modpyb.c 20.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27
28
29
#include <stdint.h>
#include <stdio.h>

30
#include "stm32f4xx_hal.h"
31
32

#include "mpconfig.h"
33
34
#include "misc.h"
#include "nlr.h"
35
36
37
38
#include "qstr.h"
#include "obj.h"
#include "gc.h"
#include "gccollect.h"
Dave Hylands's avatar
Dave Hylands committed
39
#include "irq.h"
40
41
#include "systick.h"
#include "pyexec.h"
42
#include "led.h"
43
#include "pin.h"
44
#include "timer.h"
45
#include "extint.h"
46
#include "usrsw.h"
47
#include "rng.h"
48
#include "rtc.h"
Damien George's avatar
Damien George committed
49
50
#include "i2c.h"
#include "spi.h"
Damien George's avatar
Damien George committed
51
#include "uart.h"
52
#include "can.h"
Dave Hylands's avatar
Dave Hylands committed
53
#include "adc.h"
54
#include "storage.h"
Damien George's avatar
Damien George committed
55
#include "sdcard.h"
56
#include "accel.h"
57
#include "servo.h"
Damien George's avatar
Damien George committed
58
#include "dac.h"
59
#include "lcd.h"
60
#include "usb.h"
61
#include "pybstdio.h"
62
#include "ff.h"
63
#include "portmodules.h"
64

65
66
67
68
/// \module pyb - functions related to the pyboard
///
/// The `pyb` module contains specific functions related to the pyboard.

69
70
/// \function bootloader()
/// Activate the bootloader without BOOT* pins.
71
STATIC NORETURN mp_obj_t pyb_bootloader(void) {
72
    pyb_usb_dev_stop();
73
74
75
76
77
    storage_flush();

    HAL_RCC_DeInit();
    HAL_DeInit();

78
    __HAL_REMAPMEMORY_SYSTEMFLASH();
79
80
81
82
83
84

    // arm-none-eabi-gcc 4.9.0 does not correctly inline this
    // MSP function, so we write it out explicitly here.
    //__set_MSP(*((uint32_t*) 0x00000000));
    __ASM volatile ("movs r3, #0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp");

85
    ((void (*)(void)) *((uint32_t*) 0x00000004))();
86
87
88

    while (1);
}
89
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_bootloader_obj, pyb_bootloader);
90

91
92
93
94
95
96
97
98
99
/// \function hard_reset()
/// Resets the pyboard in a manner similar to pushing the external RESET
/// button.
STATIC mp_obj_t pyb_hard_reset(void) {
    NVIC_SystemReset();
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_hard_reset_obj, pyb_hard_reset);

100
101
/// \function info([dump_alloc_table])
/// Print out lots of information about the board.
102
STATIC mp_obj_t pyb_info(mp_uint_t n_args, const mp_obj_t *args) {
103
104
105
106
107
108
109
110
111
    // get and print unique id; 96 bits
    {
        byte *id = (byte*)0x1fff7a10;
        printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
    }

    // get and print clock speeds
    // SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
    {
112
        printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n",
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
               HAL_RCC_GetSysClockFreq(),
               HAL_RCC_GetHCLKFreq(),
               HAL_RCC_GetPCLK1Freq(),
               HAL_RCC_GetPCLK2Freq());
    }

    // to print info about memory
    {
        printf("_etext=%p\n", &_etext);
        printf("_sidata=%p\n", &_sidata);
        printf("_sdata=%p\n", &_sdata);
        printf("_edata=%p\n", &_edata);
        printf("_sbss=%p\n", &_sbss);
        printf("_ebss=%p\n", &_ebss);
        printf("_estack=%p\n", &_estack);
        printf("_ram_start=%p\n", &_ram_start);
        printf("_heap_start=%p\n", &_heap_start);
        printf("_heap_end=%p\n", &_heap_end);
        printf("_ram_end=%p\n", &_ram_end);
    }

    // qstr info
    {
136
        mp_uint_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
137
        qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
138
        printf("qstr:\n  n_pool=" UINT_FMT "\n  n_qstr=" UINT_FMT "\n  n_str_data_bytes=" UINT_FMT "\n  n_total_bytes=" UINT_FMT "\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
139
140
141
142
143
144
145
    }

    // GC info
    {
        gc_info_t info;
        gc_info(&info);
        printf("GC:\n");
146
147
148
        printf("  " UINT_FMT " total\n", info.total);
        printf("  " UINT_FMT " : " UINT_FMT "\n", info.used, info.free);
        printf("  1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block);
149
150
151
152
153
154
    }

    // free space on flash
    {
        DWORD nclst;
        FATFS *fatfs;
155
        f_getfree("/flash", &nclst, &fatfs);
156
157
158
        printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512));
    }

159
160
161
162
163
    if (n_args == 1) {
        // arg given means dump gc allocation table
        gc_dump_alloc_table();
    }

164
165
    return mp_const_none;
}
166
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_info_obj, 0, 1, pyb_info);
167

168
169
/// \function unique_id()
/// Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU.
170
171
172
173
174
175
STATIC mp_obj_t pyb_unique_id(void) {
    byte *id = (byte*)0x1fff7a10;
    return mp_obj_new_bytes(id, 12);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_unique_id_obj, pyb_unique_id);

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/// \function freq([sys_freq])
///
/// If given no arguments, returns a tuple of clock frequencies:
/// (SYSCLK, HCLK, PCLK1, PCLK2).
///
/// If given an argument, sets the system frequency to that value in Hz.
/// Eg freq(120000000) gives 120MHz.  Note that not all values are
/// supported and the largest supported frequency not greater than
/// the given sys_freq will be selected.
STATIC mp_obj_t pyb_freq(mp_uint_t n_args, const mp_obj_t *args) {
    if (n_args == 0) {
        // get
        mp_obj_t tuple[4] = {
           mp_obj_new_int(HAL_RCC_GetSysClockFreq()),
           mp_obj_new_int(HAL_RCC_GetHCLKFreq()),
           mp_obj_new_int(HAL_RCC_GetPCLK1Freq()),
           mp_obj_new_int(HAL_RCC_GetPCLK2Freq()),
        };
        return mp_obj_new_tuple(4, tuple);
    } else {
        // set
        mp_int_t wanted_sysclk = mp_obj_get_int(args[0]) / 1000000;

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        // default PLL parameters that give 48MHz on PLL48CK
        uint32_t m = HSE_VALUE / 1000000, n = 336, p = 2, q = 7;
        uint32_t sysclk_source;

        // the following logic assumes HSE < HSI
        if (HSE_VALUE / 1000000 <= wanted_sysclk && wanted_sysclk < HSI_VALUE / 1000000) {
            // use HSE as SYSCLK
            sysclk_source = RCC_SYSCLKSOURCE_HSE;
        } else if (HSI_VALUE / 1000000 <= wanted_sysclk && wanted_sysclk < 24) {
            // use HSI as SYSCLK
            sysclk_source = RCC_SYSCLKSOURCE_HSI;
        } else {
            // search for a valid PLL configuration that keeps USB at 48MHz
            for (; wanted_sysclk > 0; wanted_sysclk--) {
                for (p = 2; p <= 8; p += 2) {
                    // compute VCO_OUT
                    mp_uint_t vco_out = wanted_sysclk * p;
                    // make sure VCO_OUT is between 192MHz and 432MHz
                    if (vco_out < 192 || vco_out > 432) {
                        continue;
                    }
                    // make sure Q is an integer
                    if (vco_out % 48 != 0) {
                        continue;
                    }
                    // solve for Q to get PLL48CK at 48MHz
                    q = vco_out / 48;
                    // make sure Q is in range
                    if (q < 2 || q > 15) {
                        continue;
                    }
                    // make sure N/M is an integer
                    if (vco_out % (HSE_VALUE / 1000000) != 0) {
                        continue;
                    }
                    // solve for N/M
                    mp_uint_t n_by_m = vco_out / (HSE_VALUE / 1000000);
                    // solve for M, making sure VCO_IN (=HSE/M) is between 1MHz and 2MHz
                    m = 192 / n_by_m;
                    while (m < (HSE_VALUE / 2000000) || n_by_m * m < 192) {
                        m += 1;
                    }
                    if (m > (HSE_VALUE / 1000000)) {
                        continue;
                    }
                    // solve for N
                    n = n_by_m * m;
                    // make sure N is in range
                    if (n < 192 || n > 432) {
                        continue;
                    }

                    // found values!
                    sysclk_source = RCC_SYSCLKSOURCE_PLLCLK;
                    goto set_clk;
254
                }
255
256
257
            }
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "can't make valid freq"));
        }
258

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
    set_clk:
        //printf("%lu %lu %lu %lu %lu\n", sysclk_source, m, n, p, q);

        // let the USB CDC have a chance to process before we change the clock
        HAL_Delay(USBD_CDC_POLLING_INTERVAL + 2);

        // desired system clock source is in sysclk_source
        RCC_ClkInitTypeDef RCC_ClkInitStruct;
        RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
        if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) {
            // set HSE as system clock source to allow modification of the PLL configuration
            // we then change to PLL after re-configuring PLL
            RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;
        } else {
            // directly set the system clock source as desired
            RCC_ClkInitStruct.SYSCLKSource = sysclk_source;
        }
        RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
        RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
        RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
        if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) {
            goto fail;
        }
282

283
284
285
286
287
288
289
290
291
292
293
294
295
296
        // re-configure PLL
        // even if we don't use the PLL for the system clock, we still need it for USB, RNG and SDIO
        RCC_OscInitTypeDef RCC_OscInitStruct;
        RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
        RCC_OscInitStruct.HSEState = RCC_HSE_ON;
        RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
        RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
        RCC_OscInitStruct.PLL.PLLM = m;
        RCC_OscInitStruct.PLL.PLLN = n;
        RCC_OscInitStruct.PLL.PLLP = p;
        RCC_OscInitStruct.PLL.PLLQ = q;
        if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
            goto fail;
        }
297

298
299
300
301
302
303
        // set PLL as system clock source if wanted
        if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) {
            RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
            RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
            if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) {
                goto fail;
304
305
            }
        }
306
307
308
309
310
311
312
313
314

        // re-init TIM3 for USB CDC rate
        timer_tim3_init();

        return mp_const_none;

    fail:;
        void NORETURN __fatal_error(const char *msg);
        __fatal_error("can't change freq");
315
    }
316
}
317
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_freq_obj, 0, 1, pyb_freq);
318

319
320
/// \function sync()
/// Sync all file systems.
321
322
323
324
325
326
STATIC mp_obj_t pyb_sync(void) {
    storage_flush();
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_sync_obj, pyb_sync);

327
328
/// \function millis()
/// Returns the number of milliseconds since the board was last reset.
329
///
330
331
332
/// The result is always a micropython smallint (31-bit signed number), so
/// after 2^30 milliseconds (about 12.4 days) this will start to return
/// negative numbers.
333
STATIC mp_obj_t pyb_millis(void) {
334
335
336
337
    // We want to "cast" the 32 bit unsigned into a small-int.  This means
    // copying the MSB down 1 bit (extending the sign down), which is
    // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
    return MP_OBJ_NEW_SMALL_INT(HAL_GetTick());
338
339
340
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_millis_obj, pyb_millis);

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
/// \function elapsed_millis(start)
/// Returns the number of milliseconds which have elapsed since `start`.
///
/// This function takes care of counter wrap, and always returns a positive
/// number. This means it can be used to measure periods upto about 12.4 days.
///
/// Example:
///     start = pyb.millis()
///     while pyb.elapsed_millis(start) < 1000:
///         # Perform some operation
STATIC mp_obj_t pyb_elapsed_millis(mp_obj_t start) {
    uint32_t startMillis = mp_obj_get_int(start);
    uint32_t currMillis = HAL_GetTick();
    return MP_OBJ_NEW_SMALL_INT((currMillis - startMillis) & 0x3fffffff);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_millis_obj, pyb_elapsed_millis);

358
359
360
/// \function micros()
/// Returns the number of microseconds since the board was last reset.
///
361
362
363
/// The result is always a micropython smallint (31-bit signed number), so
/// after 2^30 microseconds (about 17.8 minutes) this will start to return
/// negative numbers.
364
STATIC mp_obj_t pyb_micros(void) {
365
366
367
368
    // We want to "cast" the 32 bit unsigned into a small-int.  This means
    // copying the MSB down 1 bit (extending the sign down), which is
    // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
    return MP_OBJ_NEW_SMALL_INT(sys_tick_get_microseconds());
369
370
371
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_micros_obj, pyb_micros);

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
/// \function elapsed_micros(start)
/// Returns the number of microseconds which have elapsed since `start`.
///
/// This function takes care of counter wrap, and always returns a positive
/// number. This means it can be used to measure periods upto about 17.8 minutes.
///
/// Example:
///     start = pyb.micros()
///     while pyb.elapsed_micros(start) < 1000:
///         # Perform some operation
STATIC mp_obj_t pyb_elapsed_micros(mp_obj_t start) {
    uint32_t startMicros = mp_obj_get_int(start);
    uint32_t currMicros = sys_tick_get_microseconds();
    return MP_OBJ_NEW_SMALL_INT((currMicros - startMicros) & 0x3fffffff);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_micros_obj, pyb_elapsed_micros);

389
390
/// \function delay(ms)
/// Delay for the given number of milliseconds.
391
STATIC mp_obj_t pyb_delay(mp_obj_t ms_in) {
392
    mp_int_t ms = mp_obj_get_int(ms_in);
393
394
395
    if (ms >= 0) {
        HAL_Delay(ms);
    }
396
397
398
399
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_delay_obj, pyb_delay);

400
401
/// \function udelay(us)
/// Delay for the given number of microseconds.
402
STATIC mp_obj_t pyb_udelay(mp_obj_t usec_in) {
403
    mp_int_t usec = mp_obj_get_int(usec_in);
404
405
406
407
    if (usec > 0) {
        uint32_t count = 0;
        const uint32_t utime = (168 * usec / 4);
        while (++count <= utime) {
408
409
        }
    }
410
    return mp_const_none;
411
412
413
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_udelay_obj, pyb_udelay);

414
415
416
/// \function stop()
STATIC mp_obj_t pyb_stop(void) {
    HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);
417

418
    // reconfigure the system clock after waking up
419

420
421
422
    // enable HSE
    __HAL_RCC_HSE_CONFIG(RCC_HSE_ON);
    while (!__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY)) {
423
424
    }

425
426
427
    // enable PLL
    __HAL_RCC_PLL_ENABLE();
    while (!__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)) {
428
429
    }

430
431
432
433
    // select PLL as system clock source
    MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK);
    while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) {
    }
434
435
436
437
438

    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_stop_obj, pyb_stop);

439
/// \function standby()
440
STATIC mp_obj_t pyb_standby(void) {
441
    HAL_PWR_EnterSTANDBYMode();
442
443
444
445
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_standby_obj, pyb_standby);

446
447
/// \function have_cdc()
/// Return True if USB is connected as a serial device, False otherwise.
448
449
450
451
452
STATIC mp_obj_t pyb_have_cdc(void ) {
    return MP_BOOL(usb_vcp_is_connected());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_have_cdc_obj, pyb_have_cdc);

453
454
/// \function repl_uart(uart)
/// Get or set the UART object that the REPL is repeated on.
455
STATIC mp_obj_t pyb_repl_uart(mp_uint_t n_args, const mp_obj_t *args) {
456
    if (n_args == 0) {
457
        if (pyb_stdio_uart == NULL) {
458
459
            return mp_const_none;
        } else {
460
            return pyb_stdio_uart;
461
462
463
        }
    } else {
        if (args[0] == mp_const_none) {
464
            pyb_stdio_uart = NULL;
465
        } else if (mp_obj_get_type(args[0]) == &pyb_uart_type) {
466
            pyb_stdio_uart = args[0];
467
468
469
470
471
472
473
474
        } else {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "need a UART object"));
        }
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_repl_uart_obj, 0, 1, pyb_repl_uart);

475
476
477
/// \function hid((buttons, x, y, z))
/// Takes a 4-tuple (or list) and sends it to the USB host (the PC) to
/// signal a HID mouse-motion event.
478
STATIC mp_obj_t pyb_hid_send_report(mp_obj_t arg) {
479
480
    mp_obj_t *items;
    mp_obj_get_array_fixed_n(arg, 4, &items);
481
482
483
484
485
486
487
488
    uint8_t data[4];
    data[0] = mp_obj_get_int(items[0]);
    data[1] = mp_obj_get_int(items[1]);
    data[2] = mp_obj_get_int(items[2]);
    data[3] = mp_obj_get_int(items[3]);
    usb_hid_send_report(data);
    return mp_const_none;
}
489
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_hid_send_report_obj, pyb_hid_send_report);
490
491

MP_DECLARE_CONST_FUN_OBJ(pyb_main_obj); // defined in main.c
492
MP_DECLARE_CONST_FUN_OBJ(pyb_usb_mode_obj); // defined in main.c
493
494
495
496

STATIC const mp_map_elem_t pyb_module_globals_table[] = {
    { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_pyb) },

497
    { MP_OBJ_NEW_QSTR(MP_QSTR_bootloader), (mp_obj_t)&pyb_bootloader_obj },
498
    { MP_OBJ_NEW_QSTR(MP_QSTR_hard_reset), (mp_obj_t)&pyb_hard_reset_obj },
499
    { MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&pyb_info_obj },
500
501
    { MP_OBJ_NEW_QSTR(MP_QSTR_unique_id), (mp_obj_t)&pyb_unique_id_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_freq_obj },
502
503
    { MP_OBJ_NEW_QSTR(MP_QSTR_repl_info), (mp_obj_t)&pyb_set_repl_info_obj },

504
    { MP_OBJ_NEW_QSTR(MP_QSTR_wfi), (mp_obj_t)&pyb_wfi_obj },
505
506
507
    { MP_OBJ_NEW_QSTR(MP_QSTR_disable_irq), (mp_obj_t)&pyb_disable_irq_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_enable_irq), (mp_obj_t)&pyb_enable_irq_obj },

508
509
510
    { MP_OBJ_NEW_QSTR(MP_QSTR_stop), (mp_obj_t)&pyb_stop_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_standby), (mp_obj_t)&pyb_standby_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_main), (mp_obj_t)&pyb_main_obj },
511
    { MP_OBJ_NEW_QSTR(MP_QSTR_usb_mode), (mp_obj_t)&pyb_usb_mode_obj },
512

513
    { MP_OBJ_NEW_QSTR(MP_QSTR_have_cdc), (mp_obj_t)&pyb_have_cdc_obj },
514
    { MP_OBJ_NEW_QSTR(MP_QSTR_repl_uart), (mp_obj_t)&pyb_repl_uart_obj },
515
    { MP_OBJ_NEW_QSTR(MP_QSTR_hid), (mp_obj_t)&pyb_hid_send_report_obj },
516
    { MP_OBJ_NEW_QSTR(MP_QSTR_USB_VCP), (mp_obj_t)&pyb_usb_vcp_type },
517

518
    { MP_OBJ_NEW_QSTR(MP_QSTR_millis), (mp_obj_t)&pyb_millis_obj },
519
    { MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_millis), (mp_obj_t)&pyb_elapsed_millis_obj },
520
    { MP_OBJ_NEW_QSTR(MP_QSTR_micros), (mp_obj_t)&pyb_micros_obj },
521
    { MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_micros), (mp_obj_t)&pyb_elapsed_micros_obj },
522
523
524
525
    { MP_OBJ_NEW_QSTR(MP_QSTR_delay), (mp_obj_t)&pyb_delay_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_udelay), (mp_obj_t)&pyb_udelay_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_sync), (mp_obj_t)&pyb_sync_obj },

526
527
    { MP_OBJ_NEW_QSTR(MP_QSTR_Timer), (mp_obj_t)&pyb_timer_type },

528
#if MICROPY_HW_ENABLE_RNG
529
    { MP_OBJ_NEW_QSTR(MP_QSTR_rng), (mp_obj_t)&pyb_rng_get_obj },
530
531
532
#endif

#if MICROPY_HW_ENABLE_RTC
533
    { MP_OBJ_NEW_QSTR(MP_QSTR_RTC), (mp_obj_t)&pyb_rtc_type },
534
535
#endif

536
537
538
    { MP_OBJ_NEW_QSTR(MP_QSTR_Pin), (mp_obj_t)&pin_type },
    { MP_OBJ_NEW_QSTR(MP_QSTR_ExtInt), (mp_obj_t)&extint_type },

539
540
541
#if MICROPY_HW_ENABLE_SERVO
    { MP_OBJ_NEW_QSTR(MP_QSTR_pwm), (mp_obj_t)&pyb_pwm_set_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_servo), (mp_obj_t)&pyb_servo_set_obj },
542
    { MP_OBJ_NEW_QSTR(MP_QSTR_Servo), (mp_obj_t)&pyb_servo_type },
543
544
545
#endif

#if MICROPY_HW_HAS_SWITCH
546
    { MP_OBJ_NEW_QSTR(MP_QSTR_Switch), (mp_obj_t)&pyb_switch_type },
547
548
549
550
551
552
#endif

#if MICROPY_HW_HAS_SDCARD
    { MP_OBJ_NEW_QSTR(MP_QSTR_SD), (mp_obj_t)&pyb_sdcard_obj },
#endif

553
    { MP_OBJ_NEW_QSTR(MP_QSTR_LED), (mp_obj_t)&pyb_led_type },
554
    { MP_OBJ_NEW_QSTR(MP_QSTR_I2C), (mp_obj_t)&pyb_i2c_type },
Damien George's avatar
Damien George committed
555
    { MP_OBJ_NEW_QSTR(MP_QSTR_SPI), (mp_obj_t)&pyb_spi_type },
Damien George's avatar
Damien George committed
556
    { MP_OBJ_NEW_QSTR(MP_QSTR_UART), (mp_obj_t)&pyb_uart_type },
557
#if MICROPY_HW_ENABLE_CAN
558
    { MP_OBJ_NEW_QSTR(MP_QSTR_CAN), (mp_obj_t)&pyb_can_type },
559
#endif
560
561

    { MP_OBJ_NEW_QSTR(MP_QSTR_ADC), (mp_obj_t)&pyb_adc_type },
562
    { MP_OBJ_NEW_QSTR(MP_QSTR_ADCAll), (mp_obj_t)&pyb_adc_all_type },
Damien George's avatar
Damien George committed
563
564
565

#if MICROPY_HW_ENABLE_DAC
    { MP_OBJ_NEW_QSTR(MP_QSTR_DAC), (mp_obj_t)&pyb_dac_type },
566
567
#endif

568
569
570
#if MICROPY_HW_HAS_MMA7660
    { MP_OBJ_NEW_QSTR(MP_QSTR_Accel), (mp_obj_t)&pyb_accel_type },
#endif
571
572
573
574

#if MICROPY_HW_HAS_LCD
    { MP_OBJ_NEW_QSTR(MP_QSTR_LCD), (mp_obj_t)&pyb_lcd_type },
#endif
575
576
};

577
STATIC MP_DEFINE_CONST_DICT(pyb_module_globals, pyb_module_globals_table);
578
579
580
581

const mp_obj_module_t pyb_module = {
    .base = { &mp_type_module },
    .name = MP_QSTR_pyb,
582
    .globals = (mp_obj_dict_t*)&pyb_module_globals,
583
};