led.c 8.86 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27
28
29
#include <stdio.h>
#include <stm32f4xx_hal.h>

30
#include "mpconfig.h"
31
#include "nlr.h"
32
33
34
#include "misc.h"
#include "qstr.h"
#include "obj.h"
35
#include "runtime.h"
36
#include "timer.h"
37
38
#include "led.h"
#include "pin.h"
39
#include "genhdr/pins.h"
40

41
42
43
44
45
/// \moduleref pyb
/// \class LED - LED object
///
/// The LED object controls an individual LED (Light Emitting Diode).

46
47
typedef struct _pyb_led_obj_t {
    mp_obj_base_t base;
48
    mp_uint_t led_id;
49
50
51
52
53
    const pin_obj_t *led_pin;
} pyb_led_obj_t;

STATIC const pyb_led_obj_t pyb_led_obj[] = {
    {{&pyb_led_type}, 1, &MICROPY_HW_LED1},
54
#if defined(MICROPY_HW_LED2)
55
    {{&pyb_led_type}, 2, &MICROPY_HW_LED2},
56
#if defined(MICROPY_HW_LED3)
57
    {{&pyb_led_type}, 3, &MICROPY_HW_LED3},
58
#if defined(MICROPY_HW_LED4)
59
    {{&pyb_led_type}, 4, &MICROPY_HW_LED4},
60
61
62
63
#endif
#endif
#endif
};
64
#define NUM_LEDS MP_ARRAY_SIZE(pyb_led_obj)
65
66
67
68
69
70
71

void led_init(void) {
    /* GPIO structure */
    GPIO_InitTypeDef GPIO_InitStructure;

    /* Configure I/O speed, mode, output type and pull */
    GPIO_InitStructure.Speed = GPIO_SPEED_LOW;
72
    GPIO_InitStructure.Mode = MICROPY_HW_LED_OTYPE;
73
74
75
76
    GPIO_InitStructure.Pull = GPIO_NOPULL;

    /* Turn off LEDs and initialize */
    for (int led = 0; led < NUM_LEDS; led++) {
77
78
79
80
        const pin_obj_t *led_pin = pyb_led_obj[led].led_pin;
        MICROPY_HW_LED_OFF(led_pin);
        GPIO_InitStructure.Pin = led_pin->pin_mask;
        HAL_GPIO_Init(led_pin->gpio, &GPIO_InitStructure);
81
    }
82

83
#if defined(PYBV4) || defined(PYBV10)
84
85
86
    // LED4 (blue) is on PB4 which is TIM3_CH1
    // we use PWM on this channel to fade the LED

87
88
    // LED3 (yellow) is on PA15 which has TIM2_CH1, so we could PWM that as well

89
    // GPIO configuration
90
    GPIO_InitStructure.Pin = MICROPY_HW_LED4.pin_mask;
91
92
93
94
    GPIO_InitStructure.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStructure.Speed = GPIO_SPEED_FAST;
    GPIO_InitStructure.Pull = GPIO_NOPULL;
    GPIO_InitStructure.Alternate = GPIO_AF2_TIM3;
95
    HAL_GPIO_Init(MICROPY_HW_LED4.gpio, &GPIO_InitStructure);
96
97
98
99
100
101
102
103
104
105
106

    // PWM mode configuration
    TIM_OC_InitTypeDef oc_init;
    oc_init.OCMode = TIM_OCMODE_PWM1;
    oc_init.Pulse = 0; // off
    oc_init.OCPolarity = TIM_OCPOLARITY_HIGH;
    oc_init.OCFastMode = TIM_OCFAST_DISABLE;
    HAL_TIM_PWM_ConfigChannel(&TIM3_Handle, &oc_init, TIM_CHANNEL_1);

    // start PWM
    TIM_CCxChannelCmd(TIM3, TIM_CHANNEL_1, TIM_CCx_ENABLE);
107
#endif
108
109
110
111
112
113
}

void led_state(pyb_led_t led, int state) {
    if (led < 1 || led > NUM_LEDS) {
        return;
    }
114
#if defined(PYBV4) || defined(PYBV10)
115
116
117
118
119
120
121
122
    if (led == 4) {
        if (state) {
            TIM3->CCR1 = 0xffff;
        } else {
            TIM3->CCR1 = 0;
        }
        return;
    }
123
#endif
124
    const pin_obj_t *led_pin = pyb_led_obj[led - 1].led_pin;
125
    //printf("led_state(%d,%d)\n", led, state);
126
127
    if (state == 0) {
        // turn LED off
128
        MICROPY_HW_LED_OFF(led_pin);
129
130
    } else {
        // turn LED on
131
        MICROPY_HW_LED_ON(led_pin);
132
133
134
135
136
137
138
    }
}

void led_toggle(pyb_led_t led) {
    if (led < 1 || led > NUM_LEDS) {
        return;
    }
139

140
#if defined(PYBV4) || defined(PYBV10)
141
142
143
144
145
146
147
148
149
150
    if (led == 4) {
        if (TIM3->CCR1 == 0) {
            TIM3->CCR1 = 0xffff;
        } else {
            TIM3->CCR1 = 0;
        }
        return;
    }
#endif

151
    // toggle the output data register to toggle the LED state
152
    const pin_obj_t *led_pin = pyb_led_obj[led - 1].led_pin;
153
    led_pin->gpio->ODR ^= led_pin->pin_mask;
154
155
}

156
int led_get_intensity(pyb_led_t led) {
157
158
159
    if (led < 1 || led > NUM_LEDS) {
        return 0;
    }
160

161
#if defined(PYBV4) || defined(PYBV10)
162
    if (led == 4) {
163
        mp_uint_t i = (TIM3->CCR1 * 255 + (USBD_CDC_POLLING_INTERVAL*1000) - 2) / ((USBD_CDC_POLLING_INTERVAL*1000) - 1);
164
165
166
167
168
169
170
        if (i > 255) {
            i = 255;
        }
        return i;
    }
#endif

171
    const pin_obj_t *led_pin = pyb_led_obj[led - 1].led_pin;
172
173
174
175
176
    GPIO_TypeDef *gpio = led_pin->gpio;

    // TODO convert high/low to on/off depending on board
    if (gpio->ODR & led_pin->pin_mask) {
        // pin is high
177
        return 255;
178
179
180
181
182
183
    } else {
        // pin is low
        return 0;
    }
}

184
void led_set_intensity(pyb_led_t led, mp_int_t intensity) {
185
#if defined(PYBV4) || defined(PYBV10)
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    if (led == 4) {
        // set intensity using PWM pulse width
        if (intensity < 0) {
            intensity = 0;
        } else if (intensity >= 255) {
            intensity = 0xffff;
        } else {
            intensity = intensity * ((USBD_CDC_POLLING_INTERVAL*1000) - 1) / 255;
        }
        TIM3->CCR1 = intensity;
        return;
    }
#endif

    // intensity not supported for this LED; just turn it on/off
    led_state(led, intensity > 0);
}

204
205
206
207
208
209
210
211
void led_debug(int n, int delay) {
    led_state(1, n & 1);
    led_state(2, n & 2);
    led_state(3, n & 4);
    led_state(4, n & 8);
    HAL_Delay(delay);
}

212
213
214
215
216
217
218
219
/******************************************************************************/
/* Micro Python bindings                                                      */

void led_obj_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
    pyb_led_obj_t *self = self_in;
    print(env, "<LED %lu>", self->led_id);
}

220
221
222
223
/// \classmethod \constructor(id)
/// Create an LED object associated with the given LED:
///
///   - `id` is the LED number, 1-4.
224
STATIC mp_obj_t led_obj_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
225
    // check arguments
Damien George's avatar
Damien George committed
226
    mp_arg_check_num(n_args, n_kw, 1, 1, false);
227
228

    // get led number
229
    mp_int_t led_id = mp_obj_get_int(args[0]);
230
231

    // check led number
232
    if (!(1 <= led_id && led_id <= NUM_LEDS)) {
233
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "LED %d does not exist", led_id));
234
235
236
    }

    // return static led object
237
    return (mp_obj_t)&pyb_led_obj[led_id - 1];
238
239
}

240
241
/// \method on()
/// Turn the LED on.
242
243
244
245
246
247
mp_obj_t led_obj_on(mp_obj_t self_in) {
    pyb_led_obj_t *self = self_in;
    led_state(self->led_id, 1);
    return mp_const_none;
}

248
249
/// \method off()
/// Turn the LED off.
250
251
252
253
254
255
mp_obj_t led_obj_off(mp_obj_t self_in) {
    pyb_led_obj_t *self = self_in;
    led_state(self->led_id, 0);
    return mp_const_none;
}

256
257
/// \method toggle()
/// Toggle the LED between on and off.
258
259
260
261
262
263
mp_obj_t led_obj_toggle(mp_obj_t self_in) {
    pyb_led_obj_t *self = self_in;
    led_toggle(self->led_id);
    return mp_const_none;
}

264
265
266
267
/// \method intensity([value])
/// Get or set the LED intensity.  Intensity ranges between 0 (off) and 255 (full on).
/// If no argument is given, return the LED intensity.
/// If an argument is given, set the LED intensity and return `None`.
268
mp_obj_t led_obj_intensity(mp_uint_t n_args, const mp_obj_t *args) {
269
    pyb_led_obj_t *self = args[0];
270
271
    if (n_args == 1) {
        return mp_obj_new_int(led_get_intensity(self->led_id));
272
    } else {
273
        led_set_intensity(self->led_id, mp_obj_get_int(args[1]));
274
275
276
277
278
279
280
        return mp_const_none;
    }
}

STATIC MP_DEFINE_CONST_FUN_OBJ_1(led_obj_on_obj, led_obj_on);
STATIC MP_DEFINE_CONST_FUN_OBJ_1(led_obj_off_obj, led_obj_off);
STATIC MP_DEFINE_CONST_FUN_OBJ_1(led_obj_toggle_obj, led_obj_toggle);
281
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(led_obj_intensity_obj, 1, 2, led_obj_intensity);
282

283
284
285
286
287
STATIC const mp_map_elem_t led_locals_dict_table[] = {
    { MP_OBJ_NEW_QSTR(MP_QSTR_on), (mp_obj_t)&led_obj_on_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_off), (mp_obj_t)&led_obj_off_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_toggle), (mp_obj_t)&led_obj_toggle_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_intensity), (mp_obj_t)&led_obj_intensity_obj },
288
289
};

290
291
STATIC MP_DEFINE_CONST_DICT(led_locals_dict, led_locals_dict_table);

292
const mp_obj_type_t pyb_led_type = {
293
    { &mp_type_type },
294
    .name = MP_QSTR_LED,
295
    .print = led_obj_print,
296
    .make_new = led_obj_make_new,
297
    .locals_dict = (mp_obj_t)&led_locals_dict,
298
};