timer.c 56.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27
28
29
30
#include <stdint.h>
#include <stdio.h>
#include <string.h>

31
#include STM32_HAL_H
32
33
34
#include "usbd_cdc_msc_hid.h"
#include "usbd_cdc_interface.h"

35
36
37
#include "py/nlr.h"
#include "py/runtime.h"
#include "py/gc.h"
38
39
#include "timer.h"
#include "servo.h"
40
#include "pin.h"
41
#include "irq.h"
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
/// \moduleref pyb
/// \class Timer - periodically call a function
///
/// Timers can be used for a great variety of tasks.  At the moment, only
/// the simplest case is implemented: that of calling a function periodically.
///
/// Each timer consists of a counter that counts up at a certain rate.  The rate
/// at which it counts is the peripheral clock frequency (in Hz) divided by the
/// timer prescaler.  When the counter reaches the timer period it triggers an
/// event, and the counter resets back to zero.  By using the callback method,
/// the timer event can call a Python function.
///
/// Example usage to toggle an LED at a fixed frequency:
///
///     tim = pyb.Timer(4)              # create a timer object using timer 4
///     tim.init(freq=2)                # trigger at 2Hz
///     tim.callback(lambda t:pyb.LED(1).toggle())
///
/// Further examples:
///
///     tim = pyb.Timer(4, freq=100)    # freq in Hz
64
///     tim = pyb.Timer(4, prescaler=0, period=99)
65
66
///     tim.counter()                   # get counter (can also set)
///     tim.prescaler(2)                # set prescaler (can also get)
67
///     tim.period(199)                 # set period (can also get)
68
69
70
71
72
73
74
///     tim.callback(lambda t: ...)     # set callback for update interrupt (t=tim instance)
///     tim.callback(None)              # clear callback
///
/// *Note:* Timer 3 is reserved for internal use.  Timer 5 controls
/// the servo driver, and Timer 6 is used for timed ADC/DAC reading/writing.
/// It is recommended to use the other timers in your programs.

75
76
77
78
// The timers can be used by multiple drivers, and need a common point for
// the interrupts to be dispatched, so they are all collected here.
//
// TIM3:
79
//  - flash storage controller, to flush the cache
80
81
82
83
84
//  - USB CDC interface, interval, to check for new data
//  - LED 4, PWM to set the LED intensity
//
// TIM5:
//  - servo controller, PWM
85
86
87
88
//
// TIM6:
//  - ADC, DAC for read_timed and write_timed

89
90
91
92
93
94
95
96
97
98
typedef enum {
    CHANNEL_MODE_PWM_NORMAL,
    CHANNEL_MODE_PWM_INVERTED,
    CHANNEL_MODE_OC_TIMING,
    CHANNEL_MODE_OC_ACTIVE,
    CHANNEL_MODE_OC_INACTIVE,
    CHANNEL_MODE_OC_TOGGLE,
    CHANNEL_MODE_OC_FORCED_ACTIVE,
    CHANNEL_MODE_OC_FORCED_INACTIVE,
    CHANNEL_MODE_IC,
99
100
101
    CHANNEL_MODE_ENC_A,
    CHANNEL_MODE_ENC_B,
    CHANNEL_MODE_ENC_AB,
102
103
104
105
106
} pyb_channel_mode;

STATIC const struct {
    qstr        name;
    uint32_t    oc_mode;
107
} channel_mode_info[] = {
108
109
110
111
112
113
114
115
116
    { MP_QSTR_PWM,                TIM_OCMODE_PWM1 },
    { MP_QSTR_PWM_INVERTED,       TIM_OCMODE_PWM2 },
    { MP_QSTR_OC_TIMING,          TIM_OCMODE_TIMING },
    { MP_QSTR_OC_ACTIVE,          TIM_OCMODE_ACTIVE },
    { MP_QSTR_OC_INACTIVE,        TIM_OCMODE_INACTIVE },
    { MP_QSTR_OC_TOGGLE,          TIM_OCMODE_TOGGLE },
    { MP_QSTR_OC_FORCED_ACTIVE,   TIM_OCMODE_FORCED_ACTIVE },
    { MP_QSTR_OC_FORCED_INACTIVE, TIM_OCMODE_FORCED_INACTIVE },
    { MP_QSTR_IC,                 0 },
117
118
119
    { MP_QSTR_ENC_A,              TIM_ENCODERMODE_TI1 },
    { MP_QSTR_ENC_B,              TIM_ENCODERMODE_TI2 },
    { MP_QSTR_ENC_AB,             TIM_ENCODERMODE_TI12 },
120
121
122
123
124
125
126
127
128
129
130
};

typedef struct _pyb_timer_channel_obj_t {
    mp_obj_base_t base;
    struct _pyb_timer_obj_t *timer;
    uint8_t channel;
    uint8_t mode;
    mp_obj_t callback;
    struct _pyb_timer_channel_obj_t *next;
} pyb_timer_channel_obj_t;

131
132
typedef struct _pyb_timer_obj_t {
    mp_obj_base_t base;
133
134
    uint8_t tim_id;
    uint8_t is_32bit;
135
136
137
    mp_obj_t callback;
    TIM_HandleTypeDef tim;
    IRQn_Type irqn;
138
    pyb_timer_channel_obj_t *channel;
139
} pyb_timer_obj_t;
140

141
142
143
// The following yields TIM_IT_UPDATE when channel is zero and
// TIM_IT_CC1..TIM_IT_CC4 when channel is 1..4
#define TIMER_IRQ_MASK(channel) (1 << (channel))
144
#define TIMER_CNT_MASK(self)    ((self)->is_32bit ? 0xffffffff : 0xffff)
145
146
#define TIMER_CHANNEL(self)     ((((self)->channel) - 1) << 2)

147
148
TIM_HandleTypeDef TIM3_Handle;
TIM_HandleTypeDef TIM5_Handle;
149
TIM_HandleTypeDef TIM6_Handle;
150

151
#define PYB_TIMER_OBJ_ALL_NUM MP_ARRAY_SIZE(MP_STATE_PORT(pyb_timer_obj_all))
152

153
STATIC uint32_t timer_get_source_freq(uint32_t tim_id);
154
155
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in);
STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback);
156
STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback);
157

158
159
void timer_init0(void) {
    for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
160
        MP_STATE_PORT(pyb_timer_obj_all)[i] = NULL;
161
162
163
    }
}

164
165
166
// unregister all interrupt sources
void timer_deinit(void) {
    for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
167
        pyb_timer_obj_t *tim = MP_STATE_PORT(pyb_timer_obj_all)[i];
168
169
170
171
172
173
        if (tim != NULL) {
            pyb_timer_deinit(tim);
        }
    }
}

174
175
176
177
178
179
// TIM3 is set-up for the USB CDC interface
void timer_tim3_init(void) {
    // set up the timer for USBD CDC
    __TIM3_CLK_ENABLE();

    TIM3_Handle.Instance = TIM3;
180
    TIM3_Handle.Init.Period = (USBD_CDC_POLLING_INTERVAL*1000) - 1; // TIM3 fires every USBD_CDC_POLLING_INTERVAL ms
181
    TIM3_Handle.Init.Prescaler = timer_get_source_freq(3) / 1000000 - 1; // TIM3 runs at 1MHz
182
    TIM3_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
183
184
185
    TIM3_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
    HAL_TIM_Base_Init(&TIM3_Handle);

186
    HAL_NVIC_SetPriority(TIM3_IRQn, IRQ_PRI_TIM3, IRQ_SUBPRI_TIM3);
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    HAL_NVIC_EnableIRQ(TIM3_IRQn);

    if (HAL_TIM_Base_Start(&TIM3_Handle) != HAL_OK) {
        /* Starting Error */
    }
}

/* unused
void timer_tim3_deinit(void) {
    // reset TIM3 timer
    __TIM3_FORCE_RESET();
    __TIM3_RELEASE_RESET();
}
*/

// TIM5 is set-up for the servo controller
203
// This function inits but does not start the timer
204
205
206
207
208
void timer_tim5_init(void) {
    // TIM5 clock enable
    __TIM5_CLK_ENABLE();

    // set up and enable interrupt
209
    HAL_NVIC_SetPriority(TIM5_IRQn, IRQ_PRI_TIM5, IRQ_SUBPRI_TIM5);
210
211
212
213
    HAL_NVIC_EnableIRQ(TIM5_IRQn);

    // PWM clock configuration
    TIM5_Handle.Instance = TIM5;
214
    TIM5_Handle.Init.Period = 2000 - 1; // timer cycles at 50Hz
215
    TIM5_Handle.Init.Prescaler = (timer_get_source_freq(5) / 100000) - 1; // timer runs at 100kHz
216
    TIM5_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
217
    TIM5_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
218

219
220
221
    HAL_TIM_PWM_Init(&TIM5_Handle);
}

222
#if defined(TIM6)
223
224
225
// Init TIM6 with a counter-overflow at the given frequency (given in Hz)
// TIM6 is used by the DAC and ADC for auto sampling at a given frequency
// This function inits but does not start the timer
226
TIM_HandleTypeDef *timer_tim6_init(uint freq) {
227
228
229
230
231
    // TIM6 clock enable
    __TIM6_CLK_ENABLE();

    // Timer runs at SystemCoreClock / 2
    // Compute the prescaler value so TIM6 triggers at freq-Hz
232
    uint32_t period = MAX(1, timer_get_source_freq(6) / freq);
233
234
235
236
237
238
239
240
241
242
    uint32_t prescaler = 1;
    while (period > 0xffff) {
        period >>= 1;
        prescaler <<= 1;
    }

    // Time base clock configuration
    TIM6_Handle.Instance = TIM6;
    TIM6_Handle.Init.Period = period - 1;
    TIM6_Handle.Init.Prescaler = prescaler - 1;
243
    TIM6_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // unused for TIM6
244
245
    TIM6_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; // unused for TIM6
    HAL_TIM_Base_Init(&TIM6_Handle);
246
247

    return &TIM6_Handle;
248
}
249
#endif
250

251
252
// Interrupt dispatch
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
253
    #if !defined(MICROPY_HW_USE_ALT_IRQ_FOR_CDC)
254
    if (htim == &TIM3_Handle) {
255
256
257
    } else
    #endif
    if (htim == &TIM5_Handle) {
258
259
260
261
        servo_timer_irq_callback();
    }
}

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
// Get the frequency (in Hz) of the source clock for the given timer.
// On STM32F405/407/415/417 there are 2 cases for how the clock freq is set.
// If the APB prescaler is 1, then the timer clock is equal to its respective
// APB clock.  Otherwise (APB prescaler > 1) the timer clock is twice its
// respective APB clock.  See DM00031020 Rev 4, page 115.
STATIC uint32_t timer_get_source_freq(uint32_t tim_id) {
    uint32_t source;
    if (tim_id == 1 || (8 <= tim_id && tim_id <= 11)) {
        // TIM{1,8,9,10,11} are on APB2
        source = HAL_RCC_GetPCLK2Freq();
        if ((uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3) != RCC_HCLK_DIV1) {
            source *= 2;
        }
    } else {
        // TIM{2,3,4,5,6,7,12,13,14} are on APB1
        source = HAL_RCC_GetPCLK1Freq();
        if ((uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1) != RCC_HCLK_DIV1) {
            source *= 2;
        }
    }
    return source;
}

285
286
287
/******************************************************************************/
/* Micro Python bindings                                                      */

288
289
STATIC const mp_obj_type_t pyb_timer_channel_type;

Dave Hylands's avatar
Dave Hylands committed
290
291
292
293
// This is the largest value that we can multiply by 100 and have the result
// fit in a uint32_t.
#define MAX_PERIOD_DIV_100  42949672

294
295
296
297
298
299
300
301
302
303
304
305
// computes prescaler and period so TIM triggers at freq-Hz
STATIC uint32_t compute_prescaler_period_from_freq(pyb_timer_obj_t *self, mp_obj_t freq_in, uint32_t *period_out) {
    uint32_t source_freq = timer_get_source_freq(self->tim_id);
    uint32_t prescaler = 1;
    uint32_t period;
    if (0) {
    #if MICROPY_PY_BUILTINS_FLOAT
    } else if (MP_OBJ_IS_TYPE(freq_in, &mp_type_float)) {
        float freq = mp_obj_get_float(freq_in);
        if (freq <= 0) {
            goto bad_freq;
        }
306
307
308
309
310
        while (freq < 1 && prescaler < 6553) {
            prescaler *= 10;
            freq *= 10;
        }
        period = (float)source_freq / freq;
311
312
313
314
315
316
317
318
    #endif
    } else {
        mp_int_t freq = mp_obj_get_int(freq_in);
        if (freq <= 0) {
            goto bad_freq;
            bad_freq:
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "must have positive freq"));
        }
319
        period = source_freq / freq;
320
    }
321
    period = MAX(1, period);
322
    while (period > TIMER_CNT_MASK(self)) {
323
324
325
326
327
328
329
330
331
332
333
334
        // if we can divide exactly, do that first
        if (period % 5 == 0) {
            prescaler *= 5;
            period /= 5;
        } else if (period % 3 == 0) {
            prescaler *= 3;
            period /= 3;
        } else {
            // may not divide exactly, but loses minimal precision
            prescaler <<= 1;
            period >>= 1;
        }
335
336
337
338
339
    }
    *period_out = (period - 1) & TIMER_CNT_MASK(self);
    return (prescaler - 1) & 0xffff;
}

Dave Hylands's avatar
Dave Hylands committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
// Helper function for determining the period used for calculating percent
STATIC uint32_t compute_period(pyb_timer_obj_t *self) {
    // In center mode,  compare == period corresponds to 100%
    // In edge mode, compare == (period + 1) corresponds to 100%
    uint32_t period = (__HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self));
    if (period != 0xffffffff) {
        if (self->tim.Init.CounterMode == TIM_COUNTERMODE_UP ||
            self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN) {
            // Edge mode
            period++;
        }
    }
    return period;
}

355
// Helper function to compute PWM value from timer period and percent value.
Dave Hylands's avatar
Dave Hylands committed
356
357
358
// 'percent_in' can be an int or a float between 0 and 100 (out of range
// values are clamped).
STATIC uint32_t compute_pwm_value_from_percent(uint32_t period, mp_obj_t percent_in) {
359
360
361
    uint32_t cmp;
    if (0) {
    #if MICROPY_PY_BUILTINS_FLOAT
Dave Hylands's avatar
Dave Hylands committed
362
    } else if (MP_OBJ_IS_TYPE(percent_in, &mp_type_float)) {
363
        mp_float_t percent = mp_obj_get_float(percent_in);
Dave Hylands's avatar
Dave Hylands committed
364
365
366
367
368
        if (percent <= 0.0) {
            cmp = 0;
        } else if (percent >= 100.0) {
            cmp = period;
        } else {
369
            cmp = percent / 100.0 * ((mp_float_t)period);
Dave Hylands's avatar
Dave Hylands committed
370
        }
371
372
373
374
375
    #endif
    } else {
        // For integer arithmetic, if period is large and 100*period will
        // overflow, then divide period before multiplying by cmp.  Otherwise
        // do it the other way round to retain precision.
Dave Hylands's avatar
Dave Hylands committed
376
377
378
379
380
381
382
        mp_int_t percent = mp_obj_get_int(percent_in);
        if (percent <= 0) {
            cmp = 0;
        } else if (percent >= 100) {
            cmp = period;
        } else if (period > MAX_PERIOD_DIV_100) {
            cmp = (uint32_t)percent * (period / 100);
383
        } else {
Dave Hylands's avatar
Dave Hylands committed
384
            cmp = ((uint32_t)percent * period) / 100;
385
386
387
388
389
        }
    }
    return cmp;
}

Dave Hylands's avatar
Dave Hylands committed
390
391
392
// Helper function to compute percentage from timer perion and PWM value.
STATIC mp_obj_t compute_percent_from_pwm_value(uint32_t period, uint32_t cmp) {
    #if MICROPY_PY_BUILTINS_FLOAT
393
    mp_float_t percent;
394
    if (cmp >= period) {
Dave Hylands's avatar
Dave Hylands committed
395
396
        percent = 100.0;
    } else {
397
        percent = (mp_float_t)cmp * 100.0 / ((mp_float_t)period);
Dave Hylands's avatar
Dave Hylands committed
398
399
400
401
    }
    return mp_obj_new_float(percent);
    #else
    mp_int_t percent;
402
    if (cmp >= period) {
Dave Hylands's avatar
Dave Hylands committed
403
        percent = 100;
404
405
    } else if (cmp > MAX_PERIOD_DIV_100) {
        percent = cmp / (period / 100);
Dave Hylands's avatar
Dave Hylands committed
406
407
408
409
410
411
412
    } else {
        percent = cmp * 100 / period;
    }
    return mp_obj_new_int(percent);
    #endif
}

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
// Computes the 8-bit value for the DTG field in the BDTR register.
//
// 1 tick = 1 count of the timer's clock (source_freq) divided by div.
// 0-128 ticks in inrements of 1
// 128-256 ticks in increments of 2
// 256-512 ticks in increments of 8
// 512-1008 ticks in increments of 16
STATIC uint32_t compute_dtg_from_ticks(mp_int_t ticks) {
    if (ticks <= 0) {
        return 0;
    }
    if (ticks < 128) {
        return ticks;
    }
    if (ticks < 256) {
        return 0x80 | ((ticks - 128) / 2);
    }
    if (ticks < 512) {
        return 0xC0 | ((ticks - 256) / 8);
    }
    if (ticks < 1008) {
        return 0xE0 | ((ticks - 512) / 16);
    }
    return 0xFF;
}

// Given the 8-bit value stored in the DTG field of the BDTR register, compute
// the number of ticks.
STATIC mp_int_t compute_ticks_from_dtg(uint32_t dtg) {
    if ((dtg & 0x80) == 0) {
        return dtg & 0x7F;
    }
    if ((dtg & 0xC0) == 0x80) {
        return 128 + ((dtg & 0x3F) * 2);
    }
    if ((dtg & 0xE0) == 0xC0) {
        return 256 + ((dtg & 0x1F) * 8);
    }
    return 512 + ((dtg & 0x1F) * 16);
}

STATIC void config_deadtime(pyb_timer_obj_t *self, mp_int_t ticks) {
    TIM_BreakDeadTimeConfigTypeDef deadTimeConfig;
    deadTimeConfig.OffStateRunMode  = TIM_OSSR_DISABLE;
    deadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
    deadTimeConfig.LockLevel        = TIM_LOCKLEVEL_OFF;
    deadTimeConfig.DeadTime         = compute_dtg_from_ticks(ticks);
    deadTimeConfig.BreakState       = TIM_BREAK_DISABLE;
    deadTimeConfig.BreakPolarity    = TIM_BREAKPOLARITY_LOW;
    deadTimeConfig.AutomaticOutput  = TIM_AUTOMATICOUTPUT_DISABLE;
    HAL_TIMEx_ConfigBreakDeadTime(&self->tim, &deadTimeConfig);
}

466
TIM_HandleTypeDef *pyb_timer_get_handle(mp_obj_t timer) {
467
468
469
    if (mp_obj_get_type(timer) != &pyb_timer_type) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "need a Timer object"));
    }
470
471
472
473
    pyb_timer_obj_t *self = timer;
    return &self->tim;
}

474
STATIC void pyb_timer_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
475
476
477
    pyb_timer_obj_t *self = self_in;

    if (self->tim.State == HAL_TIM_STATE_RESET) {
478
        mp_printf(print, "Timer(%u)", self->tim_id);
479
    } else {
480
481
482
483
        uint32_t prescaler = self->tim.Instance->PSC & 0xffff;
        uint32_t period = __HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self);
        // for efficiency, we compute and print freq as an int (not a float)
        uint32_t freq = timer_get_source_freq(self->tim_id) / ((prescaler + 1) * (period + 1));
484
        mp_printf(print, "Timer(%u, freq=%u, prescaler=%u, period=%u, mode=%s, div=%u",
485
            self->tim_id,
486
487
488
            freq,
            prescaler,
            period,
489
490
491
492
            self->tim.Init.CounterMode == TIM_COUNTERMODE_UP     ? "UP" :
            self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN   ? "DOWN" : "CENTER",
            self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV4 ? 4 :
            self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV2 ? 2 : 1);
493
        if (IS_TIM_ADVANCED_INSTANCE(self->tim.Instance)) {
494
495
            mp_printf(print, ", deadtime=%u",
                compute_ticks_from_dtg(self->tim.Instance->BDTR & TIM_BDTR_DTG));
496
        }
497
        mp_print_str(print, ")");
498
499
    }
}
500

501
502
503
504
505
/// \method init(*, freq, prescaler, period)
/// Initialise the timer.  Initialisation must be either by frequency (in Hz)
/// or by prescaler and period:
///
///     tim.init(freq=100)                  # set the timer to trigger at 100Hz
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
///     tim.init(prescaler=83, period=999)  # set the prescaler and period directly
///
/// Keyword arguments:
///
///   - `freq` - specifies the periodic frequency of the timer. You migh also
///              view this as the frequency with which the timer goes through
///              one complete cycle.
///
///   - `prescaler` [0-0xffff] - specifies the value to be loaded into the
///                 timer's Prescaler Register (PSC). The timer clock source is divided by
///     (`prescaler + 1`) to arrive at the timer clock. Timers 2-7 and 12-14
///     have a clock source of 84 MHz (pyb.freq()[2] * 2), and Timers 1, and 8-11
///     have a clock source of 168 MHz (pyb.freq()[3] * 2).
///
///   - `period` [0-0xffff] for timers 1, 3, 4, and 6-15. [0-0x3fffffff] for timers 2 & 5.
///              Specifies the value to be loaded into the timer's AutoReload
///     Register (ARR). This determines the period of the timer (i.e. when the
///     counter cycles). The timer counter will roll-over after `period + 1`
///     timer clock cycles.
///
///   - `mode` can be one of:
///     - `Timer.UP` - configures the timer to count from 0 to ARR (default)
///     - `Timer.DOWN` - configures the timer to count from ARR down to 0.
///     - `Timer.CENTER` - confgures the timer to count from 0 to ARR and
///       then back down to 0.
///
///   - `div` can be one of 1, 2, or 4. Divides the timer clock to determine
///       the sampling clock used by the digital filters.
///
///   - `callback` - as per Timer.callback()
///
537
538
539
540
541
542
543
544
///   - `deadtime` - specifies the amount of "dead" or inactive time between
///       transitions on complimentary channels (both channels will be inactive)
///       for this time). `deadtime` may be an integer between 0 and 1008, with
///       the following restrictions: 0-128 in steps of 1. 128-256 in steps of
///       2, 256-512 in steps of 8, and 512-1008 in steps of 16. `deadime`
///       measures ticks of `source_freq` divided by `div` clock ticks.
///       `deadtime` is only available on timers 1 and 8.
///
545
///  You must either specify freq or both of period and prescaler.
546
547
548
549
550
551
552
553
STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_freq,         MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_prescaler,    MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
        { MP_QSTR_period,       MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
        { MP_QSTR_mode,         MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = TIM_COUNTERMODE_UP} },
        { MP_QSTR_div,          MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
        { MP_QSTR_callback,     MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
554
        { MP_QSTR_deadtime,     MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
555
    };
556

557
    // parse args
558
559
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
560

561
562
    // set the TIM configuration values
    TIM_Base_InitTypeDef *init = &self->tim.Init;
563

564
565
566
567
    if (args[0].u_obj != mp_const_none) {
        // set prescaler and period from desired frequency
        init->Prescaler = compute_prescaler_period_from_freq(self, args[0].u_obj, &init->Period);
    } else if (args[1].u_int != 0xffffffff && args[2].u_int != 0xffffffff) {
568
        // set prescaler and period directly
569
570
        init->Prescaler = args[1].u_int;
        init->Period = args[2].u_int;
571
572
573
574
    } else {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "must specify either freq, or prescaler and period"));
    }

575
576
577
578
    init->CounterMode = args[3].u_int;
    if (!IS_TIM_COUNTER_MODE(init->CounterMode)) {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid mode (%d)", init->CounterMode));
    }
579

580
581
    init->ClockDivision = args[4].u_int == 2 ? TIM_CLOCKDIVISION_DIV2 :
                          args[4].u_int == 4 ? TIM_CLOCKDIVISION_DIV4 :
582
                                               TIM_CLOCKDIVISION_DIV1;
583

584
    init->RepetitionCounter = 0;
585

586
    // enable TIM clock
587
588
589
590
591
592
    switch (self->tim_id) {
        case 1: __TIM1_CLK_ENABLE(); break;
        case 2: __TIM2_CLK_ENABLE(); break;
        case 3: __TIM3_CLK_ENABLE(); break;
        case 4: __TIM4_CLK_ENABLE(); break;
        case 5: __TIM5_CLK_ENABLE(); break;
593
        #if defined(TIM6)
594
        case 6: __TIM6_CLK_ENABLE(); break;
595
596
        #endif
        #if defined(TIM7)
597
        case 7: __TIM7_CLK_ENABLE(); break;
598
599
        #endif
        #if defined(TIM8)
600
        case 8: __TIM8_CLK_ENABLE(); break;
601
        #endif
602
603
604
        case 9: __TIM9_CLK_ENABLE(); break;
        case 10: __TIM10_CLK_ENABLE(); break;
        case 11: __TIM11_CLK_ENABLE(); break;
605
        #if defined(TIM12)
606
        case 12: __TIM12_CLK_ENABLE(); break;
607
608
        #endif
        #if defined(TIM13)
609
        case 13: __TIM13_CLK_ENABLE(); break;
610
611
        #endif
        #if defined(TIM14)
612
        case 14: __TIM14_CLK_ENABLE(); break;
613
        #endif
614
    }
615
616

    // set IRQ priority (if not a special timer)
617
    if (self->tim_id != 3 && self->tim_id != 5) {
618
        HAL_NVIC_SetPriority(self->irqn, IRQ_PRI_TIMX, IRQ_SUBPRI_TIMX);
619
    }
620

621
    // init TIM
622
    HAL_TIM_Base_Init(&self->tim);
623
624
625
    if (IS_TIM_ADVANCED_INSTANCE(self->tim.Instance)) {
        config_deadtime(self, args[6].u_int);
    }
626
    if (args[5].u_obj == mp_const_none) {
627
628
        HAL_TIM_Base_Start(&self->tim);
    } else {
629
        pyb_timer_callback(self, args[5].u_obj);
630
631
    }

632
633
634
    return mp_const_none;
}

635
636
637
638
/// \classmethod \constructor(id, ...)
/// Construct a new timer object of the given id.  If additional
/// arguments are given, then the timer is initialised by `init(...)`.
/// `id` can be 1 to 14, excluding 3.
639
STATIC mp_obj_t pyb_timer_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
640
641
642
643
644
    // check arguments
    mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);

    // create new Timer object
    pyb_timer_obj_t *tim = m_new_obj(pyb_timer_obj_t);
645
646
    memset(tim, 0, sizeof(*tim));

647
648
    tim->base.type = &pyb_timer_type;
    tim->callback = mp_const_none;
649
    tim->channel = NULL;
650
651
652

    // get TIM number
    tim->tim_id = mp_obj_get_int(args[0]);
653
    tim->is_32bit = false;
654
655
656

    switch (tim->tim_id) {
        case 1: tim->tim.Instance = TIM1; tim->irqn = TIM1_UP_TIM10_IRQn; break;
657
        case 2: tim->tim.Instance = TIM2; tim->irqn = TIM2_IRQn; tim->is_32bit = true; break;
658
659
660
        #if defined(MICROPY_HW_USE_ALT_IRQ_FOR_CDC)
        case 3: tim->tim.Instance = TIM3; tim->irqn = TIM3_IRQn; break;
        #else
661
        case 3: nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "Timer 3 is for internal use only")); // TIM3 used for low-level stuff; go via regs if necessary
662
        #endif
663
        case 4: tim->tim.Instance = TIM4; tim->irqn = TIM4_IRQn; break;
664
        case 5: tim->tim.Instance = TIM5; tim->irqn = TIM5_IRQn; tim->is_32bit = true; break;
665
        #if defined(TIM6)
666
        case 6: tim->tim.Instance = TIM6; tim->irqn = TIM6_DAC_IRQn; break;
667
668
        #endif
        #if defined(TIM7)
669
        case 7: tim->tim.Instance = TIM7; tim->irqn = TIM7_IRQn; break;
670
671
        #endif
        #if defined(TIM8)
672
        case 8: tim->tim.Instance = TIM8; tim->irqn = TIM8_UP_TIM13_IRQn; break;
673
        #endif
674
675
676
        case 9: tim->tim.Instance = TIM9; tim->irqn = TIM1_BRK_TIM9_IRQn; break;
        case 10: tim->tim.Instance = TIM10; tim->irqn = TIM1_UP_TIM10_IRQn; break;
        case 11: tim->tim.Instance = TIM11; tim->irqn = TIM1_TRG_COM_TIM11_IRQn; break;
677
        #if defined(TIM12)
678
        case 12: tim->tim.Instance = TIM12; tim->irqn = TIM8_BRK_TIM12_IRQn; break;
679
680
        #endif
        #if defined(TIM13)
681
        case 13: tim->tim.Instance = TIM13; tim->irqn = TIM8_UP_TIM13_IRQn; break;
682
683
        #endif
        #if defined(TIM14)
684
        case 14: tim->tim.Instance = TIM14; tim->irqn = TIM8_TRG_COM_TIM14_IRQn; break;
685
        #endif
686
687
688
        default: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Timer %d does not exist", tim->tim_id));
    }

689
690
691
692
693
    // set the global variable for interrupt callbacks
    if (tim->tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) {
        MP_STATE_PORT(pyb_timer_obj_all)[tim->tim_id - 1] = tim;
    }

694
695
696
697
698
699
700
701
    if (n_args > 1 || n_kw > 0) {
        // start the peripheral
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
        pyb_timer_init_helper(tim, n_args - 1, args + 1, &kw_args);
    }

    return (mp_obj_t)tim;
702
703
}

704
STATIC mp_obj_t pyb_timer_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
705
    return pyb_timer_init_helper(args[0], n_args - 1, args + 1, kw_args);
706
}
707
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_init_obj, 1, pyb_timer_init);
708

709
// timer.deinit()
710
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in) {
711
712
    pyb_timer_obj_t *self = self_in;

713
    // Disable the base interrupt
714
715
    pyb_timer_callback(self_in, mp_const_none);

716
717
718
719
720
721
722
723
724
725
726
    pyb_timer_channel_obj_t *chan = self->channel;
    self->channel = NULL;

    // Disable the channel interrupts
    while (chan != NULL) {
        pyb_timer_channel_callback(chan, mp_const_none);
        pyb_timer_channel_obj_t *prev_chan = chan;
        chan = chan->next;
        prev_chan->next = NULL;
    }

727
    self->tim.State = HAL_TIM_STATE_RESET;
728
729
730
    self->tim.Instance->CCER = 0x0000; // disable all capture/compare outputs
    self->tim.Instance->CR1 = 0x0000; // disable the timer and reset its state

731
732
733
734
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_deinit_obj, pyb_timer_deinit);

735
736
/// \method channel(channel, mode, ...)
///
737
738
/// If only a channel number is passed, then a previously initialized channel
/// object is returned (or `None` if there is no previous channel).
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
///
/// Othwerwise, a TimerChannel object is initialized and returned.
///
/// Each channel can be configured to perform pwm, output compare, or
/// input capture. All channels share the same underlying timer, which means
/// that they share the same timer clock.
///
/// Keyword arguments:
///
///   - `mode` can be one of:
///     - `Timer.PWM` - configure the timer in PWM mode (active high).
///     - `Timer.PWM_INVERTED` - configure the timer in PWM mode (active low).
///     - `Timer.OC_TIMING` - indicates that no pin is driven.
///     - `Timer.OC_ACTIVE` - the pin will be made active when a compare
///        match occurs (active is determined by polarity)
///     - `Timer.OC_INACTIVE` - the pin will be made inactive when a compare
///        match occurs.
///     - `Timer.OC_TOGGLE` - the pin will be toggled when an compare match occurs.
///     - `Timer.OC_FORCED_ACTIVE` - the pin is forced active (compare match is ignored).
///     - `Timer.OC_FORCED_INACTIVE` - the pin is forced inactive (compare match is ignored).
///     - `Timer.IC` - configure the timer in Input Capture mode.
760
761
762
///     - `Timer.ENC_A` --- configure the timer in Encoder mode. The counter only changes when CH1 changes.
///     - `Timer.ENC_B` --- configure the timer in Encoder mode. The counter only changes when CH2 changes.
///     - `Timer.ENC_AB` --- configure the timer in Encoder mode. The counter changes when CH1 or CH2 changes.
763
764
765
766
767
768
769
770
771
772
///
///   - `callback` - as per TimerChannel.callback()
///
///   - `pin` None (the default) or a Pin object. If specified (and not None)
///           this will cause the alternate function of the the indicated pin
///      to be configured for this timer channel. An error will be raised if
///      the pin doesn't support any alternate functions for this timer channel.
///
/// Keyword arguments for Timer.PWM modes:
///
773
///   - `pulse_width` - determines the initial pulse width value to use.
774
///   - `pulse_width_percent` - determines the initial pulse width percentage to use.
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
///
/// Keyword arguments for Timer.OC modes:
///
///   - `compare` - determines the initial value of the compare register.
///
///   - `polarity` can be one of:
///     - `Timer.HIGH` - output is active high
///     - `Timer.LOW` - output is acive low
///
/// Optional keyword arguments for Timer.IC modes:
///
///   - `polarity` can be one of:
///     - `Timer.RISING` - captures on rising edge.
///     - `Timer.FALLING` - captures on falling edge.
///     - `Timer.BOTH` - captures on both edges.
///
791
792
793
///   Note that capture only works on the primary channel, and not on the
///   complimentary channels.
///
794
795
796
797
798
799
800
801
/// Notes for Timer.ENC modes:
///
///   - Requires 2 pins, so one or both pins will need to be configured to use
///     the appropriate timer AF using the Pin API.
///   - Read the encoder value using the timer.counter() method.
///   - Only works on CH1 and CH2 (and not on CH1N or CH2N)
///   - The channel number is ignored when setting the encoder mode.
///
802
803
804
805
806
/// PWM Example:
///
///     timer = pyb.Timer(2, freq=1000)
///     ch2 = timer.channel(2, pyb.Timer.PWM, pin=pyb.Pin.board.X2, pulse_width=210000)
///     ch3 = timer.channel(3, pyb.Timer.PWM, pin=pyb.Pin.board.X3, pulse_width=420000)
807
808
809
810
811
812
813
814
815
816
STATIC mp_obj_t pyb_timer_channel(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_mode,                MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_callback,            MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_pin,                 MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_pulse_width,         MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_pulse_width_percent, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_compare,             MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_polarity,            MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
    };
817

818
819
    pyb_timer_obj_t *self = pos_args[0];
    mp_int_t channel = mp_obj_get_int(pos_args[1]);
820
821

    if (channel < 1 || channel > 4) {
822
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid channel (%d)", channel));
823
824
825
826
827
828
829
830
831
832
833
834
    }

    pyb_timer_channel_obj_t *chan = self->channel;
    pyb_timer_channel_obj_t *prev_chan = NULL;

    while (chan != NULL) {
        if (chan->channel == channel) {
            break;
        }
        prev_chan = chan;
        chan = chan->next;
    }
835
836
837

    // If only the channel number is given return the previously allocated
    // channel (or None if no previous channel).
838
    if (n_args == 2 && kw_args->used == 0) {
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
        if (chan) {
            return chan;
        }
        return mp_const_none;
    }

    // If there was already a channel, then remove it from the list. Note that
    // the order we do things here is important so as to appear atomic to
    // the IRQ handler.
    if (chan) {
        // Turn off any IRQ associated with the channel.
        pyb_timer_channel_callback(chan, mp_const_none);

        // Unlink the channel from the list.
        if (prev_chan) {
            prev_chan->next = chan->next;
        }
        self->channel = chan->next;
        chan->next = NULL;
    }

    // Allocate and initialize a new channel
861
862
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
863
864
865
866
867
868

    chan = m_new_obj(pyb_timer_channel_obj_t);
    memset(chan, 0, sizeof(*chan));
    chan->base.type = &pyb_timer_channel_type;
    chan->timer = self;
    chan->channel = channel;
869
870
    chan->mode = args[0].u_int;
    chan->callback = args[1].u_obj;
871

872
    mp_obj_t pin_obj = args[2].u_obj;
873
874
875
876
877
878
879
    if (pin_obj != mp_const_none) {
        if (!MP_OBJ_IS_TYPE(pin_obj, &pin_type)) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "pin argument needs to be be a Pin type"));
        }
        const pin_obj_t *pin = pin_obj;
        const pin_af_obj_t *af = pin_find_af(pin, AF_FN_TIM, self->tim_id);
        if (af == NULL) {
880
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %q doesn't have an af for TIM%d", pin->name, self->tim_id));
881
882
        }
        // pin.init(mode=AF_PP, af=idx)
883
        const mp_obj_t args2[6] = {
884
885
886
887
888
            (mp_obj_t)&pin_init_obj,
            pin_obj,
            MP_OBJ_NEW_QSTR(MP_QSTR_mode),  MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_PP),
            MP_OBJ_NEW_QSTR(MP_QSTR_af),    MP_OBJ_NEW_SMALL_INT(af->idx)
        };
889
        mp_call_method_n_kw(0, 2, args2);
890
891
892
893
894
895
896
897
898
899
900
901
902
903
    }

    // Link the channel to the timer before we turn the channel on.
    // Note that this needs to appear atomic to the IRQ handler (the write
    // to self->channel is atomic, so we're good, but I thought I'd mention
    // in case this was ever changed in the future).
    chan->next = self->channel;
    self->channel = chan;

    switch (chan->mode) {

        case CHANNEL_MODE_PWM_NORMAL:
        case CHANNEL_MODE_PWM_INVERTED: {
            TIM_OC_InitTypeDef oc_config;
904
            oc_config.OCMode = channel_mode_info[chan->mode].oc_mode;
905
            if (args[4].u_obj != mp_const_none) {
906
                // pulse width percent given
Dave Hylands's avatar
Dave Hylands committed
907
                uint32_t period = compute_period(self);
908
                oc_config.Pulse = compute_pwm_value_from_percent(period, args[4].u_obj);
909
            } else {
910
                // use absolute pulse width value (defaults to 0 if nothing given)
911
                oc_config.Pulse = args[3].u_int;
912
            }
913
914
915
916
917
918
919
920
921
922
923
924
            oc_config.OCPolarity   = TIM_OCPOLARITY_HIGH;
            oc_config.OCNPolarity  = TIM_OCNPOLARITY_HIGH;
            oc_config.OCFastMode   = TIM_OCFAST_DISABLE;
            oc_config.OCIdleState  = TIM_OCIDLESTATE_SET;
            oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;

            HAL_TIM_PWM_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan));
            if (chan->callback == mp_const_none) {
                HAL_TIM_PWM_Start(&self->tim, TIMER_CHANNEL(chan));
            } else {
                HAL_TIM_PWM_Start_IT(&self->tim, TIMER_CHANNEL(chan));
            }
925
926
927
928
            // Start the complimentary channel too (if its supported)
            if (IS_TIM_CCXN_INSTANCE(self->tim.Instance, TIMER_CHANNEL(chan))) {
                HAL_TIMEx_PWMN_Start(&self->tim, TIMER_CHANNEL(chan));
            }
929
930
931
932
933
934
935
936
937
938
            break;
        }

        case CHANNEL_MODE_OC_TIMING:
        case CHANNEL_MODE_OC_ACTIVE:
        case CHANNEL_MODE_OC_INACTIVE:
        case CHANNEL_MODE_OC_TOGGLE:
        case CHANNEL_MODE_OC_FORCED_ACTIVE:
        case CHANNEL_MODE_OC_FORCED_INACTIVE: {
            TIM_OC_InitTypeDef oc_config;
939
            oc_config.OCMode       = channel_mode_info[chan->mode].oc_mode;
940
941
            oc_config.Pulse        = args[5].u_int;
            oc_config.OCPolarity   = args[6].u_int;
942
943
944
            if (oc_config.OCPolarity == 0xffffffff) {
                oc_config.OCPolarity = TIM_OCPOLARITY_HIGH;
            }
945
946
947
948
949
            if (oc_config.OCPolarity == TIM_OCPOLARITY_HIGH) {
                oc_config.OCNPolarity  = TIM_OCNPOLARITY_HIGH;
            } else {
                oc_config.OCNPolarity  = TIM_OCNPOLARITY_LOW;
            }
950
951
952
953
954
            oc_config.OCFastMode   = TIM_OCFAST_DISABLE;
            oc_config.OCIdleState  = TIM_OCIDLESTATE_SET;
            oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;

            if (!IS_TIM_OC_POLARITY(oc_config.OCPolarity)) {
955
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", oc_config.OCPolarity));
956
957
958
959
960
961
962
            }
            HAL_TIM_OC_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan));
            if (chan->callback == mp_const_none) {
                HAL_TIM_OC_Start(&self->tim, TIMER_CHANNEL(chan));
            } else {
                HAL_TIM_OC_Start_IT(&self->tim, TIMER_CHANNEL(chan));
            }
963
964
965
966
            // Start the complimentary channel too (if its supported)
            if (IS_TIM_CCXN_INSTANCE(self->tim.Instance, TIMER_CHANNEL(chan))) {
                HAL_TIMEx_OCN_Start(&self->tim, TIMER_CHANNEL(chan));
            }
967
968
969
970
971
972
            break;
        }

        case CHANNEL_MODE_IC: {
            TIM_IC_InitTypeDef ic_config;

973
            ic_config.ICPolarity  = args[6].u_int;
974
975
976
977
978
979
980
981
            if (ic_config.ICPolarity == 0xffffffff) {
                ic_config.ICPolarity = TIM_ICPOLARITY_RISING;
            }
            ic_config.ICSelection = TIM_ICSELECTION_DIRECTTI;
            ic_config.ICPrescaler = TIM_ICPSC_DIV1;
            ic_config.ICFilter    = 0;

            if (!IS_TIM_IC_POLARITY(ic_config.ICPolarity)) {
982
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", ic_config.ICPolarity));
983
984
985
986
987
988
989
990
991
992
            }
            HAL_TIM_IC_ConfigChannel(&self->tim, &ic_config, TIMER_CHANNEL(chan));
            if (chan->callback == mp_const_none) {
                HAL_TIM_IC_Start(&self->tim, TIMER_CHANNEL(chan));
            } else {
                HAL_TIM_IC_Start_IT(&self->tim, TIMER_CHANNEL(chan));
            }
            break;
        }

993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
        case CHANNEL_MODE_ENC_A:
        case CHANNEL_MODE_ENC_B:
        case CHANNEL_MODE_ENC_AB: {
            TIM_Encoder_InitTypeDef enc_config;

            enc_config.EncoderMode = channel_mode_info[chan->mode].oc_mode;
            enc_config.IC1Polarity  = args[6].u_int;
            if (enc_config.IC1Polarity == 0xffffffff) {
                enc_config.IC1Polarity = TIM_ICPOLARITY_RISING;
            }
            enc_config.IC2Polarity  = enc_config.IC1Polarity;
            enc_config.IC1Selection = TIM_ICSELECTION_DIRECTTI;
            enc_config.IC2Selection = TIM_ICSELECTION_DIRECTTI;
            enc_config.IC1Prescaler = TIM_ICPSC_DIV1;
            enc_config.IC2Prescaler = TIM_ICPSC_DIV1;
            enc_config.IC1Filter    = 0;
            enc_config.IC2Filter    = 0;

            if (!IS_TIM_IC_POLARITY(enc_config.IC1Polarity)) {
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", enc_config.IC1Polarity));
            }
            // Only Timers 1, 2, 3, 4, 5, and 8 support encoder mode
            if (self->tim.Instance != TIM1
            &&  self->tim.Instance != TIM2
            &&  self->tim.Instance != TIM3
            &&  self->tim.Instance != TIM4
            &&  self->tim.Instance != TIM5
1020
1021
1022
1023
            #if defined(TIM8)
            &&  self->tim.Instance != TIM8
            #endif
            ) {
1024
1025
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "encoder not supported on timer %d", self->tim_id));
            }
1026
1027
1028
1029

            // Disable & clear the timer interrupt so that we don't trigger
            // an interrupt by initializing the timer.
            __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
1030
1031
            HAL_TIM_Encoder_Init(&self->tim, &enc_config);
            __HAL_TIM_SetCounter(&self->tim, 0);
1032
1033
1034
1035
1036
            if (self->callback != mp_const_none) {
                __HAL_TIM_CLEAR_FLAG(&self->tim, TIM_IT_UPDATE);
                __HAL_TIM_ENABLE_IT(&self->tim, TIM_IT_UPDATE);
            }
            HAL_TIM_Encoder_Start(&self->tim, TIM_CHANNEL_ALL);
1037
1038
1039
            break;
        }

1040
        default:
1041
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid mode (%d)", chan->mode));
1042
1043
1044
1045
    }

    return chan;
}
1046
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_channel_obj, 2, pyb_timer_channel);
1047

1048
1049
/// \method counter([value])
/// Get or set the timer counter.
1050
STATIC mp_obj_t pyb_timer_counter(mp_uint_t n_args, const mp_obj_t *args) {
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
    pyb_timer_obj_t *self = args[0];
    if (n_args == 1) {
        // get
        return mp_obj_new_int(self->tim.Instance->CNT);
    } else {
        // set
        __HAL_TIM_SetCounter(&self->tim, mp_obj_get_int(args[1]));
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_counter_obj, 1, 2, pyb_timer_counter);

1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
/// \method source_freq()
/// Get the frequency of the source of the timer.
STATIC mp_obj_t pyb_timer_source_freq(mp_obj_t self_in) {
    pyb_timer_obj_t *self = self_in;
    uint32_t source_freq = timer_get_source_freq(self->tim_id);
    return mp_obj_new_int(source_freq);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_source_freq_obj, pyb_timer_source_freq);

/// \method freq([value])
/// Get or set the frequency for the timer (changes prescaler and period if set).
STATIC mp_obj_t pyb_timer_freq(mp_uint_t n_args, const mp_obj_t *args) {
    pyb_timer_obj_t *self = args[0];
    if (n_args == 1) {
        // get
        uint32_t prescaler = self->tim.Instance->PSC & 0xffff;
        uint32_t period = __HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self);
        uint32_t source_freq = timer_get_source_freq(self->tim_id);
        uint32_t divide = ((prescaler + 1) * (period + 1));
1082
1083
        #if MICROPY_PY_BUILTINS_FLOAT
        if (source_freq % divide != 0) {
1084
            return mp_obj_new_float((float)source_freq / (float)divide);
1085
1086
1087
1088
        } else
        #endif
        {
            return mp_obj_new_int(source_freq / divide);
1089
1090
1091
1092
1093
1094
1095
        }
    } else {
        // set
        uint32_t period;
        uint32_t prescaler = compute_prescaler_period_from_freq(self, args[1], &period);
        self->tim.Instance->PSC = prescaler;
        __HAL_TIM_SetAutoreload(&self->tim, period);
1096
1097
1098
1099
        // Reset the counter to zero. Otherwise, if counter >= period it will
        // continue counting until it wraps (at either 16 or 32 bits depending
        // on the timer).
        __HAL_TIM_SetCounter(&self->tim, 0);
1100
1101
1102
1103
1104
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_freq_obj, 1, 2, pyb_timer_freq);

1105
1106
/// \method prescaler([value])
/// Get or set the prescaler for the timer.
1107
STATIC mp_obj_t pyb_timer_prescaler(mp_uint_t n_args, const mp_obj_t *args) {
1108
1109
1110
1111
1112
1113
    pyb_timer_obj_t *self = args[0];
    if (n_args == 1) {
        // get
        return mp_obj_new_int(self->tim.Instance->PSC & 0xffff);
    } else {
        // set
1114
        self->tim.Instance->PSC = mp_obj_get_int(args[1]) & 0xffff;
1115
1116
1117
1118
1119
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_prescaler_obj, 1, 2, pyb_timer_prescaler);

1120
1121
/// \method period([value])
/// Get or set the period of the timer.
1122
STATIC mp_obj_t pyb_timer_period(mp_uint_t n_args, const mp_obj_t *args) {
1123
1124
1125
    pyb_timer_obj_t *self = args[0];
    if (n_args == 1) {
        // get
1126
        return mp_obj_new_int(__HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self));
1127
1128
    } else {
        // set
1129
        __HAL_TIM_SetAutoreload(&self->tim, mp_obj_get_int(args[1]) & TIMER_CNT_MASK(self));
1130
1131
1132
1133
        // Reset the counter to zero. Otherwise, if counter >= period it will
        // continue counting until it wraps (at either 16 or 32 bits depending
        // on the timer).
        __HAL_TIM_SetCounter(&self->tim, 0); 
1134
1135
1136
1137
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_period_obj, 1, 2, pyb_timer_period);
1138

1139
1140
1141
1142
/// \method callback(fun)
/// Set the function to be called when the timer triggers.
/// `fun` is passed 1 argument, the timer object.
/// If `fun` is `None` then the callback will be disabled.
1143
1144
1145
1146
1147
1148
1149
STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback) {
    pyb_timer_obj_t *self = self_in;
    if (callback == mp_const_none) {
        // stop interrupt (but not timer)
        __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
        self->callback = mp_const_none;
    } else if (mp_obj_is_callable(callback)) {
1150
        __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
1151
        self->callback = callback;
1152
1153
1154
1155
        // start timer, so that it interrupts on overflow, but clear any
        // pending interrupts which may have been set by initializing it.
        __HAL_TIM_CLEAR_FLAG(&self->tim, TIM_IT_UPDATE);
        HAL_TIM_Base_Start_IT(&self->tim); // This will re-enable the IRQ
1156
        HAL_NVIC_EnableIRQ(self->irqn);
1157
1158
    } else {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "callback must be None or a callable object"));
1159
    }
1160
    return mp_const_none;
1161
}
1162
1163
1164
1165
1166
1167
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_callback_obj, pyb_timer_callback);

STATIC const mp_map_elem_t pyb_timer_locals_dict_table[] = {
    // instance methods
    { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_timer_init_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_timer_deinit_obj },
1168
    { MP_OBJ_NEW_QSTR(MP_QSTR_channel), (mp_obj_t)&pyb_timer_channel_obj },
1169
    { MP_OBJ_NEW_QSTR(MP_QSTR_counter), (mp_obj_t)&pyb_timer_counter_obj },
1170
1171
    { MP_OBJ_NEW_QSTR(MP_QSTR_source_freq), (mp_obj_t)&pyb_timer_source_freq_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_timer_freq_obj },
1172
1173
1174
    { MP_OBJ_NEW_QSTR(MP_QSTR_prescaler), (mp_obj_t)&pyb_timer_prescaler_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_period), (mp_obj_t)&pyb_timer_period_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&pyb_timer_callback_obj },
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
    { MP_OBJ_NEW_QSTR(MP_QSTR_UP),                  MP_OBJ_NEW_SMALL_INT(TIM_COUNTERMODE_UP) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_DOWN),                MP_OBJ_NEW_SMALL_INT(TIM_COUNTERMODE_DOWN) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_CENTER),              MP_OBJ_NEW_SMALL_INT(TIM_COUNTERMODE_CENTERALIGNED1) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_PWM),                 MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_PWM_NORMAL) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_PWM_INVERTED),        MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_PWM_INVERTED) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_TIMING),           MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_TIMING) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_ACTIVE),           MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_ACTIVE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_INACTIVE),         MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_INACTIVE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_TOGGLE),           MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_TOGGLE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_FORCED_ACTIVE),    MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_FORCED_ACTIVE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_FORCED_INACTIVE),  MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_FORCED_INACTIVE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_IC),                  MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_IC) },
1187
1188
1189
    { MP_OBJ_NEW_QSTR(MP_QSTR_ENC_A),               MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_ENC_A) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_ENC_B),               MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_ENC_B) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_ENC_AB),              MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_ENC_AB) },
1190
1191
1192
1193
1194
    { MP_OBJ_NEW_QSTR(MP_QSTR_HIGH),                MP_OBJ_NEW_SMALL_INT(TIM_OCPOLARITY_HIGH) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_LOW),                 MP_OBJ_NEW_SMALL_INT(TIM_OCPOLARITY_LOW) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_RISING),              MP_OBJ_NEW_SMALL_INT(TIM_ICPOLARITY_RISING) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_FALLING),             MP_OBJ_NEW_SMALL_INT(TIM_ICPOLARITY_FALLING) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_BOTH),                MP_OBJ_NEW_SMALL_INT(TIM_ICPOLARITY_BOTHEDGE) },
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_locals_dict, pyb_timer_locals_dict_table);

const mp_obj_type_t pyb_timer_type = {
    { &mp_type_type },
    .name = MP_QSTR_Timer,
    .print = pyb_timer_print,
    .make_new = pyb_timer_make_new,
    .locals_dict = (mp_obj_t)&pyb_timer_locals_dict,
};

1206
1207
1208
1209
1210
1211
/// \moduleref pyb
/// \class TimerChannel - setup a channel for a timer.
///
/// Timer channels are used to generate/capture a signal using a timer.
///
/// TimerChannel objects are created using the Timer.channel() method.
1212
STATIC void pyb_timer_channel_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
1213
1214
    pyb_timer_channel_obj_t *self = self_in;

1215
    mp_printf(print, "TimerChannel(timer=%u, channel=%u, mode=%s)",
1216
1217
          self->timer->tim_id,
          self->channel,