pybcc3k.c 4.92 KB
Newer Older
1
2
3
4
#include <stdint.h>

#include "stm32f4xx_hal.h"

5
#include "mpconfig.h"
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#include "nlr.h"
#include "misc.h"
#include "qstr.h"
#include "obj.h"
#include "runtime.h"
#include "pin.h"
#include "genhdr/pins.h"
#include "led.h"
#include "extint.h"
#include "spi.h"
#include "ccspi.h"
#include "ccdebug.h"
#include "pybcc3k.h"

// IRQ on PA14, input, pulled up, active low
// EN on PC7, output, active high
// CS on PC6, output, active low
// SPI2 on PB15=MOSI, PB14=MISO, PB13=SCK
// SCK for CC3000: max 16MHz, low when idle, data sampled on falling edge

#define PIN_CS pin_B12 // Y5
#define PIN_EN pin_B9 // Y4
#define PIN_IRQ pin_B8 // Y3
#define SPI_HANDLE SPIHandle2

// TODO this could be really wrong wrt calibration
void pyb_delay_us(uint32_t usec) {
    volatile uint32_t count = 0;
    const uint32_t utime = (160 * usec / 5);
    do {
        if (++count > utime) {
            return;
        }
    } while (1);
}

void pyb_cc3000_set_en(int val) {
    DEBUG_printf("pyb_cc3000_set_en val=%d\n", val);
    if (val) {
        PIN_EN.gpio->BSRRL = PIN_EN.pin_mask; // set pin high
    } else {
        PIN_EN.gpio->BSRRH = PIN_EN.pin_mask; // set pin low
    }
}

void pyb_cc3000_set_cs(int val) {
    DEBUG_printf("pyb_cc3000_set_cs val=%d\n", val);
    if (val) {
        PIN_CS.gpio->BSRRL = PIN_CS.pin_mask; // set pin high
    } else {
        PIN_CS.gpio->BSRRH = PIN_CS.pin_mask; // set pin low
    }
}

int pyb_cc3000_get_irq(void) {
    if ((PIN_IRQ.gpio->IDR & PIN_IRQ.pin_mask) == 0) {
        return 0;
    } else {
        return 1;
    }
}

uint32_t exti14_enabled = 0; // TODO hack; do it properly!
uint32_t exti14_missed = 0; // TODO hack; do it properly!

void pyb_cc3000_enable_irq(void) {
    DEBUG_printf("pyb_cc3000_enable_irq: en=%lu miss=%lu\n", exti14_enabled, exti14_missed);
    if (exti14_missed) {
        /* doesn't look like this is needed
        DEBUG_printf("pyb_cc3000_enable_irq: handling missed IRQ\n");
        // TODO hack if we have a pending IRQ
        extern void SpiIntGPIOHandler(void);
        SpiIntGPIOHandler();
        */
        exti14_missed = 0;
    }
    exti14_enabled = 1;
}

void pyb_cc3000_disable_irq(void) {
    DEBUG_printf("pyb_cc3000_disable_irq: en=%lu miss=%lu\n", exti14_enabled, exti14_missed);
    exti14_enabled = 0;
}

void pyb_cc3000_pause_spi(void) {
    DEBUG_printf("pyb_cc3000_pause_spi\n");
    exti14_enabled = 0;
}

void pyb_cc3000_resume_spi(void) {
    DEBUG_printf("pyb_cc3000_resume_spi\n");
    exti14_enabled = 1;
}

STATIC mp_obj_t irq_callback(mp_obj_t line) {
    led_toggle(2);
    //extern void SpiIntGPIOHandler(void);
    //extern uint32_t exti14_enabled;
    //extern uint32_t exti14_missed;
    //printf("-> EXTI14 en=%lu miss=%lu\n", exti14_enabled, exti14_missed);
    if (exti14_enabled) {
        exti14_missed = 0;
        SpiIntGPIOHandler(); // CC3000 interrupt
    } else {
        exti14_missed = 1;
    }
    //printf("<- EXTI14 done\n");
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(irq_callback_obj, irq_callback);

void pyb_cc3000_spi_init(void) {
    DEBUG_printf("pyb_cc3000_spi_init\n");

    /*
  inf.baudRate = 100000; // FIXME - just slow for debug
  inf.spiMode = SPIF_SPI_MODE_1;  // Mode 1   CPOL= 0  CPHA= 1
  */

    /*!< SPI configuration */
    SPI_HANDLE.Init.Mode = SPI_MODE_MASTER;
    SPI_HANDLE.Init.Direction = SPI_DIRECTION_2LINES;
    SPI_HANDLE.Init.DataSize = SPI_DATASIZE_8BIT; // should be correct
    SPI_HANDLE.Init.CLKPolarity = SPI_POLARITY_LOW; // clock is low when idle
    SPI_HANDLE.Init.CLKPhase = SPI_PHASE_2EDGE; // data latched on second edge, which is falling edge for low-idle
    SPI_HANDLE.Init.NSS = SPI_NSS_SOFT; // software control
    SPI_HANDLE.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8; // clock freq = f_PCLK / this_prescale_value
    SPI_HANDLE.Init.FirstBit = SPI_FIRSTBIT_MSB; // should be correct
    SPI_HANDLE.Init.TIMode = SPI_TIMODE_DISABLED;
    SPI_HANDLE.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLED;
    SPI_HANDLE.Init.CRCPolynomial = 7; // unused

    spi_init(&SPI_HANDLE);

    // configure wlan CS and EN pins
    GPIO_InitTypeDef GPIO_InitStructure;
    GPIO_InitStructure.Speed = GPIO_SPEED_FAST;
    GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;
    GPIO_InitStructure.Pull = GPIO_NOPULL;
    GPIO_InitStructure.Alternate = 0;

    GPIO_InitStructure.Pin = PIN_CS.pin_mask;
    HAL_GPIO_Init(PIN_CS.gpio, &GPIO_InitStructure);

    GPIO_InitStructure.Pin = PIN_EN.pin_mask;
    HAL_GPIO_Init(PIN_EN.gpio, &GPIO_InitStructure);

    pyb_cc3000_set_cs(1); // de-assert CS
    pyb_cc3000_set_en(0); // disable wlan

    // configure EXTI for PIN_IRQ
    extint_register((mp_obj_t)&PIN_IRQ, GPIO_MODE_IT_FALLING, GPIO_PULLUP, (mp_obj_t)&irq_callback_obj, true, NULL);

    // wait a little (ensure that WLAN takes effect)
    HAL_Delay(500); // force a 500ms delay! FIXME
}

uint8_t pyb_cc3000_spi_send(uint8_t val) {
    uint8_t data[1] = {val};
    HAL_SPI_TransmitReceive(&SPI_HANDLE, data, data, 1, 1000);
    return data[0];
}