i2c.c 21.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27
28
29
#include <stdio.h>
#include <string.h>

30
#include "stm32f4xx_hal.h"
31

32
#include "mpconfig.h"
33
34
35
36
37
#include "nlr.h"
#include "misc.h"
#include "qstr.h"
#include "obj.h"
#include "runtime.h"
38
39
#include "pin.h"
#include "genhdr/pins.h"
40
#include "bufhelper.h"
41
42
#include "i2c.h"

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
/// \moduleref pyb
/// \class I2C - a two-wire serial protocol
///
/// I2C is a two-wire protocol for communicating between devices.  At the physical
/// level it consists of 2 wires: SCL and SDA, the clock and data lines respectively.
///
/// I2C objects are created attached to a specific bus.  They can be initialised
/// when created, or initialised later on:
///
///     from pyb import I2C
///
///     i2c = I2C(1)                         # create on bus 1
///     i2c = I2C(1, I2C.MASTER)             # create and init as a master
///     i2c.init(I2C.MASTER, baudrate=20000) # init as a master
///     i2c.init(I2C.SLAVE, addr=0x42)       # init as a slave with given address
///     i2c.deinit()                         # turn off the peripheral
///
/// Printing the i2c object gives you information about its configuration.
///
/// Basic methods for slave are send and recv:
///
///     i2c.send('abc')      # send 3 bytes
///     i2c.send(0x42)       # send a single byte, given by the number
///     data = i2c.recv(3)   # receive 3 bytes
///
/// To receive inplace, first create a bytearray:
///
///     data = bytearray(3)  # create a buffer
///     i2c.recv(data)       # receive 3 bytes, writing them into data
///
/// You can specify a timeout (in ms):
///
///     i2c.send(b'123', timeout=2000)   # timout after 2 seconds
///
/// A master must specify the recipient's address:
///
///     i2c.init(I2C.MASTER)
///     i2c.send('123', 0x42)        # send 3 bytes to slave with address 0x42
///     i2c.send(b'456', addr=0x42)  # keyword for address
///
/// Master also has other methods:
///
///     i2c.is_ready(0x42)           # check if slave 0x42 is ready
///     i2c.scan()                   # scan for slaves on the bus, returning
///                                  #   a list of valid addresses
///     i2c.mem_read(3, 0x42, 2)     # read 3 bytes from memory of slave 0x42,
///                                  #   starting at address 2 in the slave
///     i2c.mem_write('abc', 0x42, 2, timeout=1000)
91

92
93
94
#define PYB_I2C_MASTER (0)
#define PYB_I2C_SLAVE  (1)

95
#if MICROPY_HW_ENABLE_I2C1
96
I2C_HandleTypeDef I2CHandle1 = {.Instance = NULL};
97
#endif
98
I2C_HandleTypeDef I2CHandle2 = {.Instance = NULL};
99

100
101
void i2c_init0(void) {
    // reset the I2C1 handles
102
#if MICROPY_HW_ENABLE_I2C1
103
104
    memset(&I2CHandle1, 0, sizeof(I2C_HandleTypeDef));
    I2CHandle1.Instance = I2C1;
105
#endif
106
107
    memset(&I2CHandle2, 0, sizeof(I2C_HandleTypeDef));
    I2CHandle2.Instance = I2C2;
108
109
}

110
void i2c_init(I2C_HandleTypeDef *i2c) {
111
    // init the GPIO lines
112
    GPIO_InitTypeDef GPIO_InitStructure;
113
114
115
116
    GPIO_InitStructure.Mode = GPIO_MODE_AF_OD;
    GPIO_InitStructure.Speed = GPIO_SPEED_FAST;
    GPIO_InitStructure.Pull = GPIO_NOPULL; // have external pull-up resistors on both lines

117
    const pin_obj_t *pins[2];
118
    if (0) {
119
#if MICROPY_HW_ENABLE_I2C1
120
    } else if (i2c == &I2CHandle1) {
121
        // X-skin: X9=PB6=SCL, X10=PB7=SDA
122
123
        pins[0] = &pin_B6;
        pins[1] = &pin_B7;
124
125
126
        GPIO_InitStructure.Alternate = GPIO_AF4_I2C1;
        // enable the I2C clock
        __I2C1_CLK_ENABLE();
127
#endif
128
    } else if (i2c == &I2CHandle2) {
129
        // Y-skin: Y9=PB10=SCL, Y10=PB11=SDA
130
131
        pins[0] = &pin_B10;
        pins[1] = &pin_B11;
132
133
134
        GPIO_InitStructure.Alternate = GPIO_AF4_I2C2;
        // enable the I2C clock
        __I2C2_CLK_ENABLE();
135
136
137
    } else {
        // I2C does not exist for this board (shouldn't get here, should be checked by caller)
        return;
138
139
    }

140
141
142
143
144
145
    // init the GPIO lines
    for (uint i = 0; i < 2; i++) {
        GPIO_InitStructure.Pin = pins[i]->pin_mask;
        HAL_GPIO_Init(pins[i]->gpio, &GPIO_InitStructure);
    }

146
    // init the I2C device
147
    if (HAL_I2C_Init(i2c) != HAL_OK) {
148
        // init error
149
150
        // TODO should raise an exception, but this function is not necessarily going to be
        // called via Python, so may not be properly wrapped in an NLR handler
151
        printf("HardwareError: HAL_I2C_Init failed\n");
152
153
154
155
        return;
    }
}

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
void i2c_deinit(I2C_HandleTypeDef *i2c) {
    HAL_I2C_DeInit(i2c);
    if (0) {
#if MICROPY_HW_ENABLE_I2C1
    } else if (i2c->Instance == I2C1) {
        __I2C1_FORCE_RESET();
        __I2C1_RELEASE_RESET();
        __I2C1_CLK_DISABLE();
#endif
    } else if (i2c->Instance == I2C2) {
        __I2C2_FORCE_RESET();
        __I2C2_RELEASE_RESET();
        __I2C2_CLK_DISABLE();
    }
}

172
173
174
175
176
/******************************************************************************/
/* Micro Python bindings                                                      */

typedef struct _pyb_i2c_obj_t {
    mp_obj_base_t base;
177
    I2C_HandleTypeDef *i2c;
178
179
} pyb_i2c_obj_t;

180
181
STATIC inline bool in_master_mode(pyb_i2c_obj_t *self) { return self->i2c->Init.OwnAddress1 == PYB_I2C_MASTER_ADDRESS; }

182
183
STATIC const pyb_i2c_obj_t pyb_i2c_obj[] = {
#if MICROPY_HW_ENABLE_I2C1
184
    {{&pyb_i2c_type}, &I2CHandle1},
185
186
187
#else
    {{&pyb_i2c_type}, NULL},
#endif
188
189
    {{&pyb_i2c_type}, &I2CHandle2}
};
190

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
STATIC void pyb_i2c_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
    pyb_i2c_obj_t *self = self_in;

    uint i2c_num;
    if (self->i2c->Instance == I2C1) { i2c_num = 1; }
    else { i2c_num = 2; }

    if (self->i2c->State == HAL_I2C_STATE_RESET) {
        print(env, "I2C(%u)", i2c_num);
    } else {
        if (in_master_mode(self)) {
            print(env, "I2C(%u, I2C.MASTER, baudrate=%u)", i2c_num, self->i2c->Init.ClockSpeed);
        } else {
            print(env, "I2C(%u, I2C.SLAVE, addr=0x%02x)", i2c_num, (self->i2c->Instance->OAR1 >> 1) & 0x7f);
        }
    }
}

209
210
211
212
213
214
215
216
/// \method init(mode, *, addr=0x12, baudrate=400000, gencall=False)
///
/// Initialise the I2C bus with the given parameters:
///
///   - `mode` must be either `I2C.MASTER` or `I2C.SLAVE`
///   - `addr` is the 7-bit address (only sensible for a slave)
///   - `baudrate` is the SCL clock rate (only sensible for a master)
///   - `gencall` is whether to support general call mode
217
218
219
220
221
STATIC const mp_arg_t pyb_i2c_init_args[] = {
    { MP_QSTR_mode,     MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
    { MP_QSTR_addr,     MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0x12} },
    { MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 400000} },
    { MP_QSTR_gencall,  MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
222
};
223
#define PYB_I2C_INIT_NUM_ARGS MP_ARRAY_SIZE(pyb_i2c_init_args)
224

225
STATIC mp_obj_t pyb_i2c_init_helper(const pyb_i2c_obj_t *self, mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
226
    // parse args
227
228
    mp_arg_val_t vals[PYB_I2C_INIT_NUM_ARGS];
    mp_arg_parse_all(n_args, args, kw_args, PYB_I2C_INIT_NUM_ARGS, pyb_i2c_init_args, vals);
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

    // set the I2C configuration values
    I2C_InitTypeDef *init = &self->i2c->Init;

    if (vals[0].u_int == PYB_I2C_MASTER) {
        // use a special address to indicate we are a master
        init->OwnAddress1 = PYB_I2C_MASTER_ADDRESS;
    } else {
        init->OwnAddress1 = (vals[1].u_int << 1) & 0xfe;
    }

    init->AddressingMode  = I2C_ADDRESSINGMODE_7BIT;
    init->ClockSpeed      = MIN(vals[2].u_int, 400000);
    init->DualAddressMode = I2C_DUALADDRESS_DISABLED;
    init->DutyCycle       = I2C_DUTYCYCLE_16_9;
    init->GeneralCallMode = vals[3].u_bool ? I2C_GENERALCALL_ENABLED : I2C_GENERALCALL_DISABLED;
    init->NoStretchMode   = I2C_NOSTRETCH_DISABLED;
    init->OwnAddress2     = 0xfe; // unused

    // init the I2C bus
    i2c_init(self->i2c);

    return mp_const_none;
}

254
255
256
257
258
259
260
/// \classmethod \constructor(bus, ...)
///
/// Construct an I2C object on the given bus.  `bus` can be 1 or 2.
/// With no additional parameters, the I2C object is created but not
/// initialised (it has the settings from the last initialisation of
/// the bus, if any).  If extra arguments are given, the bus is initialised.
/// See `init` for parameters of initialisation.
261
262
263
264
265
///
/// The physical pins of the I2C busses are:
///
///   - `I2C(1)` is on the X position: `(SCL, SDA) = (X9, X10) = (PB6, PB7)`
///   - `I2C(2)` is on the Y position: `(SCL, SDA) = (Y9, Y10) = (PB10, PB11)`
266
STATIC mp_obj_t pyb_i2c_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
267
    // check arguments
268
    mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
269
270

    // get i2c number
271
    mp_int_t i2c_id = mp_obj_get_int(args[0]) - 1;
272
273

    // check i2c number
274
    if (!(0 <= i2c_id && i2c_id < MP_ARRAY_SIZE(pyb_i2c_obj) && pyb_i2c_obj[i2c_id].i2c != NULL)) {
275
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "I2C bus %d does not exist", i2c_id + 1));
276
277
    }

278
    // get I2C object
279
    const pyb_i2c_obj_t *i2c_obj = &pyb_i2c_obj[i2c_id];
280

281
282
283
284
285
286
    if (n_args > 1 || n_kw > 0) {
        // start the peripheral
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
        pyb_i2c_init_helper(i2c_obj, n_args - 1, args + 1, &kw_args);
    }
287

288
    return (mp_obj_t)i2c_obj;
289
290
}

291
STATIC mp_obj_t pyb_i2c_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
292
293
294
295
    return pyb_i2c_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_init_obj, 1, pyb_i2c_init);

296
297
/// \method deinit()
/// Turn off the I2C bus.
298
299
300
301
302
303
304
STATIC mp_obj_t pyb_i2c_deinit(mp_obj_t self_in) {
    pyb_i2c_obj_t *self = self_in;
    i2c_deinit(self->i2c);
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_deinit_obj, pyb_i2c_deinit);

305
306
/// \method is_ready(addr)
/// Check if an I2C device responds to the given address.  Only valid when in master mode.
307
308
STATIC mp_obj_t pyb_i2c_is_ready(mp_obj_t self_in, mp_obj_t i2c_addr_o) {
    pyb_i2c_obj_t *self = self_in;
309
310
311
312
313

    if (!in_master_mode(self)) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
    }

314
    mp_uint_t i2c_addr = mp_obj_get_int(i2c_addr_o) << 1;
315
316

    for (int i = 0; i < 10; i++) {
317
        HAL_StatusTypeDef status = HAL_I2C_IsDeviceReady(self->i2c, i2c_addr, 10, 200);
318
319
320
321
322
323
324
325
326
        if (status == HAL_OK) {
            return mp_const_true;
        }
    }

    return mp_const_false;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_i2c_is_ready_obj, pyb_i2c_is_ready);

327
328
329
/// \method scan()
/// Scan all I2C addresses from 0x01 to 0x7f and return a list of those that respond.
/// Only valid when in master mode.
330
331
332
STATIC mp_obj_t pyb_i2c_scan(mp_obj_t self_in) {
    pyb_i2c_obj_t *self = self_in;

333
334
335
336
    if (!in_master_mode(self)) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
    }

337
338
339
340
    mp_obj_t list = mp_obj_new_list(0, NULL);

    for (uint addr = 1; addr <= 127; addr++) {
        for (int i = 0; i < 10; i++) {
341
            HAL_StatusTypeDef status = HAL_I2C_IsDeviceReady(self->i2c, addr << 1, 10, 200);
342
343
344
345
346
347
348
349
350
351
352
            if (status == HAL_OK) {
                mp_obj_list_append(list, mp_obj_new_int(addr));
                break;
            }
        }
    }

    return list;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_scan_obj, pyb_i2c_scan);

353
354
355
356
357
358
359
360
/// \method send(send, addr=0x00, timeout=5000)
/// Send data on the bus:
///
///   - `send` is the data to send (an integer to send, or a buffer object)
///   - `addr` is the address to send to (only required in master mode)
///   - `timeout` is the timeout in milliseconds to wait for the send
///
/// Return value: `None`.
361
362
363
364
STATIC const mp_arg_t pyb_i2c_send_args[] = {
    { MP_QSTR_send,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
    { MP_QSTR_addr,    MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} },
    { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
365
};
366
#define PYB_I2C_SEND_NUM_ARGS MP_ARRAY_SIZE(pyb_i2c_send_args)
367

368
STATIC mp_obj_t pyb_i2c_send(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
369
370
371
    pyb_i2c_obj_t *self = args[0];

    // parse args
372
373
    mp_arg_val_t vals[PYB_I2C_SEND_NUM_ARGS];
    mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_I2C_SEND_NUM_ARGS, pyb_i2c_send_args, vals);
374
375
376
377
378
379
380
381
382
383
384
385

    // get the buffer to send from
    mp_buffer_info_t bufinfo;
    uint8_t data[1];
    pyb_buf_get_for_send(vals[0].u_obj, &bufinfo, data);

    // send the data
    HAL_StatusTypeDef status;
    if (in_master_mode(self)) {
        if (vals[1].u_int == PYB_I2C_MASTER_ADDRESS) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "addr argument required"));
        }
386
        mp_uint_t i2c_addr = vals[1].u_int << 1;
387
388
389
390
        status = HAL_I2C_Master_Transmit(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len, vals[2].u_int);
    } else {
        status = HAL_I2C_Slave_Transmit(self->i2c, bufinfo.buf, bufinfo.len, vals[2].u_int);
    }
391
392
393

    if (status != HAL_OK) {
        // TODO really need a HardwareError object, or something
394
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_I2C_xxx_Transmit failed with code %d", status));
395
396
    }

397
    return mp_const_none;
398
}
399
400
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_send_obj, 1, pyb_i2c_send);

401
/// \method recv(recv, addr=0x00, timeout=5000)
402
403
404
405
406
407
408
409
410
411
///
/// Receive data on the bus:
///
///   - `recv` can be an integer, which is the number of bytes to receive,
///     or a mutable buffer, which will be filled with received bytes
///   - `addr` is the address to receive from (only required in master mode)
///   - `timeout` is the timeout in milliseconds to wait for the receive
///
/// Return value: if `recv` is an integer then a new buffer of the bytes received,
/// otherwise the same buffer that was passed in to `recv`.
412
413
414
415
STATIC const mp_arg_t pyb_i2c_recv_args[] = {
    { MP_QSTR_recv,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
    { MP_QSTR_addr,    MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} },
    { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
416
};
417
#define PYB_I2C_RECV_NUM_ARGS MP_ARRAY_SIZE(pyb_i2c_recv_args)
418

419
STATIC mp_obj_t pyb_i2c_recv(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
420
    pyb_i2c_obj_t *self = args[0];
421

422
    // parse args
423
424
    mp_arg_val_t vals[PYB_I2C_RECV_NUM_ARGS];
    mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_I2C_RECV_NUM_ARGS, pyb_i2c_recv_args, vals);
425
426
427
428
429
430

    // get the buffer to receive into
    mp_buffer_info_t bufinfo;
    mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &bufinfo);

    // receive the data
431
    HAL_StatusTypeDef status;
432
433
434
435
    if (in_master_mode(self)) {
        if (vals[1].u_int == PYB_I2C_MASTER_ADDRESS) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "addr argument required"));
        }
436
        mp_uint_t i2c_addr = vals[1].u_int << 1;
437
        status = HAL_I2C_Master_Receive(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len, vals[2].u_int);
438
    } else {
439
        status = HAL_I2C_Slave_Receive(self->i2c, bufinfo.buf, bufinfo.len, vals[2].u_int);
440
441
442
443
    }

    if (status != HAL_OK) {
        // TODO really need a HardwareError object, or something
444
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_I2C_xxx_Receive failed with code %d", status));
445
446
    }

447
448
449
450
451
452
    // return the received data
    if (o_ret == MP_OBJ_NULL) {
        return vals[0].u_obj;
    } else {
        return mp_obj_str_builder_end(o_ret);
    }
453
}
454
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_recv_obj, 1, pyb_i2c_recv);
455

456
/// \method mem_read(data, addr, memaddr, timeout=5000, addr_size=8)
457
458
459
460
461
462
463
///
/// Read from the memory of an I2C device:
///
///   - `data` can be an integer or a buffer to read into
///   - `addr` is the I2C device address
///   - `memaddr` is the memory location within the I2C device
///   - `timeout` is the timeout in milliseconds to wait for the read
464
///   - `addr_size` selects width of memaddr: 8 or 16 bits
465
466
467
///
/// Returns the read data.
/// This is only valid in master mode.
468
469
470
471
472
STATIC const mp_arg_t pyb_i2c_mem_read_args[] = {
    { MP_QSTR_data,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
    { MP_QSTR_addr,    MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
    { MP_QSTR_memaddr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
    { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
473
    { MP_QSTR_addr_size, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
474
};
475
#define PYB_I2C_MEM_READ_NUM_ARGS MP_ARRAY_SIZE(pyb_i2c_mem_read_args)
476

477
STATIC mp_obj_t pyb_i2c_mem_read(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
478
479
    pyb_i2c_obj_t *self = args[0];

480
481
482
483
484
    if (!in_master_mode(self)) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
    }

    // parse args
485
486
    mp_arg_val_t vals[PYB_I2C_MEM_READ_NUM_ARGS];
    mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_I2C_MEM_READ_NUM_ARGS, pyb_i2c_mem_read_args, vals);
487
488
489
490

    // get the buffer to read into
    mp_buffer_info_t bufinfo;
    mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &bufinfo);
491

492
    // get the addresses
493
494
    mp_uint_t i2c_addr = vals[1].u_int << 1;
    mp_uint_t mem_addr = vals[2].u_int;
495
    // determine width of mem_addr; default is 8 bits, entering any other value gives 16 bit width
496
    mp_uint_t mem_addr_size = I2C_MEMADD_SIZE_8BIT;
497
    if (vals[4].u_int != 8) {
498
        mem_addr_size = I2C_MEMADD_SIZE_16BIT;
499
    }
500

501
    HAL_StatusTypeDef status = HAL_I2C_Mem_Read(self->i2c, i2c_addr, mem_addr, mem_addr_size, bufinfo.buf, bufinfo.len, vals[3].u_int);
502
503
504

    if (status != HAL_OK) {
        // TODO really need a HardwareError object, or something
505
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_I2C_Mem_Read failed with code %d", status));
506
507
    }

508
509
510
511
512
513
    // return the read data
    if (o_ret == MP_OBJ_NULL) {
        return vals[0].u_obj;
    } else {
        return mp_obj_str_builder_end(o_ret);
    }
514
}
515
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_read_obj, 1, pyb_i2c_mem_read);
516

517
/// \method mem_write(data, addr, memaddr, timeout=5000, addr_size=8)
518
519
520
521
522
523
524
///
/// Write to the memory of an I2C device:
///
///   - `data` can be an integer or a buffer to write from
///   - `addr` is the I2C device address
///   - `memaddr` is the memory location within the I2C device
///   - `timeout` is the timeout in milliseconds to wait for the write
525
///   - `addr_size` selects width of memaddr: 8 or 16 bits
526
527
528
///
/// Returns `None`.
/// This is only valid in master mode.
529
STATIC mp_obj_t pyb_i2c_mem_write(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
530
    pyb_i2c_obj_t *self = args[0];
531
532
533

    if (!in_master_mode(self)) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
534
535
    }

536
    // parse args (same as mem_read)
537
538
    mp_arg_val_t vals[PYB_I2C_MEM_READ_NUM_ARGS];
    mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_I2C_MEM_READ_NUM_ARGS, pyb_i2c_mem_read_args, vals);
539
540
541
542
543
544
545

    // get the buffer to write from
    mp_buffer_info_t bufinfo;
    uint8_t data[1];
    pyb_buf_get_for_send(vals[0].u_obj, &bufinfo, data);

    // get the addresses
546
547
    mp_uint_t i2c_addr = vals[1].u_int << 1;
    mp_uint_t mem_addr = vals[2].u_int;
548
    // determine width of mem_addr; default is 8 bits, entering any other value gives 16 bit width
549
    mp_uint_t mem_addr_size = I2C_MEMADD_SIZE_8BIT;
550
    if (vals[4].u_int != 8) {
551
        mem_addr_size = I2C_MEMADD_SIZE_16BIT;
552
    }
553

554
    HAL_StatusTypeDef status = HAL_I2C_Mem_Write(self->i2c, i2c_addr, mem_addr, mem_addr_size, bufinfo.buf, bufinfo.len, vals[3].u_int);
555
556
557

    if (status != HAL_OK) {
        // TODO really need a HardwareError object, or something
558
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_I2C_Mem_Write failed with code %d", status));
559
560
561
562
    }

    return mp_const_none;
}
563
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_write_obj, 1, pyb_i2c_mem_write);
564

565
STATIC const mp_map_elem_t pyb_i2c_locals_dict_table[] = {
566
567
568
    // instance methods
    { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_i2c_init_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_i2c_deinit_obj },
569
    { MP_OBJ_NEW_QSTR(MP_QSTR_is_ready), (mp_obj_t)&pyb_i2c_is_ready_obj },
570
    { MP_OBJ_NEW_QSTR(MP_QSTR_scan), (mp_obj_t)&pyb_i2c_scan_obj },
571
572
    { MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&pyb_i2c_send_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&pyb_i2c_recv_obj },
573
574
    { MP_OBJ_NEW_QSTR(MP_QSTR_mem_read), (mp_obj_t)&pyb_i2c_mem_read_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_mem_write), (mp_obj_t)&pyb_i2c_mem_write_obj },
575
576

    // class constants
577
578
    /// \constant MASTER - for initialising the bus to master mode
    /// \constant SLAVE - for initialising the bus to slave mode
579
580
    { MP_OBJ_NEW_QSTR(MP_QSTR_MASTER),       MP_OBJ_NEW_SMALL_INT(PYB_I2C_MASTER) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_SLAVE),        MP_OBJ_NEW_SMALL_INT(PYB_I2C_SLAVE) },
581
582
};

583
584
STATIC MP_DEFINE_CONST_DICT(pyb_i2c_locals_dict, pyb_i2c_locals_dict_table);

585
586
587
const mp_obj_type_t pyb_i2c_type = {
    { &mp_type_type },
    .name = MP_QSTR_I2C,
588
    .print = pyb_i2c_print,
589
    .make_new = pyb_i2c_make_new,
590
    .locals_dict = (mp_obj_t)&pyb_i2c_locals_dict,
591
};