSTOPMode(PWR_Regulator_LowPower, PWR_STOPEntry_WFI);

287
    /* Configures system clock after wake-up from STOP: enable HSE, PLL and select
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
     *        PLL as system clock source (HSE and PLL are disabled in STOP mode) */
    SYSCLKConfig_STOP();

    //PWR_FlashPowerDownCmd(DISABLE);
#endif
    return mp_const_none;
}

MP_DEFINE_CONST_FUN_OBJ_0(pyb_stop_obj, pyb_stop);

STATIC mp_obj_t pyb_standby(void) {
#if 0
    PWR_EnterSTANDBYMode();
#endif
    return mp_const_none;
}

MP_DEFINE_CONST_FUN_OBJ_0(pyb_standby_obj, pyb_standby);

307
308
/// \function have_cdc()
/// Return True if USB is connected as a serial device, False otherwise.
309
310
311
312
313
STATIC mp_obj_t pyb_have_cdc(void ) {
    return MP_BOOL(usb_vcp_is_connected());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_have_cdc_obj, pyb_have_cdc);

314
315
316
317
/// \function repl_uart(uart)
/// Get or set the UART object that the REPL is repeated on.
STATIC mp_obj_t pyb_repl_uart(uint n_args, const mp_obj_t *args) {
    if (n_args == 0) {
318
        if (pyb_stdio_uart == NULL) {
319
320
            return mp_const_none;
        } else {
321
            return pyb_stdio_uart;
322
323
324
        }
    } else {
        if (args[0] == mp_const_none) {
325
            pyb_stdio_uart = NULL;
326
        } else if (mp_obj_get_type(args[0]) == &pyb_uart_type) {
327
            pyb_stdio_uart = args[0];
328
329
330
331
332
333
334
335
        } else {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "need a UART object"));
        }
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_repl_uart_obj, 0, 1, pyb_repl_uart);

336
337
338
/// \function hid((buttons, x, y, z))
/// Takes a 4-tuple (or list) and sends it to the USB host (the PC) to
/// signal a HID mouse-motion event.
339
STATIC mp_obj_t pyb_hid_send_report(mp_obj_t arg) {
340
341
    mp_obj_t *items;
    mp_obj_get_array_fixed_n(arg, 4, &items);
342
343
344
345
346
347
348
349
    uint8_t data[4];
    data[0] = mp_obj_get_int(items[0]);
    data[1] = mp_obj_get_int(items[1]);
    data[2] = mp_obj_get_int(items[2]);
    data[3] = mp_obj_get_int(items[3]);
    usb_hid_send_report(data);
    return mp_const_none;
}
350
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_hid_send_report_obj, pyb_hid_send_report);
351
352

MP_DECLARE_CONST_FUN_OBJ(pyb_main_obj); // defined in main.c
353
MP_DECLARE_CONST_FUN_OBJ(pyb_usb_mode_obj); // defined in main.c
354
355
356
357

STATIC const mp_map_elem_t pyb_module_globals_table[] = {
    { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_pyb) },

358
    { MP_OBJ_NEW_QSTR(MP_QSTR_bootloader), (mp_obj_t)&pyb_bootloader_obj },
359
    { MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&pyb_info_obj },
360
361
    { MP_OBJ_NEW_QSTR(MP_QSTR_unique_id), (mp_obj_t)&pyb_unique_id_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_freq_obj },
362
363
    { MP_OBJ_NEW_QSTR(MP_QSTR_repl_info), (mp_obj_t)&pyb_set_repl_info_obj },

364
    { MP_OBJ_NEW_QSTR(MP_QSTR_wfi), (mp_obj_t)&pyb_wfi_obj },
365
366
367
    { MP_OBJ_NEW_QSTR(MP_QSTR_disable_irq), (mp_obj_t)&pyb_disable_irq_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_enable_irq), (mp_obj_t)&pyb_enable_irq_obj },

368
369
370
    { MP_OBJ_NEW_QSTR(MP_QSTR_stop), (mp_obj_t)&pyb_stop_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_standby), (mp_obj_t)&pyb_standby_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_main), (mp_obj_t)&pyb_main_obj },
371
    { MP_OBJ_NEW_QSTR(MP_QSTR_usb_mode), (mp_obj_t)&pyb_usb_mode_obj },
372

373
    { MP_OBJ_NEW_QSTR(MP_QSTR_have_cdc), (mp_obj_t)&pyb_have_cdc_obj },
374
    { MP_OBJ_NEW_QSTR(MP_QSTR_repl_uart), (mp_obj_t)&pyb_repl_uart_obj },
375
    { MP_OBJ_NEW_QSTR(MP_QSTR_hid), (mp_obj_t)&pyb_hid_send_report_obj },
376
    { MP_OBJ_NEW_QSTR(MP_QSTR_USB_VCP), (mp_obj_t)&pyb_usb_vcp_type },
377

378
    { MP_OBJ_NEW_QSTR(MP_QSTR_millis), (mp_obj_t)&pyb_millis_obj },
379
    { MP_OBJ_NEW_QSTR(MP_QSTR_micros), (mp_obj_t)&pyb_micros_obj },
380
381
382
383
    { MP_OBJ_NEW_QSTR(MP_QSTR_delay), (mp_obj_t)&pyb_delay_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_udelay), (mp_obj_t)&pyb_udelay_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_sync), (mp_obj_t)&pyb_sync_obj },

384
385
    { MP_OBJ_NEW_QSTR(MP_QSTR_Timer), (mp_obj_t)&pyb_timer_type },

386
#if MICROPY_HW_ENABLE_RNG
387
    { MP_OBJ_NEW_QSTR(MP_QSTR_rng), (mp_obj_t)&pyb_rng_get_obj },
388
389
390
#endif

#if MICROPY_HW_ENABLE_RTC
391
    { MP_OBJ_NEW_QSTR(MP_QSTR_RTC), (mp_obj_t)&pyb_rtc_type },
392
393
#endif

394
395
396
    { MP_OBJ_NEW_QSTR(MP_QSTR_Pin), (mp_obj_t)&pin_type },
    { MP_OBJ_NEW_QSTR(MP_QSTR_ExtInt), (mp_obj_t)&extint_type },

397
398
399
#if MICROPY_HW_ENABLE_SERVO
    { MP_OBJ_NEW_QSTR(MP_QSTR_pwm), (mp_obj_t)&pyb_pwm_set_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_servo), (mp_obj_t)&pyb_servo_set_obj },
400
    { MP_OBJ_NEW_QSTR(MP_QSTR_Servo), (mp_obj_t)&pyb_servo_type },
401
402
403
#endif

#if MICROPY_HW_HAS_SWITCH
404
    { MP_OBJ_NEW_QSTR(MP_QSTR_Switch), (mp_obj_t)&pyb_switch_type },
405
406
407
408
409
410
#endif

#if MICROPY_HW_HAS_SDCARD
    { MP_OBJ_NEW_QSTR(MP_QSTR_SD), (mp_obj_t)&pyb_sdcard_obj },
#endif

411
    { MP_OBJ_NEW_QSTR(MP_QSTR_LED), (mp_obj_t)&pyb_led_type },
412
    { MP_OBJ_NEW_QSTR(MP_QSTR_I2C), (mp_obj_t)&pyb_i2c_type },
Damien George's avatar
Damien George committed
413
    { MP_OBJ_NEW_QSTR(MP_QSTR_SPI), (mp_obj_t)&pyb_spi_type },
Damien George's avatar
Damien George committed
414
    { MP_OBJ_NEW_QSTR(MP_QSTR_UART), (mp_obj_t)&pyb_uart_type },
415
416

    { MP_OBJ_NEW_QSTR(MP_QSTR_ADC), (mp_obj_t)&pyb_adc_type },
417
    { MP_OBJ_NEW_QSTR(MP_QSTR_ADCAll), (mp_obj_t)&pyb_adc_all_type },
Damien George's avatar
Damien George committed
418
419
420

#if MICROPY_HW_ENABLE_DAC
    { MP_OBJ_NEW_QSTR(MP_QSTR_DAC), (mp_obj_t)&pyb_dac_type },
421
422
#endif

423
424
425
#if MICROPY_HW_HAS_MMA7660
    { MP_OBJ_NEW_QSTR(MP_QSTR_Accel), (mp_obj_t)&pyb_accel_type },
#endif
426
427
428
429

#if MICROPY_HW_HAS_LCD
    { MP_OBJ_NEW_QSTR(MP_QSTR_LCD), (mp_obj_t)&pyb_lcd_type },
#endif
430
431
};

432
433
434
435
436
STATIC const mp_obj_dict_t pyb_module_globals = {
    .base = {&mp_type_dict},
    .map = {
        .all_keys_are_qstrs = 1,
        .table_is_fixed_array = 1,
437
438
        .used = MP_ARRAY_SIZE(pyb_module_globals_table),
        .alloc = MP_ARRAY_SIZE(pyb_module_globals_table),
439
440
        .table = (mp_map_elem_t*)pyb_module_globals_table,
    },
441
442
443
444
445
};

const mp_obj_module_t pyb_module = {
    .base = { &mp_type_module },
    .name = MP_QSTR_pyb,
446
    .globals = (mp_obj_dict_t*)&pyb_module_globals,
447
};