timer.c 44.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27
28
29
30
31
32
33
34
35
36
37
38
#include <stdint.h>
#include <stdio.h>
#include <string.h>

#include <stm32f4xx_hal.h>
#include "usbd_cdc_msc_hid.h"
#include "usbd_cdc_interface.h"

#include "nlr.h"
#include "misc.h"
#include "mpconfig.h"
#include "qstr.h"
39
#include "gc.h"
40
41
42
43
#include "obj.h"
#include "runtime.h"
#include "timer.h"
#include "servo.h"
44
#include "pin.h"
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
/// \moduleref pyb
/// \class Timer - periodically call a function
///
/// Timers can be used for a great variety of tasks.  At the moment, only
/// the simplest case is implemented: that of calling a function periodically.
///
/// Each timer consists of a counter that counts up at a certain rate.  The rate
/// at which it counts is the peripheral clock frequency (in Hz) divided by the
/// timer prescaler.  When the counter reaches the timer period it triggers an
/// event, and the counter resets back to zero.  By using the callback method,
/// the timer event can call a Python function.
///
/// Example usage to toggle an LED at a fixed frequency:
///
///     tim = pyb.Timer(4)              # create a timer object using timer 4
///     tim.init(freq=2)                # trigger at 2Hz
///     tim.callback(lambda t:pyb.LED(1).toggle())
///
/// Further examples:
///
///     tim = pyb.Timer(4, freq=100)    # freq in Hz
67
///     tim = pyb.Timer(4, prescaler=0, period=99)
68
69
///     tim.counter()                   # get counter (can also set)
///     tim.prescaler(2)                # set prescaler (can also get)
70
///     tim.period(199)                 # set period (can also get)
71
72
73
74
75
76
77
///     tim.callback(lambda t: ...)     # set callback for update interrupt (t=tim instance)
///     tim.callback(None)              # clear callback
///
/// *Note:* Timer 3 is reserved for internal use.  Timer 5 controls
/// the servo driver, and Timer 6 is used for timed ADC/DAC reading/writing.
/// It is recommended to use the other timers in your programs.

78
79
80
81
// The timers can be used by multiple drivers, and need a common point for
// the interrupts to be dispatched, so they are all collected here.
//
// TIM3:
82
//  - flash storage controller, to flush the cache
83
84
85
86
87
//  - USB CDC interface, interval, to check for new data
//  - LED 4, PWM to set the LED intensity
//
// TIM5:
//  - servo controller, PWM
88
89
90
91
//
// TIM6:
//  - ADC, DAC for read_timed and write_timed

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
typedef enum {
    CHANNEL_MODE_PWM_NORMAL,
    CHANNEL_MODE_PWM_INVERTED,
    CHANNEL_MODE_OC_TIMING,
    CHANNEL_MODE_OC_ACTIVE,
    CHANNEL_MODE_OC_INACTIVE,
    CHANNEL_MODE_OC_TOGGLE,
    CHANNEL_MODE_OC_FORCED_ACTIVE,
    CHANNEL_MODE_OC_FORCED_INACTIVE,
    CHANNEL_MODE_IC,
} pyb_channel_mode;

STATIC const struct {
    qstr        name;
    uint32_t    oc_mode;
107
} channel_mode_info[] = {
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    { MP_QSTR_PWM,                TIM_OCMODE_PWM1 },
    { MP_QSTR_PWM_INVERTED,       TIM_OCMODE_PWM2 },
    { MP_QSTR_OC_TIMING,          TIM_OCMODE_TIMING },
    { MP_QSTR_OC_ACTIVE,          TIM_OCMODE_ACTIVE },
    { MP_QSTR_OC_INACTIVE,        TIM_OCMODE_INACTIVE },
    { MP_QSTR_OC_TOGGLE,          TIM_OCMODE_TOGGLE },
    { MP_QSTR_OC_FORCED_ACTIVE,   TIM_OCMODE_FORCED_ACTIVE },
    { MP_QSTR_OC_FORCED_INACTIVE, TIM_OCMODE_FORCED_INACTIVE },
    { MP_QSTR_IC,                 0 },
};

typedef struct _pyb_timer_channel_obj_t {
    mp_obj_base_t base;
    struct _pyb_timer_obj_t *timer;
    uint8_t channel;
    uint8_t mode;
    mp_obj_t callback;
    struct _pyb_timer_channel_obj_t *next;
} pyb_timer_channel_obj_t;

128
129
typedef struct _pyb_timer_obj_t {
    mp_obj_base_t base;
130
131
    uint8_t tim_id;
    uint8_t is_32bit;
132
133
134
    mp_obj_t callback;
    TIM_HandleTypeDef tim;
    IRQn_Type irqn;
135
136
    pyb_timer_channel_obj_t *channel;

137
} pyb_timer_obj_t;
138

139
140
141
// The following yields TIM_IT_UPDATE when channel is zero and
// TIM_IT_CC1..TIM_IT_CC4 when channel is 1..4
#define TIMER_IRQ_MASK(channel) (1 << (channel))
142
#define TIMER_CNT_MASK(self)    ((self)->is_32bit ? 0xffffffff : 0xffff)
143
144
#define TIMER_CHANNEL(self)     ((((self)->channel) - 1) << 2)

145
146
TIM_HandleTypeDef TIM3_Handle;
TIM_HandleTypeDef TIM5_Handle;
147
TIM_HandleTypeDef TIM6_Handle;
148

149
// Used to divide down TIM3 and periodically call the flash storage IRQ
150
STATIC uint32_t tim3_counter = 0;
151

152
153
// Used to do callbacks to Python code on interrupt
STATIC pyb_timer_obj_t *pyb_timer_obj_all[14];
154
#define PYB_TIMER_OBJ_ALL_NUM MP_ARRAY_SIZE(pyb_timer_obj_all)
155

156
157
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in);
STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback);
158
STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback);
159

160
161
162
163
164
165
166
void timer_init0(void) {
    tim3_counter = 0;
    for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
        pyb_timer_obj_all[i] = NULL;
    }
}

167
168
169
170
171
172
173
174
175
176
// unregister all interrupt sources
void timer_deinit(void) {
    for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
        pyb_timer_obj_t *tim = pyb_timer_obj_all[i];
        if (tim != NULL) {
            pyb_timer_deinit(tim);
        }
    }
}

177
178
179
180
181
182
// TIM3 is set-up for the USB CDC interface
void timer_tim3_init(void) {
    // set up the timer for USBD CDC
    __TIM3_CLK_ENABLE();

    TIM3_Handle.Instance = TIM3;
183
184
    TIM3_Handle.Init.Period = (USBD_CDC_POLLING_INTERVAL*1000) - 1; // TIM3 fires every USBD_CDC_POLLING_INTERVAL ms
    TIM3_Handle.Init.Prescaler = 84-1; // for System clock at 168MHz, TIM3 runs at 1MHz
185
    TIM3_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    TIM3_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
    HAL_TIM_Base_Init(&TIM3_Handle);

    HAL_NVIC_SetPriority(TIM3_IRQn, 6, 0);
    HAL_NVIC_EnableIRQ(TIM3_IRQn);

    if (HAL_TIM_Base_Start(&TIM3_Handle) != HAL_OK) {
        /* Starting Error */
    }
}

/* unused
void timer_tim3_deinit(void) {
    // reset TIM3 timer
    __TIM3_FORCE_RESET();
    __TIM3_RELEASE_RESET();
}
*/

// TIM5 is set-up for the servo controller
206
// This function inits but does not start the timer
207
208
209
210
211
212
213
214
215
216
void timer_tim5_init(void) {
    // TIM5 clock enable
    __TIM5_CLK_ENABLE();

    // set up and enable interrupt
    HAL_NVIC_SetPriority(TIM5_IRQn, 6, 0);
    HAL_NVIC_EnableIRQ(TIM5_IRQn);

    // PWM clock configuration
    TIM5_Handle.Instance = TIM5;
217
    TIM5_Handle.Init.Period = 2000 - 1; // timer cycles at 50Hz
218
    TIM5_Handle.Init.Prescaler = ((SystemCoreClock / 2) / 100000) - 1; // timer runs at 100kHz
219
    TIM5_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
220
    TIM5_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
221

222
223
224
    HAL_TIM_PWM_Init(&TIM5_Handle);
}

225
226
227
228
229
230
231
232
233
// Init TIM6 with a counter-overflow at the given frequency (given in Hz)
// TIM6 is used by the DAC and ADC for auto sampling at a given frequency
// This function inits but does not start the timer
void timer_tim6_init(uint freq) {
    // TIM6 clock enable
    __TIM6_CLK_ENABLE();

    // Timer runs at SystemCoreClock / 2
    // Compute the prescaler value so TIM6 triggers at freq-Hz
234
    uint32_t period = MAX(1, (SystemCoreClock / 2) / freq);
235
236
237
238
239
240
241
242
243
244
    uint32_t prescaler = 1;
    while (period > 0xffff) {
        period >>= 1;
        prescaler <<= 1;
    }

    // Time base clock configuration
    TIM6_Handle.Instance = TIM6;
    TIM6_Handle.Init.Period = period - 1;
    TIM6_Handle.Init.Prescaler = prescaler - 1;
245
    TIM6_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // unused for TIM6
246
247
248
249
    TIM6_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; // unused for TIM6
    HAL_TIM_Base_Init(&TIM6_Handle);
}

250
251
252
253
// Interrupt dispatch
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
    if (htim == &TIM3_Handle) {
        USBD_CDC_HAL_TIM_PeriodElapsedCallback();
254
255
256
257
258
259
260

        // Periodically raise a flash IRQ for the flash storage controller
        if (tim3_counter++ >= 500 / USBD_CDC_POLLING_INTERVAL) {
            tim3_counter = 0;
            NVIC->STIR = FLASH_IRQn;
        }

261
262
263
264
265
    } else if (htim == &TIM5_Handle) {
        servo_timer_irq_callback();
    }
}

266
267
268
/******************************************************************************/
/* Micro Python bindings                                                      */

269
270
STATIC const mp_obj_type_t pyb_timer_channel_type;

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
// Helper function to compute PWM value from timer period and percent value.
// 'val' can be an int or a float between 0 and 100 (out of range values are
// clamped).
STATIC uint32_t compute_pwm_value_from_percent(uint32_t period, mp_obj_t val) {
    uint32_t cmp;
    if (0) {
    #if MICROPY_PY_BUILTINS_FLOAT
    } else if (MP_OBJ_IS_TYPE(val, &mp_type_float)) {
        cmp = mp_obj_get_float(val) / 100.0 * period;
    #endif
    } else {
        // For integer arithmetic, if period is large and 100*period will
        // overflow, then divide period before multiplying by cmp.  Otherwise
        // do it the other way round to retain precision.
        // TODO we really need an mp_obj_get_uint_clamped function here so
        // that we can get long-int values as large as 0xffffffff.
        cmp = mp_obj_get_int(val);
        if (period > (1 << 31) / 100) {
            cmp = cmp * (period / 100);
        } else {
            cmp = (cmp * period) / 100;
        }
    }
    if (cmp < 0) {
        cmp = 0;
    } else if (cmp > period) {
        cmp = period;
    }
    return cmp;
}

302
303
304
305
306
307
STATIC void pyb_timer_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
    pyb_timer_obj_t *self = self_in;

    if (self->tim.State == HAL_TIM_STATE_RESET) {
        print(env, "Timer(%u)", self->tim_id);
    } else {
308
        print(env, "Timer(%u, prescaler=%u, period=%u, mode=%s, div=%u)",
309
            self->tim_id,
310
311
            self->tim.Instance->PSC & 0xffff,
            __HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self),
312
313
314
315
            self->tim.Init.CounterMode == TIM_COUNTERMODE_UP     ? "UP" :
            self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN   ? "DOWN" : "CENTER",
            self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV4 ? 4 :
            self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV2 ? 2 : 1);
316
317
    }
}
318

319
320
321
322
323
/// \method init(*, freq, prescaler, period)
/// Initialise the timer.  Initialisation must be either by frequency (in Hz)
/// or by prescaler and period:
///
///     tim.init(freq=100)                  # set the timer to trigger at 100Hz
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
///     tim.init(prescaler=83, period=999)  # set the prescaler and period directly
///
/// Keyword arguments:
///
///   - `freq` - specifies the periodic frequency of the timer. You migh also
///              view this as the frequency with which the timer goes through
///              one complete cycle.
///
///   - `prescaler` [0-0xffff] - specifies the value to be loaded into the
///                 timer's Prescaler Register (PSC). The timer clock source is divided by
///     (`prescaler + 1`) to arrive at the timer clock. Timers 2-7 and 12-14
///     have a clock source of 84 MHz (pyb.freq()[2] * 2), and Timers 1, and 8-11
///     have a clock source of 168 MHz (pyb.freq()[3] * 2).
///
///   - `period` [0-0xffff] for timers 1, 3, 4, and 6-15. [0-0x3fffffff] for timers 2 & 5.
///              Specifies the value to be loaded into the timer's AutoReload
///     Register (ARR). This determines the period of the timer (i.e. when the
///     counter cycles). The timer counter will roll-over after `period + 1`
///     timer clock cycles.
///
///   - `mode` can be one of:
///     - `Timer.UP` - configures the timer to count from 0 to ARR (default)
///     - `Timer.DOWN` - configures the timer to count from ARR down to 0.
///     - `Timer.CENTER` - confgures the timer to count from 0 to ARR and
///       then back down to 0.
///
///   - `div` can be one of 1, 2, or 4. Divides the timer clock to determine
///       the sampling clock used by the digital filters.
///
///   - `callback` - as per Timer.callback()
///
///  You must either specify freq or both of period and prescaler.
    STATIC const mp_arg_t pyb_timer_init_args[] = {
    { MP_QSTR_freq,         MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
    { MP_QSTR_prescaler,    MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
    { MP_QSTR_period,       MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
    { MP_QSTR_mode,         MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = TIM_COUNTERMODE_UP} },
    { MP_QSTR_div,          MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
    { MP_QSTR_callback,     MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
363
};
364
#define PYB_TIMER_INIT_NUM_ARGS MP_ARRAY_SIZE(pyb_timer_init_args)
365

366
STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *self, mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
367
    // parse args
368
369
    mp_arg_val_t vals[PYB_TIMER_INIT_NUM_ARGS];
    mp_arg_parse_all(n_args, args, kw_args, PYB_TIMER_INIT_NUM_ARGS, pyb_timer_init_args, vals);
370

371
372
    // set the TIM configuration values
    TIM_Base_InitTypeDef *init = &self->tim.Init;
373

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
    if (vals[0].u_int != 0xffffffff) {
        // set prescaler and period from frequency

        if (vals[0].u_int == 0) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "can't have 0 frequency"));
        }

        // work out TIM's clock source
        uint tim_clock;
        if (self->tim_id == 1 || (8 <= self->tim_id && self->tim_id <= 11)) {
            // TIM{1,8,9,10,11} are on APB2
            tim_clock = HAL_RCC_GetPCLK2Freq();
        } else {
            // TIM{2,3,4,5,6,7,12,13,14} are on APB1
            tim_clock = HAL_RCC_GetPCLK1Freq();
        }

391
392
393
394
395
        // Compute the prescaler value so TIM triggers at freq-Hz
        // On STM32F405/407/415/417 there are 2 cases for how the clock freq is set.
        // If the APB prescaler is 1, then the timer clock is equal to its respective
        // APB clock.  Otherwise (APB prescaler > 1) the timer clock is twice its
        // respective APB clock.  See DM00031020 Rev 4, page 115.
396
397
        uint32_t period = MAX(1, 2 * tim_clock / vals[0].u_int);
        uint32_t prescaler = 1;
398
        while (period > TIMER_CNT_MASK(self)) {
399
400
401
402
403
404
405
406
407
408
409
410
411
412
            period >>= 1;
            prescaler <<= 1;
        }
        init->Prescaler = prescaler - 1;
        init->Period = period - 1;
    } else if (vals[1].u_int != 0xffffffff && vals[2].u_int != 0xffffffff) {
        // set prescaler and period directly
        init->Prescaler = vals[1].u_int;
        init->Period = vals[2].u_int;
    } else {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "must specify either freq, or prescaler and period"));
    }

    init->CounterMode = vals[3].u_int;
413
414
415
416

    init->ClockDivision = vals[4].u_int == 2 ? TIM_CLOCKDIVISION_DIV2 :
                          vals[4].u_int == 4 ? TIM_CLOCKDIVISION_DIV4 :
                                               TIM_CLOCKDIVISION_DIV1;
417
418
    init->RepetitionCounter = 0;

419
420
421
422
    if (!IS_TIM_COUNTER_MODE(init->CounterMode)) {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Invalid counter_mode (%d)", init->CounterMode));
    }

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
    // init the TIM peripheral
    switch (self->tim_id) {
        case 1: __TIM1_CLK_ENABLE(); break;
        case 2: __TIM2_CLK_ENABLE(); break;
        case 3: __TIM3_CLK_ENABLE(); break;
        case 4: __TIM4_CLK_ENABLE(); break;
        case 5: __TIM5_CLK_ENABLE(); break;
        case 6: __TIM6_CLK_ENABLE(); break;
        case 7: __TIM7_CLK_ENABLE(); break;
        case 8: __TIM8_CLK_ENABLE(); break;
        case 9: __TIM9_CLK_ENABLE(); break;
        case 10: __TIM10_CLK_ENABLE(); break;
        case 11: __TIM11_CLK_ENABLE(); break;
        case 12: __TIM12_CLK_ENABLE(); break;
        case 13: __TIM13_CLK_ENABLE(); break;
        case 14: __TIM14_CLK_ENABLE(); break;
    }
    // set the priority (if not a special timer)
    if (self->tim_id != 3 && self->tim_id != 5) {
        HAL_NVIC_SetPriority(self->irqn, 0xe, 0xe); // next-to lowest priority
    }
444

445
446
447
448
449
450
451
    HAL_TIM_Base_Init(&self->tim);
    if (vals[5].u_obj == mp_const_none) {
        HAL_TIM_Base_Start(&self->tim);
    } else {
        pyb_timer_callback(self, vals[5].u_obj);
    }

452
453
454
    return mp_const_none;
}

455
456
457
458
/// \classmethod \constructor(id, ...)
/// Construct a new timer object of the given id.  If additional
/// arguments are given, then the timer is initialised by `init(...)`.
/// `id` can be 1 to 14, excluding 3.
459
STATIC mp_obj_t pyb_timer_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
460
461
462
463
464
    // check arguments
    mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);

    // create new Timer object
    pyb_timer_obj_t *tim = m_new_obj(pyb_timer_obj_t);
465
466
    memset(tim, 0, sizeof(*tim));

467
468
    tim->base.type = &pyb_timer_type;
    tim->callback = mp_const_none;
469
    tim->channel = NULL;
470
471
472

    // get TIM number
    tim->tim_id = mp_obj_get_int(args[0]);
473
    tim->is_32bit = false;
474
475
476

    switch (tim->tim_id) {
        case 1: tim->tim.Instance = TIM1; tim->irqn = TIM1_UP_TIM10_IRQn; break;
477
        case 2: tim->tim.Instance = TIM2; tim->irqn = TIM2_IRQn; tim->is_32bit = true; break;
478
479
        case 3: nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "Timer 3 is for internal use only")); // TIM3 used for low-level stuff; go via regs if necessary
        case 4: tim->tim.Instance = TIM4; tim->irqn = TIM4_IRQn; break;
480
        case 5: tim->tim.Instance = TIM5; tim->irqn = TIM5_IRQn; tim->is_32bit = true; break;
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
        case 6: tim->tim.Instance = TIM6; tim->irqn = TIM6_DAC_IRQn; break;
        case 7: tim->tim.Instance = TIM7; tim->irqn = TIM7_IRQn; break;
        case 8: tim->tim.Instance = TIM8; tim->irqn = TIM8_UP_TIM13_IRQn; break;
        case 9: tim->tim.Instance = TIM9; tim->irqn = TIM1_BRK_TIM9_IRQn; break;
        case 10: tim->tim.Instance = TIM10; tim->irqn = TIM1_UP_TIM10_IRQn; break;
        case 11: tim->tim.Instance = TIM11; tim->irqn = TIM1_TRG_COM_TIM11_IRQn; break;
        case 12: tim->tim.Instance = TIM12; tim->irqn = TIM8_BRK_TIM12_IRQn; break;
        case 13: tim->tim.Instance = TIM13; tim->irqn = TIM8_UP_TIM13_IRQn; break;
        case 14: tim->tim.Instance = TIM14; tim->irqn = TIM8_TRG_COM_TIM14_IRQn; break;
        default: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Timer %d does not exist", tim->tim_id));
    }

    if (n_args > 1 || n_kw > 0) {
        // start the peripheral
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
        pyb_timer_init_helper(tim, n_args - 1, args + 1, &kw_args);
    }

    // set the global variable for interrupt callbacks
    if (tim->tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) {
        pyb_timer_obj_all[tim->tim_id - 1] = tim;
    }

    return (mp_obj_t)tim;
506
507
}

508
STATIC mp_obj_t pyb_timer_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
509
    return pyb_timer_init_helper(args[0], n_args - 1, args + 1, kw_args);
510
}
511
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_init_obj, 1, pyb_timer_init);
512

513
514
515
/// \method deinit()
/// Deinitialises the timer.
///
516
/// Disables the callback (and the associated irq).
517
/// Disables any channel callbacks (and the associated irq).
518
/// Stops the timer, and disables the timer peripheral.
519
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in) {
520
521
    pyb_timer_obj_t *self = self_in;

522
    // Disable the base interrupt
523
524
    pyb_timer_callback(self_in, mp_const_none);

525
526
527
528
529
530
531
532
533
534
535
    pyb_timer_channel_obj_t *chan = self->channel;
    self->channel = NULL;

    // Disable the channel interrupts
    while (chan != NULL) {
        pyb_timer_channel_callback(chan, mp_const_none);
        pyb_timer_channel_obj_t *prev_chan = chan;
        chan = chan->next;
        prev_chan->next = NULL;
    }

536
    HAL_TIM_Base_DeInit(&self->tim);
537
538
539
540
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_deinit_obj, pyb_timer_deinit);

541
542
/// \method channel(channel, mode, ...)
///
543
544
/// If only a channel number is passed, then a previously initialized channel
/// object is returned (or `None` if there is no previous channel).
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
///
/// Othwerwise, a TimerChannel object is initialized and returned.
///
/// Each channel can be configured to perform pwm, output compare, or
/// input capture. All channels share the same underlying timer, which means
/// that they share the same timer clock.
///
/// Keyword arguments:
///
///   - `mode` can be one of:
///     - `Timer.PWM` - configure the timer in PWM mode (active high).
///     - `Timer.PWM_INVERTED` - configure the timer in PWM mode (active low).
///     - `Timer.OC_TIMING` - indicates that no pin is driven.
///     - `Timer.OC_ACTIVE` - the pin will be made active when a compare
///        match occurs (active is determined by polarity)
///     - `Timer.OC_INACTIVE` - the pin will be made inactive when a compare
///        match occurs.
///     - `Timer.OC_TOGGLE` - the pin will be toggled when an compare match occurs.
///     - `Timer.OC_FORCED_ACTIVE` - the pin is forced active (compare match is ignored).
///     - `Timer.OC_FORCED_INACTIVE` - the pin is forced inactive (compare match is ignored).
///     - `Timer.IC` - configure the timer in Input Capture mode.
///
///   - `callback` - as per TimerChannel.callback()
///
///   - `pin` None (the default) or a Pin object. If specified (and not None)
///           this will cause the alternate function of the the indicated pin
///      to be configured for this timer channel. An error will be raised if
///      the pin doesn't support any alternate functions for this timer channel.
///
/// Keyword arguments for Timer.PWM modes:
///
576
///   - `pulse_width` - determines the initial pulse width value to use.
577
///   - `pulse_width_percent` - determines the initial pulse width percentage to use.
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
///
/// Keyword arguments for Timer.OC modes:
///
///   - `compare` - determines the initial value of the compare register.
///
///   - `polarity` can be one of:
///     - `Timer.HIGH` - output is active high
///     - `Timer.LOW` - output is acive low
///
/// Optional keyword arguments for Timer.IC modes:
///
///   - `polarity` can be one of:
///     - `Timer.RISING` - captures on rising edge.
///     - `Timer.FALLING` - captures on falling edge.
///     - `Timer.BOTH` - captures on both edges.
///
/// PWM Example:
///
///     timer = pyb.Timer(2, freq=1000)
///     ch2 = timer.channel(2, pyb.Timer.PWM, pin=pyb.Pin.board.X2, pulse_width=210000)
///     ch3 = timer.channel(3, pyb.Timer.PWM, pin=pyb.Pin.board.X3, pulse_width=420000)
STATIC const mp_arg_t pyb_timer_channel_args[] = {
600
601
    { MP_QSTR_callback,            MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
    { MP_QSTR_pin,                 MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
602
    { MP_QSTR_pulse_width,         MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
603
604
605
    { MP_QSTR_pulse_width_percent, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
    { MP_QSTR_compare,             MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
    { MP_QSTR_polarity,            MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
};
#define PYB_TIMER_CHANNEL_NUM_ARGS MP_ARRAY_SIZE(pyb_timer_channel_args)

STATIC mp_obj_t pyb_timer_channel(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
    pyb_timer_obj_t *self = args[0];
    mp_int_t channel = mp_obj_get_int(args[1]);

    if (channel < 1 || channel > 4) {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Invalid channel (%d)", channel));
    }

    pyb_timer_channel_obj_t *chan = self->channel;
    pyb_timer_channel_obj_t *prev_chan = NULL;

    while (chan != NULL) {
        if (chan->channel == channel) {
            break;
        }
        prev_chan = chan;
        chan = chan->next;
    }
627
628
629
630

    // If only the channel number is given return the previously allocated
    // channel (or None if no previous channel).
    if (n_args == 2) {
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
        if (chan) {
            return chan;
        }
        return mp_const_none;
    }

    // If there was already a channel, then remove it from the list. Note that
    // the order we do things here is important so as to appear atomic to
    // the IRQ handler.
    if (chan) {
        // Turn off any IRQ associated with the channel.
        pyb_timer_channel_callback(chan, mp_const_none);

        // Unlink the channel from the list.
        if (prev_chan) {
            prev_chan->next = chan->next;
        }
        self->channel = chan->next;
        chan->next = NULL;
    }

    // Allocate and initialize a new channel
    mp_arg_val_t vals[PYB_TIMER_CHANNEL_NUM_ARGS];
    mp_arg_parse_all(n_args - 3, args + 3, kw_args, PYB_TIMER_CHANNEL_NUM_ARGS, pyb_timer_channel_args, vals);

    chan = m_new_obj(pyb_timer_channel_obj_t);
    memset(chan, 0, sizeof(*chan));
    chan->base.type = &pyb_timer_channel_type;
    chan->timer = self;
    chan->channel = channel;
    chan->mode = mp_obj_get_int(args[2]);
    chan->callback = vals[0].u_obj;

    mp_obj_t pin_obj = vals[1].u_obj;
    if (pin_obj != mp_const_none) {
        if (!MP_OBJ_IS_TYPE(pin_obj, &pin_type)) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "pin argument needs to be be a Pin type"));
        }
        const pin_obj_t *pin = pin_obj;
        const pin_af_obj_t *af = pin_find_af(pin, AF_FN_TIM, self->tim_id);
        if (af == NULL) {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %s doesn't have an af for TIM%d", qstr_str(pin->name), self->tim_id));
        }
        // pin.init(mode=AF_PP, af=idx)
        const mp_obj_t args[6] = {
            (mp_obj_t)&pin_init_obj,
            pin_obj,
            MP_OBJ_NEW_QSTR(MP_QSTR_mode),  MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_PP),
            MP_OBJ_NEW_QSTR(MP_QSTR_af),    MP_OBJ_NEW_SMALL_INT(af->idx)
        };
        mp_call_method_n_kw(0, 2, args);
    }

    // Link the channel to the timer before we turn the channel on.
    // Note that this needs to appear atomic to the IRQ handler (the write
    // to self->channel is atomic, so we're good, but I thought I'd mention
    // in case this was ever changed in the future).
    chan->next = self->channel;
    self->channel = chan;

    switch (chan->mode) {

        case CHANNEL_MODE_PWM_NORMAL:
        case CHANNEL_MODE_PWM_INVERTED: {
            TIM_OC_InitTypeDef oc_config;
696
            oc_config.OCMode = channel_mode_info[chan->mode].oc_mode;
697
            if (vals[3].u_obj != mp_const_none) {
698
                // pulse width percent given
699
                uint32_t period = (__HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self)) + 1;
700
701
702
703
704
                // For 32-bit timer, maximum period + 1 will overflow.  In that
                // case we set the period back to 0xffffffff which will give very
                // close to the correct result for the percentage calculation.
                if (period == 0) {
                    period = 0xffffffff;
705
                }
706
                oc_config.Pulse = compute_pwm_value_from_percent(period, vals[3].u_obj);
707
            } else {
708
709
                // use absolute pulse width value (defaults to 0 if nothing given)
                oc_config.Pulse = vals[2].u_int;
710
            }
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
            oc_config.OCPolarity   = TIM_OCPOLARITY_HIGH;
            oc_config.OCNPolarity  = TIM_OCNPOLARITY_HIGH;
            oc_config.OCFastMode   = TIM_OCFAST_DISABLE;
            oc_config.OCIdleState  = TIM_OCIDLESTATE_SET;
            oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;

            HAL_TIM_PWM_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan));
            if (chan->callback == mp_const_none) {
                HAL_TIM_PWM_Start(&self->tim, TIMER_CHANNEL(chan));
            } else {
                HAL_TIM_PWM_Start_IT(&self->tim, TIMER_CHANNEL(chan));
            }
            break;
        }

        case CHANNEL_MODE_OC_TIMING:
        case CHANNEL_MODE_OC_ACTIVE:
        case CHANNEL_MODE_OC_INACTIVE:
        case CHANNEL_MODE_OC_TOGGLE:
        case CHANNEL_MODE_OC_FORCED_ACTIVE:
        case CHANNEL_MODE_OC_FORCED_INACTIVE: {
            TIM_OC_InitTypeDef oc_config;
733
734
735
            oc_config.OCMode       = channel_mode_info[chan->mode].oc_mode;
            oc_config.Pulse        = vals[4].u_int;
            oc_config.OCPolarity   = vals[5].u_int;
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
            if (oc_config.OCPolarity == 0xffffffff) {
                oc_config.OCPolarity = TIM_OCPOLARITY_HIGH;
            }
            oc_config.OCNPolarity  = TIM_OCNPOLARITY_HIGH;
            oc_config.OCFastMode   = TIM_OCFAST_DISABLE;
            oc_config.OCIdleState  = TIM_OCIDLESTATE_SET;
            oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;

            if (!IS_TIM_OC_POLARITY(oc_config.OCPolarity)) {
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Invalid polarity (%d)", oc_config.OCPolarity));
            }
            HAL_TIM_OC_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan));
            if (chan->callback == mp_const_none) {
                HAL_TIM_OC_Start(&self->tim, TIMER_CHANNEL(chan));
            } else {
                HAL_TIM_OC_Start_IT(&self->tim, TIMER_CHANNEL(chan));
            }
            break;
        }

        case CHANNEL_MODE_IC: {
            TIM_IC_InitTypeDef ic_config;

759
            ic_config.ICPolarity  = vals[5].u_int;
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
            if (ic_config.ICPolarity == 0xffffffff) {
                ic_config.ICPolarity = TIM_ICPOLARITY_RISING;
            }
            ic_config.ICSelection = TIM_ICSELECTION_DIRECTTI;
            ic_config.ICPrescaler = TIM_ICPSC_DIV1;
            ic_config.ICFilter    = 0;

            if (!IS_TIM_IC_POLARITY(ic_config.ICPolarity)) {
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Invalid polarity (%d)", ic_config.ICPolarity));
            }
            HAL_TIM_IC_ConfigChannel(&self->tim, &ic_config, TIMER_CHANNEL(chan));
            if (chan->callback == mp_const_none) {
                HAL_TIM_IC_Start(&self->tim, TIMER_CHANNEL(chan));
            } else {
                HAL_TIM_IC_Start_IT(&self->tim, TIMER_CHANNEL(chan));
            }
            break;
        }

        default:
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Invalid mode (%d)", chan->mode));
    }

    return chan;
}
785
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_channel_obj, 2, pyb_timer_channel);
786

787
788
/// \method counter([value])
/// Get or set the timer counter.
789
STATIC mp_obj_t pyb_timer_counter(mp_uint_t n_args, const mp_obj_t *args) {
790
791
792
793
794
795
796
797
798
799
800
801
    pyb_timer_obj_t *self = args[0];
    if (n_args == 1) {
        // get
        return mp_obj_new_int(self->tim.Instance->CNT);
    } else {
        // set
        __HAL_TIM_SetCounter(&self->tim, mp_obj_get_int(args[1]));
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_counter_obj, 1, 2, pyb_timer_counter);

802
803
/// \method prescaler([value])
/// Get or set the prescaler for the timer.
804
STATIC mp_obj_t pyb_timer_prescaler(mp_uint_t n_args, const mp_obj_t *args) {
805
806
807
808
809
810
811
812
813
814
815
816
    pyb_timer_obj_t *self = args[0];
    if (n_args == 1) {
        // get
        return mp_obj_new_int(self->tim.Instance->PSC & 0xffff);
    } else {
        // set
        self->tim.Init.Prescaler = self->tim.Instance->PSC = mp_obj_get_int(args[1]) & 0xffff;
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_prescaler_obj, 1, 2, pyb_timer_prescaler);

817
818
/// \method period([value])
/// Get or set the period of the timer.
819
STATIC mp_obj_t pyb_timer_period(mp_uint_t n_args, const mp_obj_t *args) {
820
821
822
    pyb_timer_obj_t *self = args[0];
    if (n_args == 1) {
        // get
823
        return mp_obj_new_int(__HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self));
824
825
    } else {
        // set
826
        __HAL_TIM_SetAutoreload(&self->tim, mp_obj_get_int(args[1]) & TIMER_CNT_MASK(self));
827
828
829
830
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_period_obj, 1, 2, pyb_timer_period);
831

832
833
834
835
/// \method callback(fun)
/// Set the function to be called when the timer triggers.
/// `fun` is passed 1 argument, the timer object.
/// If `fun` is `None` then the callback will be disabled.
836
837
838
839
840
841
842
843
844
845
846
847
848
STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback) {
    pyb_timer_obj_t *self = self_in;
    if (callback == mp_const_none) {
        // stop interrupt (but not timer)
        __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
        self->callback = mp_const_none;
    } else if (mp_obj_is_callable(callback)) {
        self->callback = callback;
        HAL_NVIC_EnableIRQ(self->irqn);
        // start timer, so that it interrupts on overflow
        HAL_TIM_Base_Start_IT(&self->tim);
    } else {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "callback must be None or a callable object"));
849
    }
850
    return mp_const_none;
851
}
852
853
854
855
856
857
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_callback_obj, pyb_timer_callback);

STATIC const mp_map_elem_t pyb_timer_locals_dict_table[] = {
    // instance methods
    { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_timer_init_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_timer_deinit_obj },
858
    { MP_OBJ_NEW_QSTR(MP_QSTR_channel), (mp_obj_t)&pyb_timer_channel_obj },
859
860
861
862
    { MP_OBJ_NEW_QSTR(MP_QSTR_counter), (mp_obj_t)&pyb_timer_counter_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_prescaler), (mp_obj_t)&pyb_timer_prescaler_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_period), (mp_obj_t)&pyb_timer_period_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&pyb_timer_callback_obj },
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
    { MP_OBJ_NEW_QSTR(MP_QSTR_UP),                  MP_OBJ_NEW_SMALL_INT(TIM_COUNTERMODE_UP) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_DOWN),                MP_OBJ_NEW_SMALL_INT(TIM_COUNTERMODE_DOWN) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_CENTER),              MP_OBJ_NEW_SMALL_INT(TIM_COUNTERMODE_CENTERALIGNED1) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_PWM),                 MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_PWM_NORMAL) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_PWM_INVERTED),        MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_PWM_INVERTED) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_TIMING),           MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_TIMING) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_ACTIVE),           MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_ACTIVE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_INACTIVE),         MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_INACTIVE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_TOGGLE),           MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_TOGGLE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_FORCED_ACTIVE),    MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_FORCED_ACTIVE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_FORCED_INACTIVE),  MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_FORCED_INACTIVE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_IC),                  MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_IC) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_HIGH),                MP_OBJ_NEW_SMALL_INT(TIM_OCPOLARITY_HIGH) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_LOW),                 MP_OBJ_NEW_SMALL_INT(TIM_OCPOLARITY_LOW) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_RISING),              MP_OBJ_NEW_SMALL_INT(TIM_ICPOLARITY_RISING) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_FALLING),             MP_OBJ_NEW_SMALL_INT(TIM_ICPOLARITY_FALLING) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_BOTH),                MP_OBJ_NEW_SMALL_INT(TIM_ICPOLARITY_BOTHEDGE) },
880
881
882
883
884
885
886
887
888
889
890
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_locals_dict, pyb_timer_locals_dict_table);

const mp_obj_type_t pyb_timer_type = {
    { &mp_type_type },
    .name = MP_QSTR_Timer,
    .print = pyb_timer_print,
    .make_new = pyb_timer_make_new,
    .locals_dict = (mp_obj_t)&pyb_timer_locals_dict,
};

891
892
893
894
895
896
897
898
899
900
901
902
/// \moduleref pyb
/// \class TimerChannel - setup a channel for a timer.
///
/// Timer channels are used to generate/capture a signal using a timer.
///
/// TimerChannel objects are created using the Timer.channel() method.
STATIC void pyb_timer_channel_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
    pyb_timer_channel_obj_t *self = self_in;

    print(env, "TimerChannel(timer=%u, channel=%u, mode=%s)",
          self->timer->tim_id,
          self->channel,
903
          qstr_str(channel_mode_info[self->mode].name));
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
}

/// \method capture([value])
/// Get or set the capture value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// capture is the logical name to use when the channel is in input capture mode.

/// \method compare([value])
/// Get or set the compare value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// compare is the logical name to use when the channel is in output compare mode.

/// \method pulse_width([value])
/// Get or set the pulse width value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// pulse_width is the logical name to use when the channel is in PWM mode.
920
STATIC mp_obj_t pyb_timer_channel_capture_compare(mp_uint_t n_args, const mp_obj_t *args) {
921
922
923
924
925
926
927
928
929
930
931
932
    pyb_timer_channel_obj_t *self = args[0];
    if (n_args == 1) {
        // get
        return mp_obj_new_int(__HAL_TIM_GetCompare(&self->timer->tim, TIMER_CHANNEL(self)) & TIMER_CNT_MASK(self->timer));
    } else {
        // set
        __HAL_TIM_SetCompare(&self->timer->tim, TIMER_CHANNEL(self), mp_obj_get_int(args[1]) & TIMER_CNT_MASK(self->timer));
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_capture_compare_obj, 1, 2, pyb_timer_channel_capture_compare);

933
934
935
936
937
938
/// \method pulse_width_percent([value])
/// Get or set the pulse width percentage associated with a channel.  The value
/// is a number between 0 and 100 and sets the percentage of the timer period
/// for which the pulse is active.  The value can be an integer or
/// floating-point number for more accuracy.  For example, a value of 25 gives
/// a duty cycle of 25%.
939
STATIC mp_obj_t pyb_timer_channel_pulse_width_percent(mp_uint_t n_args, const mp_obj_t *args) {
940
941
    pyb_timer_channel_obj_t *self = args[0];
    uint32_t period = (__HAL_TIM_GetAutoreload(&self->timer->tim) & TIMER_CNT_MASK(self->timer)) + 1;
942
943
944
945
946
947
    // For 32-bit timer, maximum period + 1 will overflow.  In that case we set
    // the period back to 0xffffffff which will give very close to the correct
    // result for the percentage calculation.
    if (period == 0) {
        period = 0xffffffff;
    }
948
949
950
    if (n_args == 1) {
        // get
        uint32_t cmp = __HAL_TIM_GetCompare(&self->timer->tim, TIMER_CHANNEL(self)) & TIMER_CNT_MASK(self->timer);
951
952
953
954
        #if MICROPY_PY_BUILTINS_FLOAT
        return mp_obj_new_float((float)cmp / (float)period * 100.0);
        #else
        // TODO handle overflow of multiplication for 32-bit timer
955
        return mp_obj_new_int(cmp * 100 / period);
956
        #endif
957
958
    } else {
        // set
959
        uint32_t cmp = compute_pwm_value_from_percent(period, args[1]);
960
961
962
963
        __HAL_TIM_SetCompare(&self->timer->tim, TIMER_CHANNEL(self), cmp & TIMER_CNT_MASK(self->timer));
        return mp_const_none;
    }
}
964
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_pulse_width_percent_obj, 1, 2, pyb_timer_channel_pulse_width_percent);
965

966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
/// \method callback(fun)
/// Set the function to be called when the timer channel triggers.
/// `fun` is passed 1 argument, the timer object.
/// If `fun` is `None` then the callback will be disabled.
STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback) {
    pyb_timer_channel_obj_t *self = self_in;
    if (callback == mp_const_none) {
        // stop interrupt (but not timer)
        __HAL_TIM_DISABLE_IT(&self->timer->tim, TIMER_IRQ_MASK(self->channel));
        self->callback = mp_const_none;
    } else if (mp_obj_is_callable(callback)) {
        self->callback = callback;
        HAL_NVIC_EnableIRQ(self->timer->irqn);
        // start timer, so that it interrupts on overflow
        switch (self->mode) {
            case CHANNEL_MODE_PWM_NORMAL:
            case CHANNEL_MODE_PWM_INVERTED:
                HAL_TIM_PWM_Start_IT(&self->timer->tim, TIMER_CHANNEL(self));
                break;
            case CHANNEL_MODE_OC_TIMING:
            case CHANNEL_MODE_OC_ACTIVE:
            case CHANNEL_MODE_OC_INACTIVE:
            case CHANNEL_MODE_OC_TOGGLE:
            case CHANNEL_MODE_OC_FORCED_ACTIVE:
            case CHANNEL_MODE_OC_FORCED_INACTIVE:
                HAL_TIM_OC_Start_IT(&self->timer->tim, TIMER_CHANNEL(self));
                break;
            case CHANNEL_MODE_IC:
                HAL_TIM_IC_Start_IT(&self->timer->tim, TIMER_CHANNEL(self));
                break;
        }
    } else {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "callback must be None or a callable object"));
    }
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_channel_callback_obj, pyb_timer_channel_callback);

STATIC const mp_map_elem_t pyb_timer_channel_locals_dict_table[] = {
    // instance methods
    { MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&pyb_timer_channel_callback_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_pulse_width), (mp_obj_t)&pyb_timer_channel_capture_compare_obj },
1008
    { MP_OBJ_NEW_QSTR(MP_QSTR_pulse_width_percent), (mp_obj_t)&pyb_timer_channel_pulse_width_percent_obj },
1009
1010
1011
1012
1013
    { MP_OBJ_NEW_QSTR(MP_QSTR_capture), (mp_obj_t)&pyb_timer_channel_capture_compare_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_compare), (mp_obj_t)&pyb_timer_channel_capture_compare_obj },
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_channel_locals_dict, pyb_timer_channel_locals_dict_table);

1014
STATIC const mp_obj_type_t pyb_timer_channel_type = {
1015
1016
1017
1018
1019
1020
    { &mp_type_type },
    .name = MP_QSTR_TimerChannel,
    .print = pyb_timer_channel_print,
    .locals_dict = (mp_obj_t)&pyb_timer_channel_locals_dict,
};

1021
STATIC void timer_handle_irq_channel(pyb_timer_obj_t *tim, uint8_t channel, mp_obj_t callback) {
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
    uint32_t irq_mask = TIMER_IRQ_MASK(channel);

    if (__HAL_TIM_GET_FLAG(&tim->tim, irq_mask) != RESET) {
        if (__HAL_TIM_GET_ITSTATUS(&tim->tim, irq_mask) != RESET) {
            // clear the interrupt
            __HAL_TIM_CLEAR_IT(&tim->tim, irq_mask);

            // execute callback if it's set
            if (callback != mp_const_none) {
                // When executing code within a handler we must lock the GC to prevent
                // any memory allocations.  We must also catch any exceptions.
                gc_lock();
                nlr_buf_t nlr;
                if (nlr_push(&nlr) == 0) {
                    mp_call_function_1(callback, tim);
                    nlr_pop();
                } else {
                    // Uncaught exception; disable the callback so it doesn't run again.
                    tim->callback = mp_const_none;
                    __HAL_TIM_DISABLE_IT(&tim->tim, irq_mask);
                    if (channel == 0) {
                        printf("Uncaught exception in Timer(" UINT_FMT
                               ") interrupt handler\n", tim->tim_id);
                    } else {
                        printf("Uncaught exception in Timer(" UINT_FMT ") channel "
                               UINT_FMT " interrupt handler\n", tim->tim_id, channel);
                    }
                    mp_obj_print_exception((mp_obj_t)nlr.ret_val);
                }
                gc_unlock();
            }
        }
    }
}

1057
1058
1059
1060
1061
1062
void timer_irq_handler(uint tim_id) {
    if (tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) {
        // get the timer object
        pyb_timer_obj_t *tim = pyb_timer_obj_all[tim_id - 1];

        if (tim == NULL) {
1063
1064
1065
            // Timer object has not been set, so we can't do anything.
            // This can happen under normal circumstances for timers like
            // 1 & 10 which use the same IRQ.
1066
1067
            return;
        }
1068

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
        // Check for timer (versus timer channel) interrupt.
        timer_handle_irq_channel(tim, 0, tim->callback);
        uint32_t handled = TIMER_IRQ_MASK(0);

        // Check to see if a timer channel interrupt was pending
        pyb_timer_channel_obj_t *chan = tim->channel;
        while (chan != NULL) {
            timer_handle_irq_channel(tim, chan->channel, chan->callback);
            handled |= TIMER_IRQ_MASK(chan->channel);
            chan = chan->next;
        }

        // Finally, clear any remaining interrupt sources. Otherwise we'll
        // just get called continuously.
        uint32_t unhandled = __HAL_TIM_GET_ITSTATUS(&tim->tim, 0xff & ~handled);
        if (unhandled != 0) {
            __HAL_TIM_CLEAR_IT(&tim->tim, unhandled);
            printf("Unhandled interrupt SR=0x%02lx (now disabled)\n", unhandled);
1087
        }
1088
1089
    }
}