stm32_it.c 18.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * Original template from ST Cube library.  See below for header.
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

/**
  ******************************************************************************
  * @file    Templates/Src/stm32f4xx_it.c
  * @author  MCD Application Team
  * @version V1.0.1
  * @date    26-February-2014
  * @brief   Main Interrupt Service Routines.
  *          This file provides template for all exceptions handler and
  *          peripherals interrupt service routine.
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */

#include <stdio.h>

70
#include "stm32_it.h"
71
#include STM32_HAL_H
72

73
#include "py/obj.h"
74
#include "pendsv.h"
75
#include "irq.h"
76
77
#include "extint.h"
#include "timer.h"
78
#include "uart.h"
79
#include "storage.h"
80
#include "can.h"
81
#include "dma.h"
82
83

extern void __fatal_error(const char*);
84
85
extern PCD_HandleTypeDef pcd_fs_handle;
extern PCD_HandleTypeDef pcd_hs_handle;
86
87
88
89
/******************************************************************************/
/*            Cortex-M4 Processor Exceptions Handlers                         */
/******************************************************************************/

90
91
92
93
94
95
96
// Set the following to 1 to get some more information on the Hard Fault
// More information about decoding the fault registers can be found here:
// http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0646a/Cihdjcfc.html
#define REPORT_HARD_FAULT_REGS  0

#if REPORT_HARD_FAULT_REGS

97
#include "py/mphal.h"
98

99
STATIC char *fmt_hex(uint32_t val, char *buf) {
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    const char *hexDig = "0123456789abcdef";

    buf[0] = hexDig[(val >> 28) & 0x0f];
    buf[1] = hexDig[(val >> 24) & 0x0f];
    buf[2] = hexDig[(val >> 20) & 0x0f];
    buf[3] = hexDig[(val >> 16) & 0x0f];
    buf[4] = hexDig[(val >> 12) & 0x0f];
    buf[5] = hexDig[(val >>  8) & 0x0f];
    buf[6] = hexDig[(val >>  4) & 0x0f];
    buf[7] = hexDig[(val >>  0) & 0x0f];
    buf[8] = '\0';

    return buf;
}

115
STATIC void print_reg(const char *label, uint32_t val) {
116
117
118
119
120
121
122
    char hexStr[9];

    mp_hal_stdout_tx_str(label);
    mp_hal_stdout_tx_str(fmt_hex(val, hexStr));
    mp_hal_stdout_tx_str("\r\n");
}

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
// The ARMv7M Architecture manual (section B.1.5.6) says that upon entry
// to an exception, that the registers will be in the following order on the
// // stack: R0, R1, R2, R3, R12, LR, PC, XPSR

typedef struct {
    uint32_t    r0, r1, r2, r3, r12, lr, pc, xpsr;
} ExceptionRegisters_t;

void HardFault_C_Handler(ExceptionRegisters_t *regs) {
    print_reg("R0    ", regs->r0);
    print_reg("R1    ", regs->r1);
    print_reg("R2    ", regs->r2);
    print_reg("R3    ", regs->r3);
    print_reg("R12   ", regs->r12);
    print_reg("LR    ", regs->lr);
    print_reg("PC    ", regs->pc);
    print_reg("XPSR  ", regs->xpsr);
140

141
142
143
144
145
146
147
148
149
150
    uint32_t cfsr = SCB->CFSR;

    print_reg("HFSR  ", SCB->HFSR);
    print_reg("CFSR  ", cfsr);
    if (cfsr & 0x80) {
        print_reg("MMFAR ", SCB->MMFAR);
    }
    if (cfsr & 0x8000) {
        print_reg("BFAR  ", SCB->BFAR);
    }
151
152
153
154
155
    /* Go to infinite loop when Hard Fault exception occurs */
    while (1) {
        __fatal_error("HardFault");
    }
}
156

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
// Naked functions have no compiler generated gunk, so are the best thing to
// use for asm functions.
__attribute__((naked))
void HardFault_Handler(void) {

    // From the ARMv7M Architecture Reference Manual, section B.1.5.6
    // on entry to the Exception, the LR register contains, amongst other
    // things, the value of CONTROL.SPSEL. This can be found in bit 3.
    //
    // If CONTROL.SPSEL is 0, then the exception was stacked up using the
    // main stack pointer (aka MSP). If CONTROL.SPSEL is 1, then the exception
    // was stacked up using the process stack pointer (aka PSP).

    __asm volatile(
    " tst lr, #4    \n"         // Test Bit 3 to see which stack pointer we should use.
    " ite eq        \n"         // Tell the assembler that the nest 2 instructions are if-then-else
    " mrseq r0, msp \n"         // Make R0 point to main stack pointer
    " mrsne r0, psp \n"         // Make R0 point to process stack pointer
    " b HardFault_C_Handler \n" // Off to C land
    );
}
#else
void HardFault_Handler(void) {
180
181
182
183
184
    /* Go to infinite loop when Hard Fault exception occurs */
    while (1) {
        __fatal_error("HardFault");
    }
}
185
186
187
188
189
190
191
192
193
#endif // REPORT_HARD_FAULT_REGS

/**
  * @brief   This function handles NMI exception.
  * @param  None
  * @retval None
  */
void NMI_Handler(void) {
}
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

/**
  * @brief  This function handles Memory Manage exception.
  * @param  None
  * @retval None
  */
void MemManage_Handler(void) {
    /* Go to infinite loop when Memory Manage exception occurs */
    while (1) {
        __fatal_error("MemManage");
    }
}

/**
  * @brief  This function handles Bus Fault exception.
  * @param  None
  * @retval None
  */
void BusFault_Handler(void) {
    /* Go to infinite loop when Bus Fault exception occurs */
    while (1) {
        __fatal_error("BusFault");
    }
}

/**
  * @brief  This function handles Usage Fault exception.
  * @param  None
  * @retval None
  */
void UsageFault_Handler(void) {
    /* Go to infinite loop when Usage Fault exception occurs */
    while (1) {
        __fatal_error("UsageFault");
    }
}

/**
  * @brief  This function handles SVCall exception.
  * @param  None
  * @retval None
  */
void SVC_Handler(void) {
}

/**
  * @brief  This function handles Debug Monitor exception.
  * @param  None
  * @retval None
  */
void DebugMon_Handler(void) {
}

/**
  * @brief  This function handles PendSVC exception.
  * @param  None
  * @retval None
  */
void PendSV_Handler(void) {
    pendsv_isr_handler();
}

/**
  * @brief  This function handles SysTick Handler.
  * @param  None
  * @retval None
  */
void SysTick_Handler(void) {
262
263
264
    // Instead of calling HAL_IncTick we do the increment here of the counter.
    // This is purely for efficiency, since SysTick is called 1000 times per
    // second at the highest interrupt priority.
265
266
267
268
    // Note: we don't need uwTick to be declared volatile here because this is
    // the only place where it can be modified, and the code is more efficient
    // without the volatile specifier.
    extern uint32_t uwTick;
269
    uwTick += 1;
270
271
272
273
274

    // Read the systick control regster. This has the side effect of clearing
    // the COUNTFLAG bit, which makes the logic in sys_tick_get_microseconds
    // work properly.
    SysTick->CTRL;
275

276
277
    // Right now we have the storage and DMA controllers to process during
    // this interrupt and we use custom dispatch handlers.  If this needs to
278
279
    // be generalised in the future then a dispatch table can be used as
    // follows: ((void(*)(void))(systick_dispatch[uwTick & 0xf]))();
280
281
282
283
284

    if (STORAGE_IDLE_TICK(uwTick)) {
        NVIC->STIR = FLASH_IRQn;
    }

285
    if (DMA_IDLE_ENABLED() && DMA_IDLE_TICK(uwTick)) {
286
        dma_idle_handler(uwTick);
287
    }
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
}

/******************************************************************************/
/*                 STM32F4xx Peripherals Interrupt Handlers                   */
/*  Add here the Interrupt Handler for the used peripheral(s) (PPP), for the  */
/*  available peripheral interrupt handler's name please refer to the startup */
/*  file (startup_stm32f4xx.s).                                               */
/******************************************************************************/

/**
  * @brief  This function handles USB-On-The-Go FS global interrupt request.
  * @param  None
  * @retval None
  */
#if defined(USE_USB_FS)
303
void OTG_FS_IRQHandler(void) {
304
    IRQ_ENTER(OTG_FS_IRQn);
305
    HAL_PCD_IRQHandler(&pcd_fs_handle);
306
    IRQ_EXIT(OTG_FS_IRQn);
307
}
308
#endif
309
310
#if defined(USE_USB_HS)
void OTG_HS_IRQHandler(void) {
311
    IRQ_ENTER(OTG_HS_IRQn);
312
    HAL_PCD_IRQHandler(&pcd_hs_handle);
313
    IRQ_EXIT(OTG_HS_IRQn);
314
315
316
}
#endif

317
#if defined(USE_USB_FS) || defined(USE_USB_HS)
318
/**
319
320
  * @brief  This function handles USB OTG Common FS/HS Wakeup functions.
  * @param  *pcd_handle for FS or HS
321
322
  * @retval None
  */
323
STATIC void OTG_CMD_WKUP_Handler(PCD_HandleTypeDef *pcd_handle) {
324

325
  if (pcd_handle->Init.low_power_enable) {
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
    /* Reset SLEEPDEEP bit of Cortex System Control Register */
    SCB->SCR &= (uint32_t)~((uint32_t)(SCB_SCR_SLEEPDEEP_Msk | SCB_SCR_SLEEPONEXIT_Msk));

    /* Configures system clock after wake-up from STOP: enable HSE, PLL and select
    PLL as system clock source (HSE and PLL are disabled in STOP mode) */

    __HAL_RCC_HSE_CONFIG(RCC_HSE_ON);

    /* Wait till HSE is ready */
    while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
    {}

    /* Enable the main PLL. */
    __HAL_RCC_PLL_ENABLE();

    /* Wait till PLL is ready */
    while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
    {}

    /* Select PLL as SYSCLK */
    MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK);

    while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL)
    {}

    /* ungate PHY clock */
352
     __HAL_PCD_UNGATE_PHYCLOCK(pcd_handle);
353
  }
354
355
356
357
358
359
360
361
362
363
364

}
#endif

#if defined(USE_USB_FS)
/**
  * @brief  This function handles USB OTG FS Wakeup IRQ Handler.
  * @param  None
  * @retval None
  */
void OTG_FS_WKUP_IRQHandler(void) {
365
    IRQ_ENTER(OTG_FS_WKUP_IRQn);
366
367
368

  OTG_CMD_WKUP_Handler(&pcd_fs_handle);

369
370
  /* Clear EXTI pending Bit*/
  __HAL_USB_FS_EXTI_CLEAR_FLAG();
371

372
    IRQ_EXIT(OTG_FS_WKUP_IRQn);
373
}
374
375
#endif

376
377
378
379
380
381
382
#if defined(USE_USB_HS)
/**
  * @brief  This function handles USB OTG HS Wakeup IRQ Handler.
  * @param  None
  * @retval None
  */
void OTG_HS_WKUP_IRQHandler(void) {
383
    IRQ_ENTER(OTG_HS_WKUP_IRQn);
384
385
386
387
388
389

  OTG_CMD_WKUP_Handler(&pcd_hs_handle);

  /* Clear EXTI pending Bit*/
  __HAL_USB_HS_EXTI_CLEAR_FLAG();

390
    IRQ_EXIT(OTG_HS_WKUP_IRQn);
391
392
393
394
395
396
397
398
399
400
401
402
403
404
}
#endif

/**
  * @brief  This function handles PPP interrupt request.
  * @param  None
  * @retval None
  */
/*void PPP_IRQHandler(void)
{
}*/

// Handle a flash (erase/program) interrupt.
void FLASH_IRQHandler(void) {
405
    IRQ_ENTER(FLASH_IRQn);
406
407
408
409
410
411
412
413
414
    // This calls the real flash IRQ handler, if needed
    /*
    uint32_t flash_cr = FLASH->CR;
    if ((flash_cr & FLASH_IT_EOP) || (flash_cr & FLASH_IT_ERR)) {
        HAL_FLASH_IRQHandler();
    }
    */
    // This call the storage IRQ handler, to check if the flash cache needs flushing
    storage_irq_handler();
415
    IRQ_EXIT(FLASH_IRQn);
416
417
418
419
420
421
422
423
}

/**
  * @brief  These functions handle the EXTI interrupt requests.
  * @param  None
  * @retval None
  */
void EXTI0_IRQHandler(void) {
424
    IRQ_ENTER(EXTI0_IRQn);
425
    Handle_EXTI_Irq(0);
426
    IRQ_EXIT(EXTI0_IRQn);
427
428
429
}

void EXTI1_IRQHandler(void) {
430
    IRQ_ENTER(EXTI1_IRQn);
431
    Handle_EXTI_Irq(1);
432
    IRQ_EXIT(EXTI1_IRQn);
433
434
435
}

void EXTI2_IRQHandler(void) {
436
    IRQ_ENTER(EXTI2_IRQn);
437
    Handle_EXTI_Irq(2);
438
    IRQ_EXIT(EXTI2_IRQn);
439
440
441
}

void EXTI3_IRQHandler(void) {
442
    IRQ_ENTER(EXTI3_IRQn);
443
    Handle_EXTI_Irq(3);
444
    IRQ_EXIT(EXTI3_IRQn);
445
446
447
}

void EXTI4_IRQHandler(void) {
448
    IRQ_ENTER(EXTI4_IRQn);
449
    Handle_EXTI_Irq(4);
450
    IRQ_EXIT(EXTI4_IRQn);
451
452
453
}

void EXTI9_5_IRQHandler(void) {
454
    IRQ_ENTER(EXTI9_5_IRQn);
455
456
457
458
459
    Handle_EXTI_Irq(5);
    Handle_EXTI_Irq(6);
    Handle_EXTI_Irq(7);
    Handle_EXTI_Irq(8);
    Handle_EXTI_Irq(9);
460
    IRQ_EXIT(EXTI9_5_IRQn);
461
462
463
}

void EXTI15_10_IRQHandler(void) {
464
    IRQ_ENTER(EXTI15_10_IRQn);
465
466
467
468
469
470
    Handle_EXTI_Irq(10);
    Handle_EXTI_Irq(11);
    Handle_EXTI_Irq(12);
    Handle_EXTI_Irq(13);
    Handle_EXTI_Irq(14);
    Handle_EXTI_Irq(15);
471
    IRQ_EXIT(EXTI15_10_IRQn);
472
473
474
}

void PVD_IRQHandler(void) {
475
    IRQ_ENTER(PVD_IRQn);
476
    Handle_EXTI_Irq(EXTI_PVD_OUTPUT);
477
    IRQ_EXIT(PVD_IRQn);
478
479
}

480
481
482
483
484
485
486
487
#if defined(MCU_SERIES_L4)
void PVD_PVM_IRQHandler(void) {
    IRQ_ENTER(PVD_PVM_IRQn);
    Handle_EXTI_Irq(EXTI_PVD_OUTPUT);
    IRQ_EXIT(PVD_PVM_IRQn);
}
#endif

488
void RTC_Alarm_IRQHandler(void) {
489
    IRQ_ENTER(RTC_Alarm_IRQn);
490
    Handle_EXTI_Irq(EXTI_RTC_ALARM);
491
    IRQ_EXIT(RTC_Alarm_IRQn);
492
493
494
495
}

#if defined(ETH)    // The 407 has ETH, the 405 doesn't
void ETH_WKUP_IRQHandler(void)  {
496
    IRQ_ENTER(ETH_WKUP_IRQn);
497
    Handle_EXTI_Irq(EXTI_ETH_WAKEUP);
498
    IRQ_EXIT(ETH_WKUP_IRQn);
499
500
501
502
}
#endif

void TAMP_STAMP_IRQHandler(void) {
503
    IRQ_ENTER(TAMP_STAMP_IRQn);
504
    Handle_EXTI_Irq(EXTI_RTC_TIMESTAMP);
505
    IRQ_EXIT(TAMP_STAMP_IRQn);
506
507
508
}

void RTC_WKUP_IRQHandler(void) {
509
    IRQ_ENTER(RTC_WKUP_IRQn);
510
511
    RTC->ISR &= ~(1 << 10); // clear wakeup interrupt flag
    Handle_EXTI_Irq(EXTI_RTC_WAKEUP); // clear EXTI flag and execute optional callback
512
    IRQ_EXIT(RTC_WKUP_IRQn);
513
514
515
}

void TIM1_BRK_TIM9_IRQHandler(void) {
516
    IRQ_ENTER(TIM1_BRK_TIM9_IRQn);
517
    timer_irq_handler(9);
518
    IRQ_EXIT(TIM1_BRK_TIM9_IRQn);
519
520
}

521
522
523
524
525
526
527
528
#if defined(MCU_SERIES_L4)
void TIM1_BRK_TIM15_IRQHandler(void) {
    IRQ_ENTER(TIM1_BRK_TIM15_IRQn);
    timer_irq_handler(15);
    IRQ_EXIT(TIM1_BRK_TIM15_IRQn);
}
#endif

529
void TIM1_UP_TIM10_IRQHandler(void) {
530
    IRQ_ENTER(TIM1_UP_TIM10_IRQn);
531
532
    timer_irq_handler(1);
    timer_irq_handler(10);
533
    IRQ_EXIT(TIM1_UP_TIM10_IRQn);
534
535
}

536
537
538
539
540
541
542
543
544
#if defined(MCU_SERIES_L4)
void TIM1_UP_TIM16_IRQHandler(void) {
    IRQ_ENTER(TIM1_UP_TIM16_IRQn);
    timer_irq_handler(1);
    timer_irq_handler(16);
    IRQ_EXIT(TIM1_UP_TIM16_IRQn);
}
#endif

545
void TIM1_TRG_COM_TIM11_IRQHandler(void) {
546
    IRQ_ENTER(TIM1_TRG_COM_TIM11_IRQn);
547
    timer_irq_handler(11);
548
    IRQ_EXIT(TIM1_TRG_COM_TIM11_IRQn);
549
550
}

551
552
553
554
555
556
557
558
#if defined(MCU_SERIES_L4)
void TIM1_TRG_COM_TIM17_IRQHandler(void) {
    IRQ_ENTER(TIM1_TRG_COM_TIM17_IRQn);
    timer_irq_handler(17);
    IRQ_EXIT(TIM1_TRG_COM_TIM17_IRQn);
}
#endif

559
560
561
562
563
564
void TIM1_CC_IRQHandler(void) {
    IRQ_ENTER(TIM1_CC_IRQn);
    timer_irq_handler(1);
    IRQ_EXIT(TIM1_CC_IRQn);
}

565
void TIM2_IRQHandler(void) {
566
    IRQ_ENTER(TIM2_IRQn);
567
    timer_irq_handler(2);
568
    IRQ_EXIT(TIM2_IRQn);
569
570
571
}

void TIM3_IRQHandler(void) {
572
    IRQ_ENTER(TIM3_IRQn);
573
    timer_irq_handler(3);
574
    IRQ_EXIT(TIM3_IRQn);
575
576
577
}

void TIM4_IRQHandler(void) {
578
    IRQ_ENTER(TIM4_IRQn);
579
    timer_irq_handler(4);
580
    IRQ_EXIT(TIM4_IRQn);
581
582
583
}

void TIM5_IRQHandler(void) {
584
    IRQ_ENTER(TIM5_IRQn);
585
586
    timer_irq_handler(5);
    HAL_TIM_IRQHandler(&TIM5_Handle);
587
    IRQ_EXIT(TIM5_IRQn);
588
589
}

590
#if defined(TIM6) // STM32F401 doesn't have TIM6
591
void TIM6_DAC_IRQHandler(void) {
592
    IRQ_ENTER(TIM6_DAC_IRQn);
593
    timer_irq_handler(6);
594
    IRQ_EXIT(TIM6_DAC_IRQn);
595
}
596
#endif
597

598
#if defined(TIM7) // STM32F401 doesn't have TIM7
599
void TIM7_IRQHandler(void) {
600
    IRQ_ENTER(TIM7_IRQn);
601
    timer_irq_handler(7);
602
    IRQ_EXIT(TIM7_IRQn);
603
}
604
#endif
605

606
#if defined(TIM8) // STM32F401 doesn't have TIM8
607
void TIM8_BRK_TIM12_IRQHandler(void) {
608
    IRQ_ENTER(TIM8_BRK_TIM12_IRQn);
609
    timer_irq_handler(12);
610
    IRQ_EXIT(TIM8_BRK_TIM12_IRQn);
611
612
613
}

void TIM8_UP_TIM13_IRQHandler(void) {
614
    IRQ_ENTER(TIM8_UP_TIM13_IRQn);
615
616
    timer_irq_handler(8);
    timer_irq_handler(13);
617
    IRQ_EXIT(TIM8_UP_TIM13_IRQn);
618
619
}

620
621
622
623
624
625
626
627
#if defined(MCU_SERIES_L4)
void TIM8_UP_IRQHandler(void) {
    IRQ_ENTER(TIM8_UP_IRQn);
    timer_irq_handler(8);
    IRQ_EXIT(TIM8_UP_IRQn);
}
#endif

628
629
630
631
632
633
void TIM8_CC_IRQHandler(void) {
    IRQ_ENTER(TIM8_CC_IRQn);
    timer_irq_handler(8);
    IRQ_EXIT(TIM8_CC_IRQn);
}

634
void TIM8_TRG_COM_TIM14_IRQHandler(void) {
635
    IRQ_ENTER(TIM8_TRG_COM_TIM14_IRQn);
636
    timer_irq_handler(14);
637
    IRQ_EXIT(TIM8_TRG_COM_TIM14_IRQn);
638
}
639
#endif
640
641
642

// UART/USART IRQ handlers
void USART1_IRQHandler(void) {
643
    IRQ_ENTER(USART1_IRQn);
644
    uart_irq_handler(1);
645
    IRQ_EXIT(USART1_IRQn);
646
647
648
}

void USART2_IRQHandler(void) {
649
    IRQ_ENTER(USART2_IRQn);
650
    uart_irq_handler(2);
651
    IRQ_EXIT(USART2_IRQn);
652
653
654
}

void USART3_IRQHandler(void) {
655
    IRQ_ENTER(USART3_IRQn);
656
    uart_irq_handler(3);
657
    IRQ_EXIT(USART3_IRQn);
658
659
660
}

void UART4_IRQHandler(void) {
661
    IRQ_ENTER(UART4_IRQn);
662
    uart_irq_handler(4);
663
    IRQ_EXIT(UART4_IRQn);
664
665
}

Dave Hylands's avatar
Dave Hylands committed
666
void UART5_IRQHandler(void) {
667
    IRQ_ENTER(UART5_IRQn);
Dave Hylands's avatar
Dave Hylands committed
668
    uart_irq_handler(5);
669
    IRQ_EXIT(UART5_IRQn);
Dave Hylands's avatar
Dave Hylands committed
670
671
}

672
void USART6_IRQHandler(void) {
673
    IRQ_ENTER(USART6_IRQn);
674
    uart_irq_handler(6);
675
    IRQ_EXIT(USART6_IRQn);
676
}
677
678
679

#if MICROPY_HW_ENABLE_CAN
void CAN1_RX0_IRQHandler(void) {
680
    IRQ_ENTER(CAN1_RX0_IRQn);
681
    can_rx_irq_handler(PYB_CAN_1, CAN_FIFO0);
682
    IRQ_EXIT(CAN1_RX0_IRQn);
683
684
685
}

void CAN1_RX1_IRQHandler(void) {
686
    IRQ_ENTER(CAN1_RX1_IRQn);
687
    can_rx_irq_handler(PYB_CAN_1, CAN_FIFO1);
688
    IRQ_EXIT(CAN1_RX1_IRQn);
689
690
691
}

void CAN2_RX0_IRQHandler(void) {
692
    IRQ_ENTER(CAN2_RX0_IRQn);
693
    can_rx_irq_handler(PYB_CAN_2, CAN_FIFO0);
694
    IRQ_EXIT(CAN2_RX0_IRQn);
695
696
697
}

void CAN2_RX1_IRQHandler(void) {
698
    IRQ_ENTER(CAN2_RX1_IRQn);
699
    can_rx_irq_handler(PYB_CAN_2, CAN_FIFO1);
700
    IRQ_EXIT(CAN2_RX1_IRQn);
701
702
}
#endif // MICROPY_HW_ENABLE_CAN