modpyb.c 22.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27
28
29
#include <stdint.h>
#include <stdio.h>

30
#include "stm32f4xx_hal.h"
31

32
#include "py/mpstate.h"
33
34
35
#include "py/nlr.h"
#include "py/obj.h"
#include "py/gc.h"
36
#include "gccollect.h"
Dave Hylands's avatar
Dave Hylands committed
37
#include "irq.h"
38
39
#include "systick.h"
#include "pyexec.h"
40
#include "led.h"
41
#include "pin.h"
42
#include "timer.h"
43
#include "extint.h"
44
#include "usrsw.h"
45
#include "rng.h"
46
#include "rtc.h"
Damien George's avatar
Damien George committed
47
48
#include "i2c.h"
#include "spi.h"
Damien George's avatar
Damien George committed
49
#include "uart.h"
50
#include "can.h"
Dave Hylands's avatar
Dave Hylands committed
51
#include "adc.h"
52
#include "storage.h"
Damien George's avatar
Damien George committed
53
#include "sdcard.h"
54
#include "accel.h"
55
#include "servo.h"
Damien George's avatar
Damien George committed
56
#include "dac.h"
57
#include "lcd.h"
58
#include "usb.h"
59
#include "pybstdio.h"
60
#include "ff.h"
61
62
#include "diskio.h"
#include "fsusermount.h"
63
#include "portmodules.h"
64

65
66
67
68
/// \module pyb - functions related to the pyboard
///
/// The `pyb` module contains specific functions related to the pyboard.

69
70
/// \function bootloader()
/// Activate the bootloader without BOOT* pins.
71
STATIC NORETURN mp_obj_t pyb_bootloader(void) {
72
    pyb_usb_dev_stop();
73
74
75
76
77
    storage_flush();

    HAL_RCC_DeInit();
    HAL_DeInit();

78
    __HAL_REMAPMEMORY_SYSTEMFLASH();
79
80
81
82
83
84

    // arm-none-eabi-gcc 4.9.0 does not correctly inline this
    // MSP function, so we write it out explicitly here.
    //__set_MSP(*((uint32_t*) 0x00000000));
    __ASM volatile ("movs r3, #0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp");

85
    ((void (*)(void)) *((uint32_t*) 0x00000004))();
86
87
88

    while (1);
}
89
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_bootloader_obj, pyb_bootloader);
90

91
92
93
94
95
96
97
98
99
/// \function hard_reset()
/// Resets the pyboard in a manner similar to pushing the external RESET
/// button.
STATIC mp_obj_t pyb_hard_reset(void) {
    NVIC_SystemReset();
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_hard_reset_obj, pyb_hard_reset);

100
101
/// \function info([dump_alloc_table])
/// Print out lots of information about the board.
102
STATIC mp_obj_t pyb_info(mp_uint_t n_args, const mp_obj_t *args) {
103
104
105
106
107
108
109
110
111
    // get and print unique id; 96 bits
    {
        byte *id = (byte*)0x1fff7a10;
        printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
    }

    // get and print clock speeds
    // SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
    {
112
        printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n",
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
               HAL_RCC_GetSysClockFreq(),
               HAL_RCC_GetHCLKFreq(),
               HAL_RCC_GetPCLK1Freq(),
               HAL_RCC_GetPCLK2Freq());
    }

    // to print info about memory
    {
        printf("_etext=%p\n", &_etext);
        printf("_sidata=%p\n", &_sidata);
        printf("_sdata=%p\n", &_sdata);
        printf("_edata=%p\n", &_edata);
        printf("_sbss=%p\n", &_sbss);
        printf("_ebss=%p\n", &_ebss);
        printf("_estack=%p\n", &_estack);
        printf("_ram_start=%p\n", &_ram_start);
        printf("_heap_start=%p\n", &_heap_start);
        printf("_heap_end=%p\n", &_heap_end);
        printf("_ram_end=%p\n", &_ram_end);
    }

    // qstr info
    {
136
        mp_uint_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
137
        qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
138
        printf("qstr:\n  n_pool=" UINT_FMT "\n  n_qstr=" UINT_FMT "\n  n_str_data_bytes=" UINT_FMT "\n  n_total_bytes=" UINT_FMT "\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
139
140
141
142
143
144
145
    }

    // GC info
    {
        gc_info_t info;
        gc_info(&info);
        printf("GC:\n");
146
147
148
        printf("  " UINT_FMT " total\n", info.total);
        printf("  " UINT_FMT " : " UINT_FMT "\n", info.used, info.free);
        printf("  1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block);
149
150
151
152
153
154
    }

    // free space on flash
    {
        DWORD nclst;
        FATFS *fatfs;
155
        f_getfree("/flash", &nclst, &fatfs);
156
157
158
        printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512));
    }

159
160
161
162
163
    if (n_args == 1) {
        // arg given means dump gc allocation table
        gc_dump_alloc_table();
    }

164
165
    return mp_const_none;
}
166
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_info_obj, 0, 1, pyb_info);
167

168
169
/// \function unique_id()
/// Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU.
170
171
172
173
174
175
STATIC mp_obj_t pyb_unique_id(void) {
    byte *id = (byte*)0x1fff7a10;
    return mp_obj_new_bytes(id, 12);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_unique_id_obj, pyb_unique_id);

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
// get or set the MCU frequencies
STATIC mp_uint_t pyb_freq_calc_ahb_div(mp_uint_t wanted_div) {
    if (wanted_div <= 1) { return RCC_SYSCLK_DIV1; }
    else if (wanted_div <= 2) { return RCC_SYSCLK_DIV2; }
    else if (wanted_div <= 4) { return RCC_SYSCLK_DIV4; }
    else if (wanted_div <= 8) { return RCC_SYSCLK_DIV8; }
    else if (wanted_div <= 16) { return RCC_SYSCLK_DIV16; }
    else if (wanted_div <= 64) { return RCC_SYSCLK_DIV64; }
    else if (wanted_div <= 128) { return RCC_SYSCLK_DIV128; }
    else if (wanted_div <= 256) { return RCC_SYSCLK_DIV256; }
    else { return RCC_SYSCLK_DIV512; }
}
STATIC mp_uint_t pyb_freq_calc_apb_div(mp_uint_t wanted_div) {
    if (wanted_div <= 1) { return RCC_HCLK_DIV1; }
    else if (wanted_div <= 2) { return RCC_HCLK_DIV2; }
    else if (wanted_div <= 4) { return RCC_HCLK_DIV4; }
    else if (wanted_div <= 8) { return RCC_HCLK_DIV8; }
    else { return RCC_SYSCLK_DIV16; }
}
195
196
197
198
199
200
201
202
203
204
205
206
207
208
STATIC mp_obj_t pyb_freq(mp_uint_t n_args, const mp_obj_t *args) {
    if (n_args == 0) {
        // get
        mp_obj_t tuple[4] = {
           mp_obj_new_int(HAL_RCC_GetSysClockFreq()),
           mp_obj_new_int(HAL_RCC_GetHCLKFreq()),
           mp_obj_new_int(HAL_RCC_GetPCLK1Freq()),
           mp_obj_new_int(HAL_RCC_GetPCLK2Freq()),
        };
        return mp_obj_new_tuple(4, tuple);
    } else {
        // set
        mp_int_t wanted_sysclk = mp_obj_get_int(args[0]) / 1000000;

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        // default PLL parameters that give 48MHz on PLL48CK
        uint32_t m = HSE_VALUE / 1000000, n = 336, p = 2, q = 7;
        uint32_t sysclk_source;

        // the following logic assumes HSE < HSI
        if (HSE_VALUE / 1000000 <= wanted_sysclk && wanted_sysclk < HSI_VALUE / 1000000) {
            // use HSE as SYSCLK
            sysclk_source = RCC_SYSCLKSOURCE_HSE;
        } else if (HSI_VALUE / 1000000 <= wanted_sysclk && wanted_sysclk < 24) {
            // use HSI as SYSCLK
            sysclk_source = RCC_SYSCLKSOURCE_HSI;
        } else {
            // search for a valid PLL configuration that keeps USB at 48MHz
            for (; wanted_sysclk > 0; wanted_sysclk--) {
                for (p = 2; p <= 8; p += 2) {
                    // compute VCO_OUT
                    mp_uint_t vco_out = wanted_sysclk * p;
                    // make sure VCO_OUT is between 192MHz and 432MHz
                    if (vco_out < 192 || vco_out > 432) {
                        continue;
                    }
                    // make sure Q is an integer
                    if (vco_out % 48 != 0) {
                        continue;
                    }
                    // solve for Q to get PLL48CK at 48MHz
                    q = vco_out / 48;
                    // make sure Q is in range
                    if (q < 2 || q > 15) {
                        continue;
                    }
                    // make sure N/M is an integer
                    if (vco_out % (HSE_VALUE / 1000000) != 0) {
                        continue;
                    }
                    // solve for N/M
                    mp_uint_t n_by_m = vco_out / (HSE_VALUE / 1000000);
                    // solve for M, making sure VCO_IN (=HSE/M) is between 1MHz and 2MHz
                    m = 192 / n_by_m;
                    while (m < (HSE_VALUE / 2000000) || n_by_m * m < 192) {
                        m += 1;
                    }
                    if (m > (HSE_VALUE / 1000000)) {
                        continue;
                    }
                    // solve for N
                    n = n_by_m * m;
                    // make sure N is in range
                    if (n < 192 || n > 432) {
                        continue;
                    }

                    // found values!
                    sysclk_source = RCC_SYSCLKSOURCE_PLLCLK;
                    goto set_clk;
264
                }
265
266
267
            }
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "can't make valid freq"));
        }
268

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
    set_clk:
        //printf("%lu %lu %lu %lu %lu\n", sysclk_source, m, n, p, q);

        // let the USB CDC have a chance to process before we change the clock
        HAL_Delay(USBD_CDC_POLLING_INTERVAL + 2);

        // desired system clock source is in sysclk_source
        RCC_ClkInitTypeDef RCC_ClkInitStruct;
        RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
        if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) {
            // set HSE as system clock source to allow modification of the PLL configuration
            // we then change to PLL after re-configuring PLL
            RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;
        } else {
            // directly set the system clock source as desired
            RCC_ClkInitStruct.SYSCLKSource = sysclk_source;
        }
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
        wanted_sysclk *= 1000000;
        if (n_args >= 2) {
            // note: AHB freq required to be >= 14.2MHz for USB operation
            RCC_ClkInitStruct.AHBCLKDivider = pyb_freq_calc_ahb_div(wanted_sysclk / mp_obj_get_int(args[1]));
        } else {
            RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
        }
        if (n_args >= 3) {
            RCC_ClkInitStruct.APB1CLKDivider = pyb_freq_calc_apb_div(wanted_sysclk / mp_obj_get_int(args[2]));
        } else {
            RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
        }
        if (n_args >= 4) {
            RCC_ClkInitStruct.APB2CLKDivider = pyb_freq_calc_apb_div(wanted_sysclk / mp_obj_get_int(args[3]));
        } else {
            RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
        }
303
304
305
        if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) {
            goto fail;
        }
306

307
308
309
310
311
312
313
314
315
316
317
318
319
320
        // re-configure PLL
        // even if we don't use the PLL for the system clock, we still need it for USB, RNG and SDIO
        RCC_OscInitTypeDef RCC_OscInitStruct;
        RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
        RCC_OscInitStruct.HSEState = RCC_HSE_ON;
        RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
        RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
        RCC_OscInitStruct.PLL.PLLM = m;
        RCC_OscInitStruct.PLL.PLLN = n;
        RCC_OscInitStruct.PLL.PLLP = p;
        RCC_OscInitStruct.PLL.PLLQ = q;
        if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
            goto fail;
        }
321

322
323
324
325
326
327
        // set PLL as system clock source if wanted
        if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) {
            RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
            RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
            if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) {
                goto fail;
328
329
            }
        }
330
331
332
333
334
335
336
337
338

        // re-init TIM3 for USB CDC rate
        timer_tim3_init();

        return mp_const_none;

    fail:;
        void NORETURN __fatal_error(const char *msg);
        __fatal_error("can't change freq");
339
    }
340
}
341
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_freq_obj, 0, 4, pyb_freq);
342

343
344
/// \function sync()
/// Sync all file systems.
345
346
STATIC mp_obj_t pyb_sync(void) {
    storage_flush();
347
    disk_ioctl(2, CTRL_SYNC, NULL);
348
349
350
351
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_sync_obj, pyb_sync);

352
353
/// \function millis()
/// Returns the number of milliseconds since the board was last reset.
354
///
355
356
357
/// The result is always a micropython smallint (31-bit signed number), so
/// after 2^30 milliseconds (about 12.4 days) this will start to return
/// negative numbers.
358
STATIC mp_obj_t pyb_millis(void) {
359
360
361
362
    // We want to "cast" the 32 bit unsigned into a small-int.  This means
    // copying the MSB down 1 bit (extending the sign down), which is
    // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
    return MP_OBJ_NEW_SMALL_INT(HAL_GetTick());
363
364
365
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_millis_obj, pyb_millis);

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
/// \function elapsed_millis(start)
/// Returns the number of milliseconds which have elapsed since `start`.
///
/// This function takes care of counter wrap, and always returns a positive
/// number. This means it can be used to measure periods upto about 12.4 days.
///
/// Example:
///     start = pyb.millis()
///     while pyb.elapsed_millis(start) < 1000:
///         # Perform some operation
STATIC mp_obj_t pyb_elapsed_millis(mp_obj_t start) {
    uint32_t startMillis = mp_obj_get_int(start);
    uint32_t currMillis = HAL_GetTick();
    return MP_OBJ_NEW_SMALL_INT((currMillis - startMillis) & 0x3fffffff);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_millis_obj, pyb_elapsed_millis);

383
384
385
/// \function micros()
/// Returns the number of microseconds since the board was last reset.
///
386
387
388
/// The result is always a micropython smallint (31-bit signed number), so
/// after 2^30 microseconds (about 17.8 minutes) this will start to return
/// negative numbers.
389
STATIC mp_obj_t pyb_micros(void) {
390
391
392
393
    // We want to "cast" the 32 bit unsigned into a small-int.  This means
    // copying the MSB down 1 bit (extending the sign down), which is
    // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
    return MP_OBJ_NEW_SMALL_INT(sys_tick_get_microseconds());
394
395
396
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_micros_obj, pyb_micros);

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
/// \function elapsed_micros(start)
/// Returns the number of microseconds which have elapsed since `start`.
///
/// This function takes care of counter wrap, and always returns a positive
/// number. This means it can be used to measure periods upto about 17.8 minutes.
///
/// Example:
///     start = pyb.micros()
///     while pyb.elapsed_micros(start) < 1000:
///         # Perform some operation
STATIC mp_obj_t pyb_elapsed_micros(mp_obj_t start) {
    uint32_t startMicros = mp_obj_get_int(start);
    uint32_t currMicros = sys_tick_get_microseconds();
    return MP_OBJ_NEW_SMALL_INT((currMicros - startMicros) & 0x3fffffff);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_micros_obj, pyb_elapsed_micros);

414
415
/// \function delay(ms)
/// Delay for the given number of milliseconds.
416
STATIC mp_obj_t pyb_delay(mp_obj_t ms_in) {
417
    mp_int_t ms = mp_obj_get_int(ms_in);
418
419
420
    if (ms >= 0) {
        HAL_Delay(ms);
    }
421
422
423
424
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_delay_obj, pyb_delay);

425
426
/// \function udelay(us)
/// Delay for the given number of microseconds.
427
STATIC mp_obj_t pyb_udelay(mp_obj_t usec_in) {
428
    mp_int_t usec = mp_obj_get_int(usec_in);
429
    if (usec > 0) {
430
        sys_tick_udelay(usec);
431
    }
432
    return mp_const_none;
433
434
435
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_udelay_obj, pyb_udelay);

436
437
438
/// \function stop()
STATIC mp_obj_t pyb_stop(void) {
    HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);
439

440
    // reconfigure the system clock after waking up
441

442
443
444
    // enable HSE
    __HAL_RCC_HSE_CONFIG(RCC_HSE_ON);
    while (!__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY)) {
445
446
    }

447
448
449
    // enable PLL
    __HAL_RCC_PLL_ENABLE();
    while (!__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)) {
450
451
    }

452
453
454
455
    // select PLL as system clock source
    MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK);
    while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) {
    }
456
457
458
459
460

    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_stop_obj, pyb_stop);

461
/// \function standby()
462
STATIC mp_obj_t pyb_standby(void) {
463
    HAL_PWR_EnterSTANDBYMode();
464
465
466
467
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_standby_obj, pyb_standby);

468
469
/// \function have_cdc()
/// Return True if USB is connected as a serial device, False otherwise.
470
471
472
473
474
STATIC mp_obj_t pyb_have_cdc(void ) {
    return MP_BOOL(usb_vcp_is_connected());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_have_cdc_obj, pyb_have_cdc);

475
476
/// \function repl_uart(uart)
/// Get or set the UART object that the REPL is repeated on.
477
STATIC mp_obj_t pyb_repl_uart(mp_uint_t n_args, const mp_obj_t *args) {
478
    if (n_args == 0) {
479
        if (MP_STATE_PORT(pyb_stdio_uart) == NULL) {
480
481
            return mp_const_none;
        } else {
482
            return MP_STATE_PORT(pyb_stdio_uart);
483
484
485
        }
    } else {
        if (args[0] == mp_const_none) {
486
            MP_STATE_PORT(pyb_stdio_uart) = NULL;
487
        } else if (mp_obj_get_type(args[0]) == &pyb_uart_type) {
488
            MP_STATE_PORT(pyb_stdio_uart) = args[0];
489
490
491
492
493
494
495
496
        } else {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "need a UART object"));
        }
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_repl_uart_obj, 0, 1, pyb_repl_uart);

497
498
499
/// \function hid((buttons, x, y, z))
/// Takes a 4-tuple (or list) and sends it to the USB host (the PC) to
/// signal a HID mouse-motion event.
500
STATIC mp_obj_t pyb_hid_send_report(mp_obj_t arg) {
501
502
    mp_obj_t *items;
    mp_obj_get_array_fixed_n(arg, 4, &items);
503
504
505
506
507
508
509
510
    uint8_t data[4];
    data[0] = mp_obj_get_int(items[0]);
    data[1] = mp_obj_get_int(items[1]);
    data[2] = mp_obj_get_int(items[2]);
    data[3] = mp_obj_get_int(items[3]);
    usb_hid_send_report(data);
    return mp_const_none;
}
511
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_hid_send_report_obj, pyb_hid_send_report);
512
513

MP_DECLARE_CONST_FUN_OBJ(pyb_main_obj); // defined in main.c
514
MP_DECLARE_CONST_FUN_OBJ(pyb_usb_mode_obj); // defined in main.c
515
516
517
518

STATIC const mp_map_elem_t pyb_module_globals_table[] = {
    { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_pyb) },

519
    { MP_OBJ_NEW_QSTR(MP_QSTR_bootloader), (mp_obj_t)&pyb_bootloader_obj },
520
    { MP_OBJ_NEW_QSTR(MP_QSTR_hard_reset), (mp_obj_t)&pyb_hard_reset_obj },
521
    { MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&pyb_info_obj },
522
523
    { MP_OBJ_NEW_QSTR(MP_QSTR_unique_id), (mp_obj_t)&pyb_unique_id_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_freq_obj },
524
525
    { MP_OBJ_NEW_QSTR(MP_QSTR_repl_info), (mp_obj_t)&pyb_set_repl_info_obj },

526
    { MP_OBJ_NEW_QSTR(MP_QSTR_wfi), (mp_obj_t)&pyb_wfi_obj },
527
528
529
    { MP_OBJ_NEW_QSTR(MP_QSTR_disable_irq), (mp_obj_t)&pyb_disable_irq_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_enable_irq), (mp_obj_t)&pyb_enable_irq_obj },

530
531
532
    { MP_OBJ_NEW_QSTR(MP_QSTR_stop), (mp_obj_t)&pyb_stop_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_standby), (mp_obj_t)&pyb_standby_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_main), (mp_obj_t)&pyb_main_obj },
533
    { MP_OBJ_NEW_QSTR(MP_QSTR_usb_mode), (mp_obj_t)&pyb_usb_mode_obj },
534

535
    { MP_OBJ_NEW_QSTR(MP_QSTR_have_cdc), (mp_obj_t)&pyb_have_cdc_obj },
536
    { MP_OBJ_NEW_QSTR(MP_QSTR_repl_uart), (mp_obj_t)&pyb_repl_uart_obj },
537
    { MP_OBJ_NEW_QSTR(MP_QSTR_hid), (mp_obj_t)&pyb_hid_send_report_obj },
538
    { MP_OBJ_NEW_QSTR(MP_QSTR_USB_VCP), (mp_obj_t)&pyb_usb_vcp_type },
539

540
    { MP_OBJ_NEW_QSTR(MP_QSTR_millis), (mp_obj_t)&pyb_millis_obj },
541
    { MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_millis), (mp_obj_t)&pyb_elapsed_millis_obj },
542
    { MP_OBJ_NEW_QSTR(MP_QSTR_micros), (mp_obj_t)&pyb_micros_obj },
543
    { MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_micros), (mp_obj_t)&pyb_elapsed_micros_obj },
544
545
546
    { MP_OBJ_NEW_QSTR(MP_QSTR_delay), (mp_obj_t)&pyb_delay_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_udelay), (mp_obj_t)&pyb_udelay_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_sync), (mp_obj_t)&pyb_sync_obj },
547
    { MP_OBJ_NEW_QSTR(MP_QSTR_mount), (mp_obj_t)&pyb_mount_obj },
548

549
550
    { MP_OBJ_NEW_QSTR(MP_QSTR_Timer), (mp_obj_t)&pyb_timer_type },

551
#if MICROPY_HW_ENABLE_RNG
552
    { MP_OBJ_NEW_QSTR(MP_QSTR_rng), (mp_obj_t)&pyb_rng_get_obj },
553
554
555
#endif

#if MICROPY_HW_ENABLE_RTC
556
    { MP_OBJ_NEW_QSTR(MP_QSTR_RTC), (mp_obj_t)&pyb_rtc_type },
557
558
#endif

559
560
561
    { MP_OBJ_NEW_QSTR(MP_QSTR_Pin), (mp_obj_t)&pin_type },
    { MP_OBJ_NEW_QSTR(MP_QSTR_ExtInt), (mp_obj_t)&extint_type },

562
563
564
#if MICROPY_HW_ENABLE_SERVO
    { MP_OBJ_NEW_QSTR(MP_QSTR_pwm), (mp_obj_t)&pyb_pwm_set_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_servo), (mp_obj_t)&pyb_servo_set_obj },
565
    { MP_OBJ_NEW_QSTR(MP_QSTR_Servo), (mp_obj_t)&pyb_servo_type },
566
567
568
#endif

#if MICROPY_HW_HAS_SWITCH
569
    { MP_OBJ_NEW_QSTR(MP_QSTR_Switch), (mp_obj_t)&pyb_switch_type },
570
571
572
573
574
575
#endif

#if MICROPY_HW_HAS_SDCARD
    { MP_OBJ_NEW_QSTR(MP_QSTR_SD), (mp_obj_t)&pyb_sdcard_obj },
#endif

576
#if defined(MICROPY_HW_LED1)
577
    { MP_OBJ_NEW_QSTR(MP_QSTR_LED), (mp_obj_t)&pyb_led_type },
578
#endif
579
    { MP_OBJ_NEW_QSTR(MP_QSTR_I2C), (mp_obj_t)&pyb_i2c_type },
Damien George's avatar
Damien George committed
580
    { MP_OBJ_NEW_QSTR(MP_QSTR_SPI), (mp_obj_t)&pyb_spi_type },
Damien George's avatar
Damien George committed
581
    { MP_OBJ_NEW_QSTR(MP_QSTR_UART), (mp_obj_t)&pyb_uart_type },
582
#if MICROPY_HW_ENABLE_CAN
583
    { MP_OBJ_NEW_QSTR(MP_QSTR_CAN), (mp_obj_t)&pyb_can_type },
584
#endif
585
586

    { MP_OBJ_NEW_QSTR(MP_QSTR_ADC), (mp_obj_t)&pyb_adc_type },
587
    { MP_OBJ_NEW_QSTR(MP_QSTR_ADCAll), (mp_obj_t)&pyb_adc_all_type },
Damien George's avatar
Damien George committed
588
589
590

#if MICROPY_HW_ENABLE_DAC
    { MP_OBJ_NEW_QSTR(MP_QSTR_DAC), (mp_obj_t)&pyb_dac_type },
591
592
#endif

593
594
595
#if MICROPY_HW_HAS_MMA7660
    { MP_OBJ_NEW_QSTR(MP_QSTR_Accel), (mp_obj_t)&pyb_accel_type },
#endif
596
597
598
599

#if MICROPY_HW_HAS_LCD
    { MP_OBJ_NEW_QSTR(MP_QSTR_LCD), (mp_obj_t)&pyb_lcd_type },
#endif
600
601
};

602
STATIC MP_DEFINE_CONST_DICT(pyb_module_globals, pyb_module_globals_table);
603
604
605
606

const mp_obj_module_t pyb_module = {
    .base = { &mp_type_module },
    .name = MP_QSTR_pyb,
607
    .globals = (mp_obj_dict_t*)&pyb_module_globals,
608
};