modpyb.c 22.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27
28
29
#include <stdint.h>
#include <stdio.h>

30
#include STM32_HAL_H
31

32
#include "py/mpstate.h"
33
34
35
#include "py/nlr.h"
#include "py/obj.h"
#include "py/gc.h"
36
37
#include "lib/fatfs/ff.h"
#include "lib/fatfs/diskio.h"
38
#include "gccollect.h"
Dave Hylands's avatar
Dave Hylands committed
39
#include "irq.h"
40
41
#include "systick.h"
#include "pyexec.h"
42
#include "led.h"
43
#include "pin.h"
44
#include "timer.h"
45
#include "extint.h"
46
#include "usrsw.h"
47
#include "rng.h"
48
#include "rtc.h"
Damien George's avatar
Damien George committed
49
50
#include "i2c.h"
#include "spi.h"
Damien George's avatar
Damien George committed
51
#include "uart.h"
52
#include "can.h"
Dave Hylands's avatar
Dave Hylands committed
53
#include "adc.h"
54
#include "storage.h"
Damien George's avatar
Damien George committed
55
#include "sdcard.h"
56
#include "accel.h"
57
#include "servo.h"
Damien George's avatar
Damien George committed
58
#include "dac.h"
59
#include "lcd.h"
60
#include "usb.h"
61
#include "fsusermount.h"
62
#include "portmodules.h"
63

64
65
66
67
/// \module pyb - functions related to the pyboard
///
/// The `pyb` module contains specific functions related to the pyboard.

68
69
/// \function bootloader()
/// Activate the bootloader without BOOT* pins.
70
STATIC NORETURN mp_obj_t pyb_bootloader(void) {
71
    pyb_usb_dev_deinit();
72
73
74
75
76
    storage_flush();

    HAL_RCC_DeInit();
    HAL_DeInit();

77
    __HAL_REMAPMEMORY_SYSTEMFLASH();
78
79
80
81
82
83

    // arm-none-eabi-gcc 4.9.0 does not correctly inline this
    // MSP function, so we write it out explicitly here.
    //__set_MSP(*((uint32_t*) 0x00000000));
    __ASM volatile ("movs r3, #0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp");

84
    ((void (*)(void)) *((uint32_t*) 0x00000004))();
85
86
87

    while (1);
}
88
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_bootloader_obj, pyb_bootloader);
89

90
91
92
93
94
95
96
97
98
/// \function hard_reset()
/// Resets the pyboard in a manner similar to pushing the external RESET
/// button.
STATIC mp_obj_t pyb_hard_reset(void) {
    NVIC_SystemReset();
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_hard_reset_obj, pyb_hard_reset);

99
100
/// \function info([dump_alloc_table])
/// Print out lots of information about the board.
101
STATIC mp_obj_t pyb_info(mp_uint_t n_args, const mp_obj_t *args) {
102
103
104
105
106
107
108
109
110
    // get and print unique id; 96 bits
    {
        byte *id = (byte*)0x1fff7a10;
        printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
    }

    // get and print clock speeds
    // SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
    {
111
        printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n",
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
               HAL_RCC_GetSysClockFreq(),
               HAL_RCC_GetHCLKFreq(),
               HAL_RCC_GetPCLK1Freq(),
               HAL_RCC_GetPCLK2Freq());
    }

    // to print info about memory
    {
        printf("_etext=%p\n", &_etext);
        printf("_sidata=%p\n", &_sidata);
        printf("_sdata=%p\n", &_sdata);
        printf("_edata=%p\n", &_edata);
        printf("_sbss=%p\n", &_sbss);
        printf("_ebss=%p\n", &_ebss);
        printf("_estack=%p\n", &_estack);
        printf("_ram_start=%p\n", &_ram_start);
        printf("_heap_start=%p\n", &_heap_start);
        printf("_heap_end=%p\n", &_heap_end);
        printf("_ram_end=%p\n", &_ram_end);
    }

    // qstr info
    {
135
        mp_uint_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
136
        qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
137
        printf("qstr:\n  n_pool=" UINT_FMT "\n  n_qstr=" UINT_FMT "\n  n_str_data_bytes=" UINT_FMT "\n  n_total_bytes=" UINT_FMT "\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
138
139
140
141
142
143
144
    }

    // GC info
    {
        gc_info_t info;
        gc_info(&info);
        printf("GC:\n");
145
146
147
        printf("  " UINT_FMT " total\n", info.total);
        printf("  " UINT_FMT " : " UINT_FMT "\n", info.used, info.free);
        printf("  1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block);
148
149
150
151
152
153
    }

    // free space on flash
    {
        DWORD nclst;
        FATFS *fatfs;
154
        f_getfree("/flash", &nclst, &fatfs);
155
156
157
        printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512));
    }

158
159
160
161
162
    if (n_args == 1) {
        // arg given means dump gc allocation table
        gc_dump_alloc_table();
    }

163
164
    return mp_const_none;
}
165
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_info_obj, 0, 1, pyb_info);
166

167
168
/// \function unique_id()
/// Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU.
169
170
171
172
173
174
STATIC mp_obj_t pyb_unique_id(void) {
    byte *id = (byte*)0x1fff7a10;
    return mp_obj_new_bytes(id, 12);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_unique_id_obj, pyb_unique_id);

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
// get or set the MCU frequencies
STATIC mp_uint_t pyb_freq_calc_ahb_div(mp_uint_t wanted_div) {
    if (wanted_div <= 1) { return RCC_SYSCLK_DIV1; }
    else if (wanted_div <= 2) { return RCC_SYSCLK_DIV2; }
    else if (wanted_div <= 4) { return RCC_SYSCLK_DIV4; }
    else if (wanted_div <= 8) { return RCC_SYSCLK_DIV8; }
    else if (wanted_div <= 16) { return RCC_SYSCLK_DIV16; }
    else if (wanted_div <= 64) { return RCC_SYSCLK_DIV64; }
    else if (wanted_div <= 128) { return RCC_SYSCLK_DIV128; }
    else if (wanted_div <= 256) { return RCC_SYSCLK_DIV256; }
    else { return RCC_SYSCLK_DIV512; }
}
STATIC mp_uint_t pyb_freq_calc_apb_div(mp_uint_t wanted_div) {
    if (wanted_div <= 1) { return RCC_HCLK_DIV1; }
    else if (wanted_div <= 2) { return RCC_HCLK_DIV2; }
    else if (wanted_div <= 4) { return RCC_HCLK_DIV4; }
    else if (wanted_div <= 8) { return RCC_HCLK_DIV8; }
    else { return RCC_SYSCLK_DIV16; }
}
194
195
196
197
198
199
200
201
202
203
204
205
206
207
STATIC mp_obj_t pyb_freq(mp_uint_t n_args, const mp_obj_t *args) {
    if (n_args == 0) {
        // get
        mp_obj_t tuple[4] = {
           mp_obj_new_int(HAL_RCC_GetSysClockFreq()),
           mp_obj_new_int(HAL_RCC_GetHCLKFreq()),
           mp_obj_new_int(HAL_RCC_GetPCLK1Freq()),
           mp_obj_new_int(HAL_RCC_GetPCLK2Freq()),
        };
        return mp_obj_new_tuple(4, tuple);
    } else {
        // set
        mp_int_t wanted_sysclk = mp_obj_get_int(args[0]) / 1000000;

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
        // default PLL parameters that give 48MHz on PLL48CK
        uint32_t m = HSE_VALUE / 1000000, n = 336, p = 2, q = 7;
        uint32_t sysclk_source;

        // the following logic assumes HSE < HSI
        if (HSE_VALUE / 1000000 <= wanted_sysclk && wanted_sysclk < HSI_VALUE / 1000000) {
            // use HSE as SYSCLK
            sysclk_source = RCC_SYSCLKSOURCE_HSE;
        } else if (HSI_VALUE / 1000000 <= wanted_sysclk && wanted_sysclk < 24) {
            // use HSI as SYSCLK
            sysclk_source = RCC_SYSCLKSOURCE_HSI;
        } else {
            // search for a valid PLL configuration that keeps USB at 48MHz
            for (; wanted_sysclk > 0; wanted_sysclk--) {
                for (p = 2; p <= 8; p += 2) {
                    // compute VCO_OUT
                    mp_uint_t vco_out = wanted_sysclk * p;
                    // make sure VCO_OUT is between 192MHz and 432MHz
                    if (vco_out < 192 || vco_out > 432) {
                        continue;
                    }
                    // make sure Q is an integer
                    if (vco_out % 48 != 0) {
                        continue;
                    }
                    // solve for Q to get PLL48CK at 48MHz
                    q = vco_out / 48;
                    // make sure Q is in range
                    if (q < 2 || q > 15) {
                        continue;
                    }
                    // make sure N/M is an integer
                    if (vco_out % (HSE_VALUE / 1000000) != 0) {
                        continue;
                    }
                    // solve for N/M
                    mp_uint_t n_by_m = vco_out / (HSE_VALUE / 1000000);
                    // solve for M, making sure VCO_IN (=HSE/M) is between 1MHz and 2MHz
                    m = 192 / n_by_m;
                    while (m < (HSE_VALUE / 2000000) || n_by_m * m < 192) {
                        m += 1;
                    }
                    if (m > (HSE_VALUE / 1000000)) {
                        continue;
                    }
                    // solve for N
                    n = n_by_m * m;
                    // make sure N is in range
                    if (n < 192 || n > 432) {
                        continue;
                    }

                    // found values!
                    sysclk_source = RCC_SYSCLKSOURCE_PLLCLK;
                    goto set_clk;
263
                }
264
265
266
            }
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "can't make valid freq"));
        }
267

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    set_clk:
        //printf("%lu %lu %lu %lu %lu\n", sysclk_source, m, n, p, q);

        // let the USB CDC have a chance to process before we change the clock
        HAL_Delay(USBD_CDC_POLLING_INTERVAL + 2);

        // desired system clock source is in sysclk_source
        RCC_ClkInitTypeDef RCC_ClkInitStruct;
        RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
        if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) {
            // set HSE as system clock source to allow modification of the PLL configuration
            // we then change to PLL after re-configuring PLL
            RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;
        } else {
            // directly set the system clock source as desired
            RCC_ClkInitStruct.SYSCLKSource = sysclk_source;
        }
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
        wanted_sysclk *= 1000000;
        if (n_args >= 2) {
            // note: AHB freq required to be >= 14.2MHz for USB operation
            RCC_ClkInitStruct.AHBCLKDivider = pyb_freq_calc_ahb_div(wanted_sysclk / mp_obj_get_int(args[1]));
        } else {
            RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
        }
        if (n_args >= 3) {
            RCC_ClkInitStruct.APB1CLKDivider = pyb_freq_calc_apb_div(wanted_sysclk / mp_obj_get_int(args[2]));
        } else {
            RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
        }
        if (n_args >= 4) {
            RCC_ClkInitStruct.APB2CLKDivider = pyb_freq_calc_apb_div(wanted_sysclk / mp_obj_get_int(args[3]));
        } else {
            RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
        }
302
303
304
        if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) {
            goto fail;
        }
305

306
307
308
309
310
311
312
313
314
315
316
317
318
319
        // re-configure PLL
        // even if we don't use the PLL for the system clock, we still need it for USB, RNG and SDIO
        RCC_OscInitTypeDef RCC_OscInitStruct;
        RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
        RCC_OscInitStruct.HSEState = RCC_HSE_ON;
        RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
        RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
        RCC_OscInitStruct.PLL.PLLM = m;
        RCC_OscInitStruct.PLL.PLLN = n;
        RCC_OscInitStruct.PLL.PLLP = p;
        RCC_OscInitStruct.PLL.PLLQ = q;
        if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
            goto fail;
        }
320

321
322
323
324
325
326
        // set PLL as system clock source if wanted
        if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) {
            RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
            RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
            if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) {
                goto fail;
327
328
            }
        }
329
330
331
332
333
334
335
336
337

        // re-init TIM3 for USB CDC rate
        timer_tim3_init();

        return mp_const_none;

    fail:;
        void NORETURN __fatal_error(const char *msg);
        __fatal_error("can't change freq");
338
    }
339
}
340
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_freq_obj, 0, 4, pyb_freq);
341

342
343
/// \function millis()
/// Returns the number of milliseconds since the board was last reset.
344
///
345
346
347
/// The result is always a micropython smallint (31-bit signed number), so
/// after 2^30 milliseconds (about 12.4 days) this will start to return
/// negative numbers.
348
STATIC mp_obj_t pyb_millis(void) {
349
350
351
352
    // We want to "cast" the 32 bit unsigned into a small-int.  This means
    // copying the MSB down 1 bit (extending the sign down), which is
    // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
    return MP_OBJ_NEW_SMALL_INT(HAL_GetTick());
353
354
355
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_millis_obj, pyb_millis);

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
/// \function elapsed_millis(start)
/// Returns the number of milliseconds which have elapsed since `start`.
///
/// This function takes care of counter wrap, and always returns a positive
/// number. This means it can be used to measure periods upto about 12.4 days.
///
/// Example:
///     start = pyb.millis()
///     while pyb.elapsed_millis(start) < 1000:
///         # Perform some operation
STATIC mp_obj_t pyb_elapsed_millis(mp_obj_t start) {
    uint32_t startMillis = mp_obj_get_int(start);
    uint32_t currMillis = HAL_GetTick();
    return MP_OBJ_NEW_SMALL_INT((currMillis - startMillis) & 0x3fffffff);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_millis_obj, pyb_elapsed_millis);

373
374
375
/// \function micros()
/// Returns the number of microseconds since the board was last reset.
///
376
377
378
/// The result is always a micropython smallint (31-bit signed number), so
/// after 2^30 microseconds (about 17.8 minutes) this will start to return
/// negative numbers.
379
STATIC mp_obj_t pyb_micros(void) {
380
381
382
383
    // We want to "cast" the 32 bit unsigned into a small-int.  This means
    // copying the MSB down 1 bit (extending the sign down), which is
    // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
    return MP_OBJ_NEW_SMALL_INT(sys_tick_get_microseconds());
384
385
386
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_micros_obj, pyb_micros);

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
/// \function elapsed_micros(start)
/// Returns the number of microseconds which have elapsed since `start`.
///
/// This function takes care of counter wrap, and always returns a positive
/// number. This means it can be used to measure periods upto about 17.8 minutes.
///
/// Example:
///     start = pyb.micros()
///     while pyb.elapsed_micros(start) < 1000:
///         # Perform some operation
STATIC mp_obj_t pyb_elapsed_micros(mp_obj_t start) {
    uint32_t startMicros = mp_obj_get_int(start);
    uint32_t currMicros = sys_tick_get_microseconds();
    return MP_OBJ_NEW_SMALL_INT((currMicros - startMicros) & 0x3fffffff);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_micros_obj, pyb_elapsed_micros);

404
405
/// \function delay(ms)
/// Delay for the given number of milliseconds.
406
STATIC mp_obj_t pyb_delay(mp_obj_t ms_in) {
407
    mp_int_t ms = mp_obj_get_int(ms_in);
408
409
410
    if (ms >= 0) {
        HAL_Delay(ms);
    }
411
412
413
414
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_delay_obj, pyb_delay);

415
416
/// \function udelay(us)
/// Delay for the given number of microseconds.
417
STATIC mp_obj_t pyb_udelay(mp_obj_t usec_in) {
418
    mp_int_t usec = mp_obj_get_int(usec_in);
419
    if (usec > 0) {
420
        sys_tick_udelay(usec);
421
    }
422
    return mp_const_none;
423
424
425
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_udelay_obj, pyb_udelay);

426
427
/// \function stop()
STATIC mp_obj_t pyb_stop(void) {
428
429
430
    // takes longer to wake but reduces stop current
    HAL_PWREx_EnableFlashPowerDown();

431
    HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);
432

433
    // reconfigure the system clock after waking up
434

435
436
437
    // enable HSE
    __HAL_RCC_HSE_CONFIG(RCC_HSE_ON);
    while (!__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY)) {
438
439
    }

440
441
442
    // enable PLL
    __HAL_RCC_PLL_ENABLE();
    while (!__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)) {
443
444
    }

445
446
447
448
    // select PLL as system clock source
    MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK);
    while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) {
    }
449
450
451
452
453

    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_stop_obj, pyb_stop);

454
/// \function standby()
455
STATIC mp_obj_t pyb_standby(void) {
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
    // We need to clear the PWR wake-up-flag before entering standby, since
    // the flag may have been set by a previous wake-up event.  Furthermore,
    // we need to disable the wake-up sources while clearing this flag, so
    // that if a source is active it does actually wake the device.
    // See section 5.3.7 of RM0090.

    // Note: we only support RTC ALRA, ALRB, WUT and TS.
    // TODO support TAMP and WKUP (PA0 external pin).
    uint32_t irq_bits = RTC_CR_ALRAIE | RTC_CR_ALRBIE | RTC_CR_WUTIE | RTC_CR_TSIE;

    // save RTC interrupts
    uint32_t save_irq_bits = RTC->CR & irq_bits;

    // disable RTC interrupts
    RTC->CR &= ~irq_bits;

    // clear RTC wake-up flags
    RTC->ISR &= ~(RTC_ISR_ALRAF | RTC_ISR_ALRBF | RTC_ISR_WUTF | RTC_ISR_TSF);

    // clear global wake-up flag
    PWR->CR |= PWR_CR_CWUF;

    // enable previously-enabled RTC interrupts
    RTC->CR |= save_irq_bits;

    // enter standby mode
482
    HAL_PWR_EnterSTANDBYMode();
483
484
    // we never return; MCU is reset on exit from standby

485
486
487
488
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_standby_obj, pyb_standby);

489
490
/// \function repl_uart(uart)
/// Get or set the UART object that the REPL is repeated on.
491
STATIC mp_obj_t pyb_repl_uart(mp_uint_t n_args, const mp_obj_t *args) {
492
    if (n_args == 0) {
493
        if (MP_STATE_PORT(pyb_stdio_uart) == NULL) {
494
495
            return mp_const_none;
        } else {
496
            return MP_STATE_PORT(pyb_stdio_uart);
497
498
499
        }
    } else {
        if (args[0] == mp_const_none) {
500
            MP_STATE_PORT(pyb_stdio_uart) = NULL;
501
        } else if (mp_obj_get_type(args[0]) == &pyb_uart_type) {
502
            MP_STATE_PORT(pyb_stdio_uart) = args[0];
503
504
505
506
507
508
509
510
        } else {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "need a UART object"));
        }
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_repl_uart_obj, 0, 1, pyb_repl_uart);

511
512
513
514
515
MP_DECLARE_CONST_FUN_OBJ(pyb_main_obj); // defined in main.c

STATIC const mp_map_elem_t pyb_module_globals_table[] = {
    { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_pyb) },

516
    { MP_OBJ_NEW_QSTR(MP_QSTR_bootloader), (mp_obj_t)&pyb_bootloader_obj },
517
    { MP_OBJ_NEW_QSTR(MP_QSTR_hard_reset), (mp_obj_t)&pyb_hard_reset_obj },
518
    { MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&pyb_info_obj },
519
520
    { MP_OBJ_NEW_QSTR(MP_QSTR_unique_id), (mp_obj_t)&pyb_unique_id_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_freq_obj },
521
522
    { MP_OBJ_NEW_QSTR(MP_QSTR_repl_info), (mp_obj_t)&pyb_set_repl_info_obj },

523
    { MP_OBJ_NEW_QSTR(MP_QSTR_wfi), (mp_obj_t)&pyb_wfi_obj },
524
525
526
    { MP_OBJ_NEW_QSTR(MP_QSTR_disable_irq), (mp_obj_t)&pyb_disable_irq_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_enable_irq), (mp_obj_t)&pyb_enable_irq_obj },

527
528
529
    { MP_OBJ_NEW_QSTR(MP_QSTR_stop), (mp_obj_t)&pyb_stop_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_standby), (mp_obj_t)&pyb_standby_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_main), (mp_obj_t)&pyb_main_obj },
530
    { MP_OBJ_NEW_QSTR(MP_QSTR_repl_uart), (mp_obj_t)&pyb_repl_uart_obj },
531

532
533
534
535
536
537
    { MP_OBJ_NEW_QSTR(MP_QSTR_usb_mode), (mp_obj_t)&pyb_usb_mode_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_hid_mouse), (mp_obj_t)&pyb_usb_hid_mouse_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_hid_keyboard), (mp_obj_t)&pyb_usb_hid_keyboard_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_USB_VCP), (mp_obj_t)&pyb_usb_vcp_type },
    { MP_OBJ_NEW_QSTR(MP_QSTR_USB_HID), (mp_obj_t)&pyb_usb_hid_type },
    // these 2 are deprecated; use USB_VCP.isconnected and USB_HID.send instead
538
539
540
    { MP_OBJ_NEW_QSTR(MP_QSTR_have_cdc), (mp_obj_t)&pyb_have_cdc_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_hid), (mp_obj_t)&pyb_hid_send_report_obj },

541
    { MP_OBJ_NEW_QSTR(MP_QSTR_millis), (mp_obj_t)&pyb_millis_obj },
542
    { MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_millis), (mp_obj_t)&pyb_elapsed_millis_obj },
543
    { MP_OBJ_NEW_QSTR(MP_QSTR_micros), (mp_obj_t)&pyb_micros_obj },
544
    { MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_micros), (mp_obj_t)&pyb_elapsed_micros_obj },
545
546
    { MP_OBJ_NEW_QSTR(MP_QSTR_delay), (mp_obj_t)&pyb_delay_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_udelay), (mp_obj_t)&pyb_udelay_obj },
547
    { MP_OBJ_NEW_QSTR(MP_QSTR_sync), (mp_obj_t)&mod_os_sync_obj },
548
    { MP_OBJ_NEW_QSTR(MP_QSTR_mount), (mp_obj_t)&pyb_mount_obj },
549

550
551
    { MP_OBJ_NEW_QSTR(MP_QSTR_Timer), (mp_obj_t)&pyb_timer_type },

552
#if MICROPY_HW_ENABLE_RNG
553
    { MP_OBJ_NEW_QSTR(MP_QSTR_rng), (mp_obj_t)&pyb_rng_get_obj },
554
555
556
#endif

#if MICROPY_HW_ENABLE_RTC
557
    { MP_OBJ_NEW_QSTR(MP_QSTR_RTC), (mp_obj_t)&pyb_rtc_type },
558
559
#endif

560
561
562
    { MP_OBJ_NEW_QSTR(MP_QSTR_Pin), (mp_obj_t)&pin_type },
    { MP_OBJ_NEW_QSTR(MP_QSTR_ExtInt), (mp_obj_t)&extint_type },

563
564
565
#if MICROPY_HW_ENABLE_SERVO
    { MP_OBJ_NEW_QSTR(MP_QSTR_pwm), (mp_obj_t)&pyb_pwm_set_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_servo), (mp_obj_t)&pyb_servo_set_obj },
566
    { MP_OBJ_NEW_QSTR(MP_QSTR_Servo), (mp_obj_t)&pyb_servo_type },
567
568
569
#endif

#if MICROPY_HW_HAS_SWITCH
570
    { MP_OBJ_NEW_QSTR(MP_QSTR_Switch), (mp_obj_t)&pyb_switch_type },
571
572
573
574
575
576
#endif

#if MICROPY_HW_HAS_SDCARD
    { MP_OBJ_NEW_QSTR(MP_QSTR_SD), (mp_obj_t)&pyb_sdcard_obj },
#endif

577
#if defined(MICROPY_HW_LED1)
578
    { MP_OBJ_NEW_QSTR(MP_QSTR_LED), (mp_obj_t)&pyb_led_type },
579
#endif
580
    { MP_OBJ_NEW_QSTR(MP_QSTR_I2C), (mp_obj_t)&pyb_i2c_type },
Damien George's avatar
Damien George committed
581
    { MP_OBJ_NEW_QSTR(MP_QSTR_SPI), (mp_obj_t)&pyb_spi_type },
Damien George's avatar
Damien George committed
582
    { MP_OBJ_NEW_QSTR(MP_QSTR_UART), (mp_obj_t)&pyb_uart_type },
583
#if MICROPY_HW_ENABLE_CAN
584
    { MP_OBJ_NEW_QSTR(MP_QSTR_CAN), (mp_obj_t)&pyb_can_type },
585
#endif
586
587

    { MP_OBJ_NEW_QSTR(MP_QSTR_ADC), (mp_obj_t)&pyb_adc_type },
588
    { MP_OBJ_NEW_QSTR(MP_QSTR_ADCAll), (mp_obj_t)&pyb_adc_all_type },
Damien George's avatar
Damien George committed
589
590
591

#if MICROPY_HW_ENABLE_DAC
    { MP_OBJ_NEW_QSTR(MP_QSTR_DAC), (mp_obj_t)&pyb_dac_type },
592
593
#endif

594
595
596
#if MICROPY_HW_HAS_MMA7660
    { MP_OBJ_NEW_QSTR(MP_QSTR_Accel), (mp_obj_t)&pyb_accel_type },
#endif
597
598
599
600

#if MICROPY_HW_HAS_LCD
    { MP_OBJ_NEW_QSTR(MP_QSTR_LCD), (mp_obj_t)&pyb_lcd_type },
#endif
601
602
};

603
STATIC MP_DEFINE_CONST_DICT(pyb_module_globals, pyb_module_globals_table);
604
605
606
607

const mp_obj_module_t pyb_module = {
    .base = { &mp_type_module },
    .name = MP_QSTR_pyb,
608
    .globals = (mp_obj_dict_t*)&pyb_module_globals,
609
};