modpyb.c 22 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27
28
29
#include <stdint.h>
#include <stdio.h>

30
#include "stm32f4xx_hal.h"
31
32

#include "mpconfig.h"
33
34
#include "misc.h"
#include "nlr.h"
35
36
37
38
#include "qstr.h"
#include "obj.h"
#include "gc.h"
#include "gccollect.h"
Dave Hylands's avatar
Dave Hylands committed
39
#include "irq.h"
40
41
#include "systick.h"
#include "pyexec.h"
42
#include "led.h"
43
#include "pin.h"
44
#include "timer.h"
45
#include "extint.h"
46
#include "usrsw.h"
47
#include "rng.h"
48
#include "rtc.h"
Damien George's avatar
Damien George committed
49
50
#include "i2c.h"
#include "spi.h"
Damien George's avatar
Damien George committed
51
#include "uart.h"
52
#include "can.h"
Dave Hylands's avatar
Dave Hylands committed
53
#include "adc.h"
54
#include "storage.h"
Damien George's avatar
Damien George committed
55
#include "sdcard.h"
56
#include "accel.h"
57
#include "servo.h"
Damien George's avatar
Damien George committed
58
#include "dac.h"
59
#include "lcd.h"
60
#include "usb.h"
61
#include "pybstdio.h"
62
#include "ff.h"
63
64
#include "diskio.h"
#include "fsusermount.h"
65
#include "portmodules.h"
66

67
68
69
70
/// \module pyb - functions related to the pyboard
///
/// The `pyb` module contains specific functions related to the pyboard.

71
72
/// \function bootloader()
/// Activate the bootloader without BOOT* pins.
73
STATIC NORETURN mp_obj_t pyb_bootloader(void) {
74
    pyb_usb_dev_stop();
75
76
77
78
79
    storage_flush();

    HAL_RCC_DeInit();
    HAL_DeInit();

80
    __HAL_REMAPMEMORY_SYSTEMFLASH();
81
82
83
84
85
86

    // arm-none-eabi-gcc 4.9.0 does not correctly inline this
    // MSP function, so we write it out explicitly here.
    //__set_MSP(*((uint32_t*) 0x00000000));
    __ASM volatile ("movs r3, #0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp");

87
    ((void (*)(void)) *((uint32_t*) 0x00000004))();
88
89
90

    while (1);
}
91
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_bootloader_obj, pyb_bootloader);
92

93
94
95
96
97
98
99
100
101
/// \function hard_reset()
/// Resets the pyboard in a manner similar to pushing the external RESET
/// button.
STATIC mp_obj_t pyb_hard_reset(void) {
    NVIC_SystemReset();
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_hard_reset_obj, pyb_hard_reset);

102
103
/// \function info([dump_alloc_table])
/// Print out lots of information about the board.
104
STATIC mp_obj_t pyb_info(mp_uint_t n_args, const mp_obj_t *args) {
105
106
107
108
109
110
111
112
113
    // get and print unique id; 96 bits
    {
        byte *id = (byte*)0x1fff7a10;
        printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
    }

    // get and print clock speeds
    // SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
    {
114
        printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n",
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
               HAL_RCC_GetSysClockFreq(),
               HAL_RCC_GetHCLKFreq(),
               HAL_RCC_GetPCLK1Freq(),
               HAL_RCC_GetPCLK2Freq());
    }

    // to print info about memory
    {
        printf("_etext=%p\n", &_etext);
        printf("_sidata=%p\n", &_sidata);
        printf("_sdata=%p\n", &_sdata);
        printf("_edata=%p\n", &_edata);
        printf("_sbss=%p\n", &_sbss);
        printf("_ebss=%p\n", &_ebss);
        printf("_estack=%p\n", &_estack);
        printf("_ram_start=%p\n", &_ram_start);
        printf("_heap_start=%p\n", &_heap_start);
        printf("_heap_end=%p\n", &_heap_end);
        printf("_ram_end=%p\n", &_ram_end);
    }

    // qstr info
    {
138
        mp_uint_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
139
        qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
140
        printf("qstr:\n  n_pool=" UINT_FMT "\n  n_qstr=" UINT_FMT "\n  n_str_data_bytes=" UINT_FMT "\n  n_total_bytes=" UINT_FMT "\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
141
142
143
144
145
146
147
    }

    // GC info
    {
        gc_info_t info;
        gc_info(&info);
        printf("GC:\n");
148
149
150
        printf("  " UINT_FMT " total\n", info.total);
        printf("  " UINT_FMT " : " UINT_FMT "\n", info.used, info.free);
        printf("  1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block);
151
152
153
154
155
156
    }

    // free space on flash
    {
        DWORD nclst;
        FATFS *fatfs;
157
        f_getfree("/flash", &nclst, &fatfs);
158
159
160
        printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512));
    }

161
162
163
164
165
    if (n_args == 1) {
        // arg given means dump gc allocation table
        gc_dump_alloc_table();
    }

166
167
    return mp_const_none;
}
168
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_info_obj, 0, 1, pyb_info);
169

170
171
/// \function unique_id()
/// Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU.
172
173
174
175
176
177
STATIC mp_obj_t pyb_unique_id(void) {
    byte *id = (byte*)0x1fff7a10;
    return mp_obj_new_bytes(id, 12);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_unique_id_obj, pyb_unique_id);

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
// get or set the MCU frequencies
STATIC mp_uint_t pyb_freq_calc_ahb_div(mp_uint_t wanted_div) {
    if (wanted_div <= 1) { return RCC_SYSCLK_DIV1; }
    else if (wanted_div <= 2) { return RCC_SYSCLK_DIV2; }
    else if (wanted_div <= 4) { return RCC_SYSCLK_DIV4; }
    else if (wanted_div <= 8) { return RCC_SYSCLK_DIV8; }
    else if (wanted_div <= 16) { return RCC_SYSCLK_DIV16; }
    else if (wanted_div <= 64) { return RCC_SYSCLK_DIV64; }
    else if (wanted_div <= 128) { return RCC_SYSCLK_DIV128; }
    else if (wanted_div <= 256) { return RCC_SYSCLK_DIV256; }
    else { return RCC_SYSCLK_DIV512; }
}
STATIC mp_uint_t pyb_freq_calc_apb_div(mp_uint_t wanted_div) {
    if (wanted_div <= 1) { return RCC_HCLK_DIV1; }
    else if (wanted_div <= 2) { return RCC_HCLK_DIV2; }
    else if (wanted_div <= 4) { return RCC_HCLK_DIV4; }
    else if (wanted_div <= 8) { return RCC_HCLK_DIV8; }
    else { return RCC_SYSCLK_DIV16; }
}
197
198
199
200
201
202
203
204
205
206
207
208
209
210
STATIC mp_obj_t pyb_freq(mp_uint_t n_args, const mp_obj_t *args) {
    if (n_args == 0) {
        // get
        mp_obj_t tuple[4] = {
           mp_obj_new_int(HAL_RCC_GetSysClockFreq()),
           mp_obj_new_int(HAL_RCC_GetHCLKFreq()),
           mp_obj_new_int(HAL_RCC_GetPCLK1Freq()),
           mp_obj_new_int(HAL_RCC_GetPCLK2Freq()),
        };
        return mp_obj_new_tuple(4, tuple);
    } else {
        // set
        mp_int_t wanted_sysclk = mp_obj_get_int(args[0]) / 1000000;

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        // default PLL parameters that give 48MHz on PLL48CK
        uint32_t m = HSE_VALUE / 1000000, n = 336, p = 2, q = 7;
        uint32_t sysclk_source;

        // the following logic assumes HSE < HSI
        if (HSE_VALUE / 1000000 <= wanted_sysclk && wanted_sysclk < HSI_VALUE / 1000000) {
            // use HSE as SYSCLK
            sysclk_source = RCC_SYSCLKSOURCE_HSE;
        } else if (HSI_VALUE / 1000000 <= wanted_sysclk && wanted_sysclk < 24) {
            // use HSI as SYSCLK
            sysclk_source = RCC_SYSCLKSOURCE_HSI;
        } else {
            // search for a valid PLL configuration that keeps USB at 48MHz
            for (; wanted_sysclk > 0; wanted_sysclk--) {
                for (p = 2; p <= 8; p += 2) {
                    // compute VCO_OUT
                    mp_uint_t vco_out = wanted_sysclk * p;
                    // make sure VCO_OUT is between 192MHz and 432MHz
                    if (vco_out < 192 || vco_out > 432) {
                        continue;
                    }
                    // make sure Q is an integer
                    if (vco_out % 48 != 0) {
                        continue;
                    }
                    // solve for Q to get PLL48CK at 48MHz
                    q = vco_out / 48;
                    // make sure Q is in range
                    if (q < 2 || q > 15) {
                        continue;
                    }
                    // make sure N/M is an integer
                    if (vco_out % (HSE_VALUE / 1000000) != 0) {
                        continue;
                    }
                    // solve for N/M
                    mp_uint_t n_by_m = vco_out / (HSE_VALUE / 1000000);
                    // solve for M, making sure VCO_IN (=HSE/M) is between 1MHz and 2MHz
                    m = 192 / n_by_m;
                    while (m < (HSE_VALUE / 2000000) || n_by_m * m < 192) {
                        m += 1;
                    }
                    if (m > (HSE_VALUE / 1000000)) {
                        continue;
                    }
                    // solve for N
                    n = n_by_m * m;
                    // make sure N is in range
                    if (n < 192 || n > 432) {
                        continue;
                    }

                    // found values!
                    sysclk_source = RCC_SYSCLKSOURCE_PLLCLK;
                    goto set_clk;
266
                }
267
268
269
            }
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "can't make valid freq"));
        }
270

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
    set_clk:
        //printf("%lu %lu %lu %lu %lu\n", sysclk_source, m, n, p, q);

        // let the USB CDC have a chance to process before we change the clock
        HAL_Delay(USBD_CDC_POLLING_INTERVAL + 2);

        // desired system clock source is in sysclk_source
        RCC_ClkInitTypeDef RCC_ClkInitStruct;
        RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
        if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) {
            // set HSE as system clock source to allow modification of the PLL configuration
            // we then change to PLL after re-configuring PLL
            RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;
        } else {
            // directly set the system clock source as desired
            RCC_ClkInitStruct.SYSCLKSource = sysclk_source;
        }
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
        wanted_sysclk *= 1000000;
        if (n_args >= 2) {
            // note: AHB freq required to be >= 14.2MHz for USB operation
            RCC_ClkInitStruct.AHBCLKDivider = pyb_freq_calc_ahb_div(wanted_sysclk / mp_obj_get_int(args[1]));
        } else {
            RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
        }
        if (n_args >= 3) {
            RCC_ClkInitStruct.APB1CLKDivider = pyb_freq_calc_apb_div(wanted_sysclk / mp_obj_get_int(args[2]));
        } else {
            RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
        }
        if (n_args >= 4) {
            RCC_ClkInitStruct.APB2CLKDivider = pyb_freq_calc_apb_div(wanted_sysclk / mp_obj_get_int(args[3]));
        } else {
            RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
        }
305
306
307
        if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) {
            goto fail;
        }
308

309
310
311
312
313
314
315
316
317
318
319
320
321
322
        // re-configure PLL
        // even if we don't use the PLL for the system clock, we still need it for USB, RNG and SDIO
        RCC_OscInitTypeDef RCC_OscInitStruct;
        RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
        RCC_OscInitStruct.HSEState = RCC_HSE_ON;
        RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
        RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
        RCC_OscInitStruct.PLL.PLLM = m;
        RCC_OscInitStruct.PLL.PLLN = n;
        RCC_OscInitStruct.PLL.PLLP = p;
        RCC_OscInitStruct.PLL.PLLQ = q;
        if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
            goto fail;
        }
323

324
325
326
327
328
329
        // set PLL as system clock source if wanted
        if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) {
            RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
            RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
            if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) {
                goto fail;
330
331
            }
        }
332
333
334
335
336
337
338
339
340

        // re-init TIM3 for USB CDC rate
        timer_tim3_init();

        return mp_const_none;

    fail:;
        void NORETURN __fatal_error(const char *msg);
        __fatal_error("can't change freq");
341
    }
342
}
343
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_freq_obj, 0, 4, pyb_freq);
344

345
346
/// \function sync()
/// Sync all file systems.
347
348
STATIC mp_obj_t pyb_sync(void) {
    storage_flush();
349
    disk_ioctl(2, CTRL_SYNC, NULL);
350
351
352
353
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_sync_obj, pyb_sync);

354
355
/// \function millis()
/// Returns the number of milliseconds since the board was last reset.
356
///
357
358
359
/// The result is always a micropython smallint (31-bit signed number), so
/// after 2^30 milliseconds (about 12.4 days) this will start to return
/// negative numbers.
360
STATIC mp_obj_t pyb_millis(void) {
361
362
363
364
    // We want to "cast" the 32 bit unsigned into a small-int.  This means
    // copying the MSB down 1 bit (extending the sign down), which is
    // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
    return MP_OBJ_NEW_SMALL_INT(HAL_GetTick());
365
366
367
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_millis_obj, pyb_millis);

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
/// \function elapsed_millis(start)
/// Returns the number of milliseconds which have elapsed since `start`.
///
/// This function takes care of counter wrap, and always returns a positive
/// number. This means it can be used to measure periods upto about 12.4 days.
///
/// Example:
///     start = pyb.millis()
///     while pyb.elapsed_millis(start) < 1000:
///         # Perform some operation
STATIC mp_obj_t pyb_elapsed_millis(mp_obj_t start) {
    uint32_t startMillis = mp_obj_get_int(start);
    uint32_t currMillis = HAL_GetTick();
    return MP_OBJ_NEW_SMALL_INT((currMillis - startMillis) & 0x3fffffff);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_millis_obj, pyb_elapsed_millis);

385
386
387
/// \function micros()
/// Returns the number of microseconds since the board was last reset.
///
388
389
390
/// The result is always a micropython smallint (31-bit signed number), so
/// after 2^30 microseconds (about 17.8 minutes) this will start to return
/// negative numbers.
391
STATIC mp_obj_t pyb_micros(void) {
392
393
394
395
    // We want to "cast" the 32 bit unsigned into a small-int.  This means
    // copying the MSB down 1 bit (extending the sign down), which is
    // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
    return MP_OBJ_NEW_SMALL_INT(sys_tick_get_microseconds());
396
397
398
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_micros_obj, pyb_micros);

399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
/// \function elapsed_micros(start)
/// Returns the number of microseconds which have elapsed since `start`.
///
/// This function takes care of counter wrap, and always returns a positive
/// number. This means it can be used to measure periods upto about 17.8 minutes.
///
/// Example:
///     start = pyb.micros()
///     while pyb.elapsed_micros(start) < 1000:
///         # Perform some operation
STATIC mp_obj_t pyb_elapsed_micros(mp_obj_t start) {
    uint32_t startMicros = mp_obj_get_int(start);
    uint32_t currMicros = sys_tick_get_microseconds();
    return MP_OBJ_NEW_SMALL_INT((currMicros - startMicros) & 0x3fffffff);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_micros_obj, pyb_elapsed_micros);

416
417
/// \function delay(ms)
/// Delay for the given number of milliseconds.
418
STATIC mp_obj_t pyb_delay(mp_obj_t ms_in) {
419
    mp_int_t ms = mp_obj_get_int(ms_in);
420
421
422
    if (ms >= 0) {
        HAL_Delay(ms);
    }
423
424
425
426
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_delay_obj, pyb_delay);

427
428
/// \function udelay(us)
/// Delay for the given number of microseconds.
429
STATIC mp_obj_t pyb_udelay(mp_obj_t usec_in) {
430
    mp_int_t usec = mp_obj_get_int(usec_in);
431
    if (usec > 0) {
432
        sys_tick_udelay(usec);
433
    }
434
    return mp_const_none;
435
436
437
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_udelay_obj, pyb_udelay);

438
439
440
/// \function stop()
STATIC mp_obj_t pyb_stop(void) {
    HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);
441

442
    // reconfigure the system clock after waking up
443

444
445
446
    // enable HSE
    __HAL_RCC_HSE_CONFIG(RCC_HSE_ON);
    while (!__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY)) {
447
448
    }

449
450
451
    // enable PLL
    __HAL_RCC_PLL_ENABLE();
    while (!__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)) {
452
453
    }

454
455
456
457
    // select PLL as system clock source
    MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK);
    while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) {
    }
458
459
460
461
462

    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_stop_obj, pyb_stop);

463
/// \function standby()
464
STATIC mp_obj_t pyb_standby(void) {
465
    HAL_PWR_EnterSTANDBYMode();
466
467
468
469
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_standby_obj, pyb_standby);

470
471
/// \function have_cdc()
/// Return True if USB is connected as a serial device, False otherwise.
472
473
474
475
476
STATIC mp_obj_t pyb_have_cdc(void ) {
    return MP_BOOL(usb_vcp_is_connected());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_have_cdc_obj, pyb_have_cdc);

477
478
/// \function repl_uart(uart)
/// Get or set the UART object that the REPL is repeated on.
479
STATIC mp_obj_t pyb_repl_uart(mp_uint_t n_args, const mp_obj_t *args) {
480
    if (n_args == 0) {
481
        if (pyb_stdio_uart == NULL) {
482
483
            return mp_const_none;
        } else {
484
            return pyb_stdio_uart;
485
486
487
        }
    } else {
        if (args[0] == mp_const_none) {
488
            pyb_stdio_uart = NULL;
489
        } else if (mp_obj_get_type(args[0]) == &pyb_uart_type) {
490
            pyb_stdio_uart = args[0];
491
492
493
494
495
496
497
498
        } else {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "need a UART object"));
        }
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_repl_uart_obj, 0, 1, pyb_repl_uart);

499
500
501
/// \function hid((buttons, x, y, z))
/// Takes a 4-tuple (or list) and sends it to the USB host (the PC) to
/// signal a HID mouse-motion event.
502
STATIC mp_obj_t pyb_hid_send_report(mp_obj_t arg) {
503
504
    mp_obj_t *items;
    mp_obj_get_array_fixed_n(arg, 4, &items);
505
506
507
508
509
510
511
512
    uint8_t data[4];
    data[0] = mp_obj_get_int(items[0]);
    data[1] = mp_obj_get_int(items[1]);
    data[2] = mp_obj_get_int(items[2]);
    data[3] = mp_obj_get_int(items[3]);
    usb_hid_send_report(data);
    return mp_const_none;
}
513
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_hid_send_report_obj, pyb_hid_send_report);
514
515

MP_DECLARE_CONST_FUN_OBJ(pyb_main_obj); // defined in main.c
516
MP_DECLARE_CONST_FUN_OBJ(pyb_usb_mode_obj); // defined in main.c
517
518
519
520

STATIC const mp_map_elem_t pyb_module_globals_table[] = {
    { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_pyb) },

521
    { MP_OBJ_NEW_QSTR(MP_QSTR_bootloader), (mp_obj_t)&pyb_bootloader_obj },
522
    { MP_OBJ_NEW_QSTR(MP_QSTR_hard_reset), (mp_obj_t)&pyb_hard_reset_obj },
523
    { MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&pyb_info_obj },
524
525
    { MP_OBJ_NEW_QSTR(MP_QSTR_unique_id), (mp_obj_t)&pyb_unique_id_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_freq_obj },
526
527
    { MP_OBJ_NEW_QSTR(MP_QSTR_repl_info), (mp_obj_t)&pyb_set_repl_info_obj },

528
    { MP_OBJ_NEW_QSTR(MP_QSTR_wfi), (mp_obj_t)&pyb_wfi_obj },
529
530
531
    { MP_OBJ_NEW_QSTR(MP_QSTR_disable_irq), (mp_obj_t)&pyb_disable_irq_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_enable_irq), (mp_obj_t)&pyb_enable_irq_obj },

532
533
534
    { MP_OBJ_NEW_QSTR(MP_QSTR_stop), (mp_obj_t)&pyb_stop_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_standby), (mp_obj_t)&pyb_standby_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_main), (mp_obj_t)&pyb_main_obj },
535
    { MP_OBJ_NEW_QSTR(MP_QSTR_usb_mode), (mp_obj_t)&pyb_usb_mode_obj },
536

537
    { MP_OBJ_NEW_QSTR(MP_QSTR_have_cdc), (mp_obj_t)&pyb_have_cdc_obj },
538
    { MP_OBJ_NEW_QSTR(MP_QSTR_repl_uart), (mp_obj_t)&pyb_repl_uart_obj },
539
    { MP_OBJ_NEW_QSTR(MP_QSTR_hid), (mp_obj_t)&pyb_hid_send_report_obj },
540
    { MP_OBJ_NEW_QSTR(MP_QSTR_USB_VCP), (mp_obj_t)&pyb_usb_vcp_type },
541

542
    { MP_OBJ_NEW_QSTR(MP_QSTR_millis), (mp_obj_t)&pyb_millis_obj },
543
    { MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_millis), (mp_obj_t)&pyb_elapsed_millis_obj },
544
    { MP_OBJ_NEW_QSTR(MP_QSTR_micros), (mp_obj_t)&pyb_micros_obj },
545
    { MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_micros), (mp_obj_t)&pyb_elapsed_micros_obj },
546
547
548
    { MP_OBJ_NEW_QSTR(MP_QSTR_delay), (mp_obj_t)&pyb_delay_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_udelay), (mp_obj_t)&pyb_udelay_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_sync), (mp_obj_t)&pyb_sync_obj },
549
    { MP_OBJ_NEW_QSTR(MP_QSTR_mount), (mp_obj_t)&pyb_mount_obj },
550

551
552
    { MP_OBJ_NEW_QSTR(MP_QSTR_Timer), (mp_obj_t)&pyb_timer_type },

553
#if MICROPY_HW_ENABLE_RNG
554
    { MP_OBJ_NEW_QSTR(MP_QSTR_rng), (mp_obj_t)&pyb_rng_get_obj },
555
556
557
#endif

#if MICROPY_HW_ENABLE_RTC
558
    { MP_OBJ_NEW_QSTR(MP_QSTR_RTC), (mp_obj_t)&pyb_rtc_type },
559
560
#endif

561
562
563
    { MP_OBJ_NEW_QSTR(MP_QSTR_Pin), (mp_obj_t)&pin_type },
    { MP_OBJ_NEW_QSTR(MP_QSTR_ExtInt), (mp_obj_t)&extint_type },

564
565
566
#if MICROPY_HW_ENABLE_SERVO
    { MP_OBJ_NEW_QSTR(MP_QSTR_pwm), (mp_obj_t)&pyb_pwm_set_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_servo), (mp_obj_t)&pyb_servo_set_obj },
567
    { MP_OBJ_NEW_QSTR(MP_QSTR_Servo), (mp_obj_t)&pyb_servo_type },
568
569
570
#endif

#if MICROPY_HW_HAS_SWITCH
571
    { MP_OBJ_NEW_QSTR(MP_QSTR_Switch), (mp_obj_t)&pyb_switch_type },
572
573
574
575
576
577
#endif

#if MICROPY_HW_HAS_SDCARD
    { MP_OBJ_NEW_QSTR(MP_QSTR_SD), (mp_obj_t)&pyb_sdcard_obj },
#endif

578
    { MP_OBJ_NEW_QSTR(MP_QSTR_LED), (mp_obj_t)&pyb_led_type },
579
    { MP_OBJ_NEW_QSTR(MP_QSTR_I2C), (mp_obj_t)&pyb_i2c_type },
Damien George's avatar
Damien George committed
580
    { MP_OBJ_NEW_QSTR(MP_QSTR_SPI), (mp_obj_t)&pyb_spi_type },
Damien George's avatar
Damien George committed
581
    { MP_OBJ_NEW_QSTR(MP_QSTR_UART), (mp_obj_t)&pyb_uart_type },
582
#if MICROPY_HW_ENABLE_CAN
583
    { MP_OBJ_NEW_QSTR(MP_QSTR_CAN), (mp_obj_t)&pyb_can_type },
584
#endif
585
586

    { MP_OBJ_NEW_QSTR(MP_QSTR_ADC), (mp_obj_t)&pyb_adc_type },
587
    { MP_OBJ_NEW_QSTR(MP_QSTR_ADCAll), (mp_obj_t)&pyb_adc_all_type },
Damien George's avatar
Damien George committed
588
589
590

#if MICROPY_HW_ENABLE_DAC
    { MP_OBJ_NEW_QSTR(MP_QSTR_DAC), (mp_obj_t)&pyb_dac_type },
591
592
#endif

593
594
595
#if MICROPY_HW_HAS_MMA7660
    { MP_OBJ_NEW_QSTR(MP_QSTR_Accel), (mp_obj_t)&pyb_accel_type },
#endif
596
597
598
599

#if MICROPY_HW_HAS_LCD
    { MP_OBJ_NEW_QSTR(MP_QSTR_LCD), (mp_obj_t)&pyb_lcd_type },
#endif
600
601
};

602
STATIC MP_DEFINE_CONST_DICT(pyb_module_globals, pyb_module_globals_table);
603
604
605
606

const mp_obj_module_t pyb_module = {
    .base = { &mp_type_module },
    .name = MP_QSTR_pyb,
607
    .globals = (mp_obj_dict_t*)&pyb_module_globals,
608
};