timer.c 56.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27
28
29
30
#include <stdint.h>
#include <stdio.h>
#include <string.h>

31
#include STM32_HAL_H
32
33
34
#include "usbd_cdc_msc_hid.h"
#include "usbd_cdc_interface.h"

35
36
37
#include "py/nlr.h"
#include "py/runtime.h"
#include "py/gc.h"
38
39
#include "timer.h"
#include "servo.h"
40
#include "pin.h"
41
#include "irq.h"
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
/// \moduleref pyb
/// \class Timer - periodically call a function
///
/// Timers can be used for a great variety of tasks.  At the moment, only
/// the simplest case is implemented: that of calling a function periodically.
///
/// Each timer consists of a counter that counts up at a certain rate.  The rate
/// at which it counts is the peripheral clock frequency (in Hz) divided by the
/// timer prescaler.  When the counter reaches the timer period it triggers an
/// event, and the counter resets back to zero.  By using the callback method,
/// the timer event can call a Python function.
///
/// Example usage to toggle an LED at a fixed frequency:
///
///     tim = pyb.Timer(4)              # create a timer object using timer 4
///     tim.init(freq=2)                # trigger at 2Hz
///     tim.callback(lambda t:pyb.LED(1).toggle())
///
/// Further examples:
///
///     tim = pyb.Timer(4, freq=100)    # freq in Hz
64
///     tim = pyb.Timer(4, prescaler=0, period=99)
65
66
///     tim.counter()                   # get counter (can also set)
///     tim.prescaler(2)                # set prescaler (can also get)
67
///     tim.period(199)                 # set period (can also get)
68
69
70
71
72
73
74
///     tim.callback(lambda t: ...)     # set callback for update interrupt (t=tim instance)
///     tim.callback(None)              # clear callback
///
/// *Note:* Timer 3 is reserved for internal use.  Timer 5 controls
/// the servo driver, and Timer 6 is used for timed ADC/DAC reading/writing.
/// It is recommended to use the other timers in your programs.

75
76
77
78
// The timers can be used by multiple drivers, and need a common point for
// the interrupts to be dispatched, so they are all collected here.
//
// TIM3:
79
//  - flash storage controller, to flush the cache
80
81
82
83
84
//  - USB CDC interface, interval, to check for new data
//  - LED 4, PWM to set the LED intensity
//
// TIM5:
//  - servo controller, PWM
85
86
87
88
//
// TIM6:
//  - ADC, DAC for read_timed and write_timed

89
90
91
92
93
94
95
96
97
98
typedef enum {
    CHANNEL_MODE_PWM_NORMAL,
    CHANNEL_MODE_PWM_INVERTED,
    CHANNEL_MODE_OC_TIMING,
    CHANNEL_MODE_OC_ACTIVE,
    CHANNEL_MODE_OC_INACTIVE,
    CHANNEL_MODE_OC_TOGGLE,
    CHANNEL_MODE_OC_FORCED_ACTIVE,
    CHANNEL_MODE_OC_FORCED_INACTIVE,
    CHANNEL_MODE_IC,
99
100
101
    CHANNEL_MODE_ENC_A,
    CHANNEL_MODE_ENC_B,
    CHANNEL_MODE_ENC_AB,
102
103
104
105
106
} pyb_channel_mode;

STATIC const struct {
    qstr        name;
    uint32_t    oc_mode;
107
} channel_mode_info[] = {
108
109
110
111
112
113
114
115
116
    { MP_QSTR_PWM,                TIM_OCMODE_PWM1 },
    { MP_QSTR_PWM_INVERTED,       TIM_OCMODE_PWM2 },
    { MP_QSTR_OC_TIMING,          TIM_OCMODE_TIMING },
    { MP_QSTR_OC_ACTIVE,          TIM_OCMODE_ACTIVE },
    { MP_QSTR_OC_INACTIVE,        TIM_OCMODE_INACTIVE },
    { MP_QSTR_OC_TOGGLE,          TIM_OCMODE_TOGGLE },
    { MP_QSTR_OC_FORCED_ACTIVE,   TIM_OCMODE_FORCED_ACTIVE },
    { MP_QSTR_OC_FORCED_INACTIVE, TIM_OCMODE_FORCED_INACTIVE },
    { MP_QSTR_IC,                 0 },
117
118
119
    { MP_QSTR_ENC_A,              TIM_ENCODERMODE_TI1 },
    { MP_QSTR_ENC_B,              TIM_ENCODERMODE_TI2 },
    { MP_QSTR_ENC_AB,             TIM_ENCODERMODE_TI12 },
120
121
122
123
124
125
126
127
128
129
130
};

typedef struct _pyb_timer_channel_obj_t {
    mp_obj_base_t base;
    struct _pyb_timer_obj_t *timer;
    uint8_t channel;
    uint8_t mode;
    mp_obj_t callback;
    struct _pyb_timer_channel_obj_t *next;
} pyb_timer_channel_obj_t;

131
132
typedef struct _pyb_timer_obj_t {
    mp_obj_base_t base;
133
134
    uint8_t tim_id;
    uint8_t is_32bit;
135
136
137
    mp_obj_t callback;
    TIM_HandleTypeDef tim;
    IRQn_Type irqn;
138
    pyb_timer_channel_obj_t *channel;
139
} pyb_timer_obj_t;
140

141
142
143
// The following yields TIM_IT_UPDATE when channel is zero and
// TIM_IT_CC1..TIM_IT_CC4 when channel is 1..4
#define TIMER_IRQ_MASK(channel) (1 << (channel))
144
#define TIMER_CNT_MASK(self)    ((self)->is_32bit ? 0xffffffff : 0xffff)
145
146
#define TIMER_CHANNEL(self)     ((((self)->channel) - 1) << 2)

147
148
TIM_HandleTypeDef TIM3_Handle;
TIM_HandleTypeDef TIM5_Handle;
149
TIM_HandleTypeDef TIM6_Handle;
150

151
#define PYB_TIMER_OBJ_ALL_NUM MP_ARRAY_SIZE(MP_STATE_PORT(pyb_timer_obj_all))
152

153
STATIC uint32_t timer_get_source_freq(uint32_t tim_id);
154
155
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in);
STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback);
156
STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback);
157

158
159
void timer_init0(void) {
    for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
160
        MP_STATE_PORT(pyb_timer_obj_all)[i] = NULL;
161
162
163
    }
}

164
165
166
// unregister all interrupt sources
void timer_deinit(void) {
    for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
167
        pyb_timer_obj_t *tim = MP_STATE_PORT(pyb_timer_obj_all)[i];
168
169
170
171
172
173
        if (tim != NULL) {
            pyb_timer_deinit(tim);
        }
    }
}

174
175
176
177
178
179
// TIM3 is set-up for the USB CDC interface
void timer_tim3_init(void) {
    // set up the timer for USBD CDC
    __TIM3_CLK_ENABLE();

    TIM3_Handle.Instance = TIM3;
180
    TIM3_Handle.Init.Period = (USBD_CDC_POLLING_INTERVAL*1000) - 1; // TIM3 fires every USBD_CDC_POLLING_INTERVAL ms
181
    TIM3_Handle.Init.Prescaler = timer_get_source_freq(3) / 1000000 - 1; // TIM3 runs at 1MHz
182
    TIM3_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
183
184
185
    TIM3_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
    HAL_TIM_Base_Init(&TIM3_Handle);

186
    HAL_NVIC_SetPriority(TIM3_IRQn, IRQ_PRI_TIM3, IRQ_SUBPRI_TIM3);
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    HAL_NVIC_EnableIRQ(TIM3_IRQn);

    if (HAL_TIM_Base_Start(&TIM3_Handle) != HAL_OK) {
        /* Starting Error */
    }
}

/* unused
void timer_tim3_deinit(void) {
    // reset TIM3 timer
    __TIM3_FORCE_RESET();
    __TIM3_RELEASE_RESET();
}
*/

// TIM5 is set-up for the servo controller
203
// This function inits but does not start the timer
204
205
206
207
208
void timer_tim5_init(void) {
    // TIM5 clock enable
    __TIM5_CLK_ENABLE();

    // set up and enable interrupt
209
    HAL_NVIC_SetPriority(TIM5_IRQn, IRQ_PRI_TIM5, IRQ_SUBPRI_TIM5);
210
211
212
213
    HAL_NVIC_EnableIRQ(TIM5_IRQn);

    // PWM clock configuration
    TIM5_Handle.Instance = TIM5;
214
    TIM5_Handle.Init.Period = 2000 - 1; // timer cycles at 50Hz
215
    TIM5_Handle.Init.Prescaler = (timer_get_source_freq(5) / 100000) - 1; // timer runs at 100kHz
216
    TIM5_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
217
    TIM5_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
218

219
220
221
    HAL_TIM_PWM_Init(&TIM5_Handle);
}

222
#if defined(TIM6)
223
224
225
// Init TIM6 with a counter-overflow at the given frequency (given in Hz)
// TIM6 is used by the DAC and ADC for auto sampling at a given frequency
// This function inits but does not start the timer
226
TIM_HandleTypeDef *timer_tim6_init(uint freq) {
227
228
229
230
231
    // TIM6 clock enable
    __TIM6_CLK_ENABLE();

    // Timer runs at SystemCoreClock / 2
    // Compute the prescaler value so TIM6 triggers at freq-Hz
232
    uint32_t period = MAX(1, timer_get_source_freq(6) / freq);
233
234
235
236
237
238
239
240
241
242
    uint32_t prescaler = 1;
    while (period > 0xffff) {
        period >>= 1;
        prescaler <<= 1;
    }

    // Time base clock configuration
    TIM6_Handle.Instance = TIM6;
    TIM6_Handle.Init.Period = period - 1;
    TIM6_Handle.Init.Prescaler = prescaler - 1;
243
    TIM6_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // unused for TIM6
244
245
    TIM6_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; // unused for TIM6
    HAL_TIM_Base_Init(&TIM6_Handle);
246
247

    return &TIM6_Handle;
248
}
249
#endif
250

251
252
253
254
255
256
257
258
259
// Interrupt dispatch
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
    if (htim == &TIM3_Handle) {
        USBD_CDC_HAL_TIM_PeriodElapsedCallback();
    } else if (htim == &TIM5_Handle) {
        servo_timer_irq_callback();
    }
}

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
// Get the frequency (in Hz) of the source clock for the given timer.
// On STM32F405/407/415/417 there are 2 cases for how the clock freq is set.
// If the APB prescaler is 1, then the timer clock is equal to its respective
// APB clock.  Otherwise (APB prescaler > 1) the timer clock is twice its
// respective APB clock.  See DM00031020 Rev 4, page 115.
STATIC uint32_t timer_get_source_freq(uint32_t tim_id) {
    uint32_t source;
    if (tim_id == 1 || (8 <= tim_id && tim_id <= 11)) {
        // TIM{1,8,9,10,11} are on APB2
        source = HAL_RCC_GetPCLK2Freq();
        if ((uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3) != RCC_HCLK_DIV1) {
            source *= 2;
        }
    } else {
        // TIM{2,3,4,5,6,7,12,13,14} are on APB1
        source = HAL_RCC_GetPCLK1Freq();
        if ((uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1) != RCC_HCLK_DIV1) {
            source *= 2;
        }
    }
    return source;
}

283
284
285
/******************************************************************************/
/* Micro Python bindings                                                      */

286
287
STATIC const mp_obj_type_t pyb_timer_channel_type;

Dave Hylands's avatar
Dave Hylands committed
288
289
290
291
// This is the largest value that we can multiply by 100 and have the result
// fit in a uint32_t.
#define MAX_PERIOD_DIV_100  42949672

292
293
294
295
296
297
298
299
300
301
302
303
// computes prescaler and period so TIM triggers at freq-Hz
STATIC uint32_t compute_prescaler_period_from_freq(pyb_timer_obj_t *self, mp_obj_t freq_in, uint32_t *period_out) {
    uint32_t source_freq = timer_get_source_freq(self->tim_id);
    uint32_t prescaler = 1;
    uint32_t period;
    if (0) {
    #if MICROPY_PY_BUILTINS_FLOAT
    } else if (MP_OBJ_IS_TYPE(freq_in, &mp_type_float)) {
        float freq = mp_obj_get_float(freq_in);
        if (freq <= 0) {
            goto bad_freq;
        }
304
305
306
307
308
        while (freq < 1 && prescaler < 6553) {
            prescaler *= 10;
            freq *= 10;
        }
        period = (float)source_freq / freq;
309
310
311
312
313
314
315
316
    #endif
    } else {
        mp_int_t freq = mp_obj_get_int(freq_in);
        if (freq <= 0) {
            goto bad_freq;
            bad_freq:
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "must have positive freq"));
        }
317
        period = source_freq / freq;
318
    }
319
    period = MAX(1, period);
320
    while (period > TIMER_CNT_MASK(self)) {
321
322
323
324
325
326
327
328
329
330
331
332
        // if we can divide exactly, do that first
        if (period % 5 == 0) {
            prescaler *= 5;
            period /= 5;
        } else if (period % 3 == 0) {
            prescaler *= 3;
            period /= 3;
        } else {
            // may not divide exactly, but loses minimal precision
            prescaler <<= 1;
            period >>= 1;
        }
333
334
335
336
337
    }
    *period_out = (period - 1) & TIMER_CNT_MASK(self);
    return (prescaler - 1) & 0xffff;
}

Dave Hylands's avatar
Dave Hylands committed
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
// Helper function for determining the period used for calculating percent
STATIC uint32_t compute_period(pyb_timer_obj_t *self) {
    // In center mode,  compare == period corresponds to 100%
    // In edge mode, compare == (period + 1) corresponds to 100%
    uint32_t period = (__HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self));
    if (period != 0xffffffff) {
        if (self->tim.Init.CounterMode == TIM_COUNTERMODE_UP ||
            self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN) {
            // Edge mode
            period++;
        }
    }
    return period;
}

353
// Helper function to compute PWM value from timer period and percent value.
Dave Hylands's avatar
Dave Hylands committed
354
355
356
// 'percent_in' can be an int or a float between 0 and 100 (out of range
// values are clamped).
STATIC uint32_t compute_pwm_value_from_percent(uint32_t period, mp_obj_t percent_in) {
357
358
359
    uint32_t cmp;
    if (0) {
    #if MICROPY_PY_BUILTINS_FLOAT
Dave Hylands's avatar
Dave Hylands committed
360
361
362
363
364
365
366
367
368
    } else if (MP_OBJ_IS_TYPE(percent_in, &mp_type_float)) {
        float percent = mp_obj_get_float(percent_in);
        if (percent <= 0.0) {
            cmp = 0;
        } else if (percent >= 100.0) {
            cmp = period;
        } else {
            cmp = percent / 100.0 * ((float)period);
        }
369
370
371
372
373
    #endif
    } else {
        // For integer arithmetic, if period is large and 100*period will
        // overflow, then divide period before multiplying by cmp.  Otherwise
        // do it the other way round to retain precision.
Dave Hylands's avatar
Dave Hylands committed
374
375
376
377
378
379
380
        mp_int_t percent = mp_obj_get_int(percent_in);
        if (percent <= 0) {
            cmp = 0;
        } else if (percent >= 100) {
            cmp = period;
        } else if (period > MAX_PERIOD_DIV_100) {
            cmp = (uint32_t)percent * (period / 100);
381
        } else {
Dave Hylands's avatar
Dave Hylands committed
382
            cmp = ((uint32_t)percent * period) / 100;
383
384
385
386
387
        }
    }
    return cmp;
}

Dave Hylands's avatar
Dave Hylands committed
388
389
390
391
// Helper function to compute percentage from timer perion and PWM value.
STATIC mp_obj_t compute_percent_from_pwm_value(uint32_t period, uint32_t cmp) {
    #if MICROPY_PY_BUILTINS_FLOAT
    float percent;
392
    if (cmp >= period) {
Dave Hylands's avatar
Dave Hylands committed
393
394
395
396
397
398
399
        percent = 100.0;
    } else {
        percent = (float)cmp * 100.0 / ((float)period);
    }
    return mp_obj_new_float(percent);
    #else
    mp_int_t percent;
400
    if (cmp >= period) {
Dave Hylands's avatar
Dave Hylands committed
401
        percent = 100;
402
403
    } else if (cmp > MAX_PERIOD_DIV_100) {
        percent = cmp / (period / 100);
Dave Hylands's avatar
Dave Hylands committed
404
405
406
407
408
409
410
    } else {
        percent = cmp * 100 / period;
    }
    return mp_obj_new_int(percent);
    #endif
}

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
// Computes the 8-bit value for the DTG field in the BDTR register.
//
// 1 tick = 1 count of the timer's clock (source_freq) divided by div.
// 0-128 ticks in inrements of 1
// 128-256 ticks in increments of 2
// 256-512 ticks in increments of 8
// 512-1008 ticks in increments of 16
STATIC uint32_t compute_dtg_from_ticks(mp_int_t ticks) {
    if (ticks <= 0) {
        return 0;
    }
    if (ticks < 128) {
        return ticks;
    }
    if (ticks < 256) {
        return 0x80 | ((ticks - 128) / 2);
    }
    if (ticks < 512) {
        return 0xC0 | ((ticks - 256) / 8);
    }
    if (ticks < 1008) {
        return 0xE0 | ((ticks - 512) / 16);
    }
    return 0xFF;
}

// Given the 8-bit value stored in the DTG field of the BDTR register, compute
// the number of ticks.
STATIC mp_int_t compute_ticks_from_dtg(uint32_t dtg) {
    if ((dtg & 0x80) == 0) {
        return dtg & 0x7F;
    }
    if ((dtg & 0xC0) == 0x80) {
        return 128 + ((dtg & 0x3F) * 2);
    }
    if ((dtg & 0xE0) == 0xC0) {
        return 256 + ((dtg & 0x1F) * 8);
    }
    return 512 + ((dtg & 0x1F) * 16);
}

STATIC void config_deadtime(pyb_timer_obj_t *self, mp_int_t ticks) {
    TIM_BreakDeadTimeConfigTypeDef deadTimeConfig;
    deadTimeConfig.OffStateRunMode  = TIM_OSSR_DISABLE;
    deadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
    deadTimeConfig.LockLevel        = TIM_LOCKLEVEL_OFF;
    deadTimeConfig.DeadTime         = compute_dtg_from_ticks(ticks);
    deadTimeConfig.BreakState       = TIM_BREAK_DISABLE;
    deadTimeConfig.BreakPolarity    = TIM_BREAKPOLARITY_LOW;
    deadTimeConfig.AutomaticOutput  = TIM_AUTOMATICOUTPUT_DISABLE;
    HAL_TIMEx_ConfigBreakDeadTime(&self->tim, &deadTimeConfig);
}

464
TIM_HandleTypeDef *pyb_timer_get_handle(mp_obj_t timer) {
465
466
467
    if (mp_obj_get_type(timer) != &pyb_timer_type) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "need a Timer object"));
    }
468
469
470
471
    pyb_timer_obj_t *self = timer;
    return &self->tim;
}

472
STATIC void pyb_timer_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
473
474
475
    pyb_timer_obj_t *self = self_in;

    if (self->tim.State == HAL_TIM_STATE_RESET) {
476
        mp_printf(print, "Timer(%u)", self->tim_id);
477
    } else {
478
479
480
481
        uint32_t prescaler = self->tim.Instance->PSC & 0xffff;
        uint32_t period = __HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self);
        // for efficiency, we compute and print freq as an int (not a float)
        uint32_t freq = timer_get_source_freq(self->tim_id) / ((prescaler + 1) * (period + 1));
482
        mp_printf(print, "Timer(%u, freq=%u, prescaler=%u, period=%u, mode=%s, div=%u",
483
            self->tim_id,
484
485
486
            freq,
            prescaler,
            period,
487
488
489
490
            self->tim.Init.CounterMode == TIM_COUNTERMODE_UP     ? "UP" :
            self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN   ? "DOWN" : "CENTER",
            self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV4 ? 4 :
            self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV2 ? 2 : 1);
491
        if (IS_TIM_ADVANCED_INSTANCE(self->tim.Instance)) {
492
493
            mp_printf(print, ", deadtime=%u",
                compute_ticks_from_dtg(self->tim.Instance->BDTR & TIM_BDTR_DTG));
494
        }
495
        mp_print_str(print, ")");
496
497
    }
}
498

499
500
501
502
503
/// \method init(*, freq, prescaler, period)
/// Initialise the timer.  Initialisation must be either by frequency (in Hz)
/// or by prescaler and period:
///
///     tim.init(freq=100)                  # set the timer to trigger at 100Hz
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
///     tim.init(prescaler=83, period=999)  # set the prescaler and period directly
///
/// Keyword arguments:
///
///   - `freq` - specifies the periodic frequency of the timer. You migh also
///              view this as the frequency with which the timer goes through
///              one complete cycle.
///
///   - `prescaler` [0-0xffff] - specifies the value to be loaded into the
///                 timer's Prescaler Register (PSC). The timer clock source is divided by
///     (`prescaler + 1`) to arrive at the timer clock. Timers 2-7 and 12-14
///     have a clock source of 84 MHz (pyb.freq()[2] * 2), and Timers 1, and 8-11
///     have a clock source of 168 MHz (pyb.freq()[3] * 2).
///
///   - `period` [0-0xffff] for timers 1, 3, 4, and 6-15. [0-0x3fffffff] for timers 2 & 5.
///              Specifies the value to be loaded into the timer's AutoReload
///     Register (ARR). This determines the period of the timer (i.e. when the
///     counter cycles). The timer counter will roll-over after `period + 1`
///     timer clock cycles.
///
///   - `mode` can be one of:
///     - `Timer.UP` - configures the timer to count from 0 to ARR (default)
///     - `Timer.DOWN` - configures the timer to count from ARR down to 0.
///     - `Timer.CENTER` - confgures the timer to count from 0 to ARR and
///       then back down to 0.
///
///   - `div` can be one of 1, 2, or 4. Divides the timer clock to determine
///       the sampling clock used by the digital filters.
///
///   - `callback` - as per Timer.callback()
///
535
536
537
538
539
540
541
542
///   - `deadtime` - specifies the amount of "dead" or inactive time between
///       transitions on complimentary channels (both channels will be inactive)
///       for this time). `deadtime` may be an integer between 0 and 1008, with
///       the following restrictions: 0-128 in steps of 1. 128-256 in steps of
///       2, 256-512 in steps of 8, and 512-1008 in steps of 16. `deadime`
///       measures ticks of `source_freq` divided by `div` clock ticks.
///       `deadtime` is only available on timers 1 and 8.
///
543
///  You must either specify freq or both of period and prescaler.
544
545
546
547
548
549
550
551
STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_freq,         MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_prescaler,    MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
        { MP_QSTR_period,       MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
        { MP_QSTR_mode,         MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = TIM_COUNTERMODE_UP} },
        { MP_QSTR_div,          MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
        { MP_QSTR_callback,     MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
552
        { MP_QSTR_deadtime,     MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
553
    };
554

555
    // parse args
556
557
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
558

559
560
    // set the TIM configuration values
    TIM_Base_InitTypeDef *init = &self->tim.Init;
561

562
563
564
565
    if (args[0].u_obj != mp_const_none) {
        // set prescaler and period from desired frequency
        init->Prescaler = compute_prescaler_period_from_freq(self, args[0].u_obj, &init->Period);
    } else if (args[1].u_int != 0xffffffff && args[2].u_int != 0xffffffff) {
566
        // set prescaler and period directly
567
568
        init->Prescaler = args[1].u_int;
        init->Period = args[2].u_int;
569
570
571
572
    } else {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "must specify either freq, or prescaler and period"));
    }

573
574
575
576
    init->CounterMode = args[3].u_int;
    if (!IS_TIM_COUNTER_MODE(init->CounterMode)) {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid mode (%d)", init->CounterMode));
    }
577

578
579
    init->ClockDivision = args[4].u_int == 2 ? TIM_CLOCKDIVISION_DIV2 :
                          args[4].u_int == 4 ? TIM_CLOCKDIVISION_DIV4 :
580
                                               TIM_CLOCKDIVISION_DIV1;
581

582
    init->RepetitionCounter = 0;
583

584
    // enable TIM clock
585
586
587
588
589
590
    switch (self->tim_id) {
        case 1: __TIM1_CLK_ENABLE(); break;
        case 2: __TIM2_CLK_ENABLE(); break;
        case 3: __TIM3_CLK_ENABLE(); break;
        case 4: __TIM4_CLK_ENABLE(); break;
        case 5: __TIM5_CLK_ENABLE(); break;
591
        #if defined(TIM6)
592
        case 6: __TIM6_CLK_ENABLE(); break;
593
594
        #endif
        #if defined(TIM7)
595
        case 7: __TIM7_CLK_ENABLE(); break;
596
597
        #endif
        #if defined(TIM8)
598
        case 8: __TIM8_CLK_ENABLE(); break;
599
        #endif
600
601
602
        case 9: __TIM9_CLK_ENABLE(); break;
        case 10: __TIM10_CLK_ENABLE(); break;
        case 11: __TIM11_CLK_ENABLE(); break;
603
        #if defined(TIM12)
604
        case 12: __TIM12_CLK_ENABLE(); break;
605
606
        #endif
        #if defined(TIM13)
607
        case 13: __TIM13_CLK_ENABLE(); break;
608
609
        #endif
        #if defined(TIM14)
610
        case 14: __TIM14_CLK_ENABLE(); break;
611
        #endif
612
    }
613
614

    // set IRQ priority (if not a special timer)
615
    if (self->tim_id != 3 && self->tim_id != 5) {
616
        HAL_NVIC_SetPriority(self->irqn, IRQ_PRI_TIMX, IRQ_SUBPRI_TIMX);
617
    }
618

619
    // init TIM
620
    HAL_TIM_Base_Init(&self->tim);
621
622
623
    if (IS_TIM_ADVANCED_INSTANCE(self->tim.Instance)) {
        config_deadtime(self, args[6].u_int);
    }
624
    if (args[5].u_obj == mp_const_none) {
625
626
        HAL_TIM_Base_Start(&self->tim);
    } else {
627
        pyb_timer_callback(self, args[5].u_obj);
628
629
    }

630
631
632
    return mp_const_none;
}

633
634
635
636
/// \classmethod \constructor(id, ...)
/// Construct a new timer object of the given id.  If additional
/// arguments are given, then the timer is initialised by `init(...)`.
/// `id` can be 1 to 14, excluding 3.
637
STATIC mp_obj_t pyb_timer_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
638
639
640
641
642
    // check arguments
    mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);

    // create new Timer object
    pyb_timer_obj_t *tim = m_new_obj(pyb_timer_obj_t);
643
644
    memset(tim, 0, sizeof(*tim));

645
646
    tim->base.type = &pyb_timer_type;
    tim->callback = mp_const_none;
647
    tim->channel = NULL;
648
649
650

    // get TIM number
    tim->tim_id = mp_obj_get_int(args[0]);
651
    tim->is_32bit = false;
652
653
654

    switch (tim->tim_id) {
        case 1: tim->tim.Instance = TIM1; tim->irqn = TIM1_UP_TIM10_IRQn; break;
655
        case 2: tim->tim.Instance = TIM2; tim->irqn = TIM2_IRQn; tim->is_32bit = true; break;
656
657
        case 3: nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "Timer 3 is for internal use only")); // TIM3 used for low-level stuff; go via regs if necessary
        case 4: tim->tim.Instance = TIM4; tim->irqn = TIM4_IRQn; break;
658
        case 5: tim->tim.Instance = TIM5; tim->irqn = TIM5_IRQn; tim->is_32bit = true; break;
659
        #if defined(TIM6)
660
        case 6: tim->tim.Instance = TIM6; tim->irqn = TIM6_DAC_IRQn; break;
661
662
        #endif
        #if defined(TIM7)
663
        case 7: tim->tim.Instance = TIM7; tim->irqn = TIM7_IRQn; break;
664
665
        #endif
        #if defined(TIM8)
666
        case 8: tim->tim.Instance = TIM8; tim->irqn = TIM8_UP_TIM13_IRQn; break;
667
        #endif
668
669
670
        case 9: tim->tim.Instance = TIM9; tim->irqn = TIM1_BRK_TIM9_IRQn; break;
        case 10: tim->tim.Instance = TIM10; tim->irqn = TIM1_UP_TIM10_IRQn; break;
        case 11: tim->tim.Instance = TIM11; tim->irqn = TIM1_TRG_COM_TIM11_IRQn; break;
671
        #if defined(TIM12)
672
        case 12: tim->tim.Instance = TIM12; tim->irqn = TIM8_BRK_TIM12_IRQn; break;
673
674
        #endif
        #if defined(TIM13)
675
        case 13: tim->tim.Instance = TIM13; tim->irqn = TIM8_UP_TIM13_IRQn; break;
676
677
        #endif
        #if defined(TIM14)
678
        case 14: tim->tim.Instance = TIM14; tim->irqn = TIM8_TRG_COM_TIM14_IRQn; break;
679
        #endif
680
681
682
        default: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Timer %d does not exist", tim->tim_id));
    }

683
684
685
686
687
    // set the global variable for interrupt callbacks
    if (tim->tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) {
        MP_STATE_PORT(pyb_timer_obj_all)[tim->tim_id - 1] = tim;
    }

688
689
690
691
692
693
694
695
    if (n_args > 1 || n_kw > 0) {
        // start the peripheral
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
        pyb_timer_init_helper(tim, n_args - 1, args + 1, &kw_args);
    }

    return (mp_obj_t)tim;
696
697
}

698
STATIC mp_obj_t pyb_timer_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
699
    return pyb_timer_init_helper(args[0], n_args - 1, args + 1, kw_args);
700
}
701
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_init_obj, 1, pyb_timer_init);
702

703
// timer.deinit()
704
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in) {
705
706
    pyb_timer_obj_t *self = self_in;

707
    // Disable the base interrupt
708
709
    pyb_timer_callback(self_in, mp_const_none);

710
711
712
713
714
715
716
717
718
719
720
    pyb_timer_channel_obj_t *chan = self->channel;
    self->channel = NULL;

    // Disable the channel interrupts
    while (chan != NULL) {
        pyb_timer_channel_callback(chan, mp_const_none);
        pyb_timer_channel_obj_t *prev_chan = chan;
        chan = chan->next;
        prev_chan->next = NULL;
    }

721
    self->tim.State = HAL_TIM_STATE_RESET;
722
723
724
    self->tim.Instance->CCER = 0x0000; // disable all capture/compare outputs
    self->tim.Instance->CR1 = 0x0000; // disable the timer and reset its state

725
726
727
728
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_deinit_obj, pyb_timer_deinit);

729
730
/// \method channel(channel, mode, ...)
///
731
732
/// If only a channel number is passed, then a previously initialized channel
/// object is returned (or `None` if there is no previous channel).
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
///
/// Othwerwise, a TimerChannel object is initialized and returned.
///
/// Each channel can be configured to perform pwm, output compare, or
/// input capture. All channels share the same underlying timer, which means
/// that they share the same timer clock.
///
/// Keyword arguments:
///
///   - `mode` can be one of:
///     - `Timer.PWM` - configure the timer in PWM mode (active high).
///     - `Timer.PWM_INVERTED` - configure the timer in PWM mode (active low).
///     - `Timer.OC_TIMING` - indicates that no pin is driven.
///     - `Timer.OC_ACTIVE` - the pin will be made active when a compare
///        match occurs (active is determined by polarity)
///     - `Timer.OC_INACTIVE` - the pin will be made inactive when a compare
///        match occurs.
///     - `Timer.OC_TOGGLE` - the pin will be toggled when an compare match occurs.
///     - `Timer.OC_FORCED_ACTIVE` - the pin is forced active (compare match is ignored).
///     - `Timer.OC_FORCED_INACTIVE` - the pin is forced inactive (compare match is ignored).
///     - `Timer.IC` - configure the timer in Input Capture mode.
754
755
756
///     - `Timer.ENC_A` --- configure the timer in Encoder mode. The counter only changes when CH1 changes.
///     - `Timer.ENC_B` --- configure the timer in Encoder mode. The counter only changes when CH2 changes.
///     - `Timer.ENC_AB` --- configure the timer in Encoder mode. The counter changes when CH1 or CH2 changes.
757
758
759
760
761
762
763
764
765
766
///
///   - `callback` - as per TimerChannel.callback()
///
///   - `pin` None (the default) or a Pin object. If specified (and not None)
///           this will cause the alternate function of the the indicated pin
///      to be configured for this timer channel. An error will be raised if
///      the pin doesn't support any alternate functions for this timer channel.
///
/// Keyword arguments for Timer.PWM modes:
///
767
///   - `pulse_width` - determines the initial pulse width value to use.
768
///   - `pulse_width_percent` - determines the initial pulse width percentage to use.
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
///
/// Keyword arguments for Timer.OC modes:
///
///   - `compare` - determines the initial value of the compare register.
///
///   - `polarity` can be one of:
///     - `Timer.HIGH` - output is active high
///     - `Timer.LOW` - output is acive low
///
/// Optional keyword arguments for Timer.IC modes:
///
///   - `polarity` can be one of:
///     - `Timer.RISING` - captures on rising edge.
///     - `Timer.FALLING` - captures on falling edge.
///     - `Timer.BOTH` - captures on both edges.
///
785
786
787
///   Note that capture only works on the primary channel, and not on the
///   complimentary channels.
///
788
789
790
791
792
793
794
795
/// Notes for Timer.ENC modes:
///
///   - Requires 2 pins, so one or both pins will need to be configured to use
///     the appropriate timer AF using the Pin API.
///   - Read the encoder value using the timer.counter() method.
///   - Only works on CH1 and CH2 (and not on CH1N or CH2N)
///   - The channel number is ignored when setting the encoder mode.
///
796
797
798
799
800
/// PWM Example:
///
///     timer = pyb.Timer(2, freq=1000)
///     ch2 = timer.channel(2, pyb.Timer.PWM, pin=pyb.Pin.board.X2, pulse_width=210000)
///     ch3 = timer.channel(3, pyb.Timer.PWM, pin=pyb.Pin.board.X3, pulse_width=420000)
801
802
803
804
805
806
807
808
809
810
STATIC mp_obj_t pyb_timer_channel(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_mode,                MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_callback,            MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_pin,                 MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_pulse_width,         MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_pulse_width_percent, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_compare,             MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_polarity,            MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
    };
811

812
813
    pyb_timer_obj_t *self = pos_args[0];
    mp_int_t channel = mp_obj_get_int(pos_args[1]);
814
815

    if (channel < 1 || channel > 4) {
816
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid channel (%d)", channel));
817
818
819
820
821
822
823
824
825
826
827
828
    }

    pyb_timer_channel_obj_t *chan = self->channel;
    pyb_timer_channel_obj_t *prev_chan = NULL;

    while (chan != NULL) {
        if (chan->channel == channel) {
            break;
        }
        prev_chan = chan;
        chan = chan->next;
    }
829
830
831

    // If only the channel number is given return the previously allocated
    // channel (or None if no previous channel).
832
    if (n_args == 2 && kw_args->used == 0) {
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
        if (chan) {
            return chan;
        }
        return mp_const_none;
    }

    // If there was already a channel, then remove it from the list. Note that
    // the order we do things here is important so as to appear atomic to
    // the IRQ handler.
    if (chan) {
        // Turn off any IRQ associated with the channel.
        pyb_timer_channel_callback(chan, mp_const_none);

        // Unlink the channel from the list.
        if (prev_chan) {
            prev_chan->next = chan->next;
        }
        self->channel = chan->next;
        chan->next = NULL;
    }

    // Allocate and initialize a new channel
855
856
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
857
858
859
860
861
862

    chan = m_new_obj(pyb_timer_channel_obj_t);
    memset(chan, 0, sizeof(*chan));
    chan->base.type = &pyb_timer_channel_type;
    chan->timer = self;
    chan->channel = channel;
863
864
    chan->mode = args[0].u_int;
    chan->callback = args[1].u_obj;
865

866
    mp_obj_t pin_obj = args[2].u_obj;
867
868
869
870
871
872
873
    if (pin_obj != mp_const_none) {
        if (!MP_OBJ_IS_TYPE(pin_obj, &pin_type)) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "pin argument needs to be be a Pin type"));
        }
        const pin_obj_t *pin = pin_obj;
        const pin_af_obj_t *af = pin_find_af(pin, AF_FN_TIM, self->tim_id);
        if (af == NULL) {
874
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %q doesn't have an af for TIM%d", pin->name, self->tim_id));
875
876
        }
        // pin.init(mode=AF_PP, af=idx)
877
        const mp_obj_t args2[6] = {
878
879
880
881
882
            (mp_obj_t)&pin_init_obj,
            pin_obj,
            MP_OBJ_NEW_QSTR(MP_QSTR_mode),  MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_PP),
            MP_OBJ_NEW_QSTR(MP_QSTR_af),    MP_OBJ_NEW_SMALL_INT(af->idx)
        };
883
        mp_call_method_n_kw(0, 2, args2);
884
885
886
887
888
889
890
891
892
893
894
895
896
897
    }

    // Link the channel to the timer before we turn the channel on.
    // Note that this needs to appear atomic to the IRQ handler (the write
    // to self->channel is atomic, so we're good, but I thought I'd mention
    // in case this was ever changed in the future).
    chan->next = self->channel;
    self->channel = chan;

    switch (chan->mode) {

        case CHANNEL_MODE_PWM_NORMAL:
        case CHANNEL_MODE_PWM_INVERTED: {
            TIM_OC_InitTypeDef oc_config;
898
            oc_config.OCMode = channel_mode_info[chan->mode].oc_mode;
899
            if (args[4].u_obj != mp_const_none) {
900
                // pulse width percent given
Dave Hylands's avatar
Dave Hylands committed
901
                uint32_t period = compute_period(self);
902
                oc_config.Pulse = compute_pwm_value_from_percent(period, args[4].u_obj);
903
            } else {
904
                // use absolute pulse width value (defaults to 0 if nothing given)
905
                oc_config.Pulse = args[3].u_int;
906
            }
907
908
909
910
911
912
913
914
915
916
917
918
            oc_config.OCPolarity   = TIM_OCPOLARITY_HIGH;
            oc_config.OCNPolarity  = TIM_OCNPOLARITY_HIGH;
            oc_config.OCFastMode   = TIM_OCFAST_DISABLE;
            oc_config.OCIdleState  = TIM_OCIDLESTATE_SET;
            oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;

            HAL_TIM_PWM_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan));
            if (chan->callback == mp_const_none) {
                HAL_TIM_PWM_Start(&self->tim, TIMER_CHANNEL(chan));
            } else {
                HAL_TIM_PWM_Start_IT(&self->tim, TIMER_CHANNEL(chan));
            }
919
920
921
922
            // Start the complimentary channel too (if its supported)
            if (IS_TIM_CCXN_INSTANCE(self->tim.Instance, TIMER_CHANNEL(chan))) {
                HAL_TIMEx_PWMN_Start(&self->tim, TIMER_CHANNEL(chan));
            }
923
924
925
926
927
928
929
930
931
932
            break;
        }

        case CHANNEL_MODE_OC_TIMING:
        case CHANNEL_MODE_OC_ACTIVE:
        case CHANNEL_MODE_OC_INACTIVE:
        case CHANNEL_MODE_OC_TOGGLE:
        case CHANNEL_MODE_OC_FORCED_ACTIVE:
        case CHANNEL_MODE_OC_FORCED_INACTIVE: {
            TIM_OC_InitTypeDef oc_config;
933
            oc_config.OCMode       = channel_mode_info[chan->mode].oc_mode;
934
935
            oc_config.Pulse        = args[5].u_int;
            oc_config.OCPolarity   = args[6].u_int;
936
937
938
            if (oc_config.OCPolarity == 0xffffffff) {
                oc_config.OCPolarity = TIM_OCPOLARITY_HIGH;
            }
939
940
941
942
943
            if (oc_config.OCPolarity == TIM_OCPOLARITY_HIGH) {
                oc_config.OCNPolarity  = TIM_OCNPOLARITY_HIGH;
            } else {
                oc_config.OCNPolarity  = TIM_OCNPOLARITY_LOW;
            }
944
945
946
947
948
            oc_config.OCFastMode   = TIM_OCFAST_DISABLE;
            oc_config.OCIdleState  = TIM_OCIDLESTATE_SET;
            oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;

            if (!IS_TIM_OC_POLARITY(oc_config.OCPolarity)) {
949
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", oc_config.OCPolarity));
950
951
952
953
954
955
956
            }
            HAL_TIM_OC_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan));
            if (chan->callback == mp_const_none) {
                HAL_TIM_OC_Start(&self->tim, TIMER_CHANNEL(chan));
            } else {
                HAL_TIM_OC_Start_IT(&self->tim, TIMER_CHANNEL(chan));
            }
957
958
959
960
            // Start the complimentary channel too (if its supported)
            if (IS_TIM_CCXN_INSTANCE(self->tim.Instance, TIMER_CHANNEL(chan))) {
                HAL_TIMEx_OCN_Start(&self->tim, TIMER_CHANNEL(chan));
            }
961
962
963
964
965
966
            break;
        }

        case CHANNEL_MODE_IC: {
            TIM_IC_InitTypeDef ic_config;

967
            ic_config.ICPolarity  = args[6].u_int;
968
969
970
971
972
973
974
975
            if (ic_config.ICPolarity == 0xffffffff) {
                ic_config.ICPolarity = TIM_ICPOLARITY_RISING;
            }
            ic_config.ICSelection = TIM_ICSELECTION_DIRECTTI;
            ic_config.ICPrescaler = TIM_ICPSC_DIV1;
            ic_config.ICFilter    = 0;

            if (!IS_TIM_IC_POLARITY(ic_config.ICPolarity)) {
976
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", ic_config.ICPolarity));
977
978
979
980
981
982
983
984
985
986
            }
            HAL_TIM_IC_ConfigChannel(&self->tim, &ic_config, TIMER_CHANNEL(chan));
            if (chan->callback == mp_const_none) {
                HAL_TIM_IC_Start(&self->tim, TIMER_CHANNEL(chan));
            } else {
                HAL_TIM_IC_Start_IT(&self->tim, TIMER_CHANNEL(chan));
            }
            break;
        }

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
        case CHANNEL_MODE_ENC_A:
        case CHANNEL_MODE_ENC_B:
        case CHANNEL_MODE_ENC_AB: {
            TIM_Encoder_InitTypeDef enc_config;

            enc_config.EncoderMode = channel_mode_info[chan->mode].oc_mode;
            enc_config.IC1Polarity  = args[6].u_int;
            if (enc_config.IC1Polarity == 0xffffffff) {
                enc_config.IC1Polarity = TIM_ICPOLARITY_RISING;
            }
            enc_config.IC2Polarity  = enc_config.IC1Polarity;
            enc_config.IC1Selection = TIM_ICSELECTION_DIRECTTI;
            enc_config.IC2Selection = TIM_ICSELECTION_DIRECTTI;
            enc_config.IC1Prescaler = TIM_ICPSC_DIV1;
            enc_config.IC2Prescaler = TIM_ICPSC_DIV1;
            enc_config.IC1Filter    = 0;
            enc_config.IC2Filter    = 0;

            if (!IS_TIM_IC_POLARITY(enc_config.IC1Polarity)) {
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", enc_config.IC1Polarity));
            }
            // Only Timers 1, 2, 3, 4, 5, and 8 support encoder mode
            if (self->tim.Instance != TIM1
            &&  self->tim.Instance != TIM2
            &&  self->tim.Instance != TIM3
            &&  self->tim.Instance != TIM4
            &&  self->tim.Instance != TIM5
1014
1015
1016
1017
            #if defined(TIM8)
            &&  self->tim.Instance != TIM8
            #endif
            ) {
1018
1019
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "encoder not supported on timer %d", self->tim_id));
            }
1020
1021
1022
1023

            // Disable & clear the timer interrupt so that we don't trigger
            // an interrupt by initializing the timer.
            __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
1024
1025
            HAL_TIM_Encoder_Init(&self->tim, &enc_config);
            __HAL_TIM_SetCounter(&self->tim, 0);
1026
1027
1028
1029
1030
            if (self->callback != mp_const_none) {
                __HAL_TIM_CLEAR_FLAG(&self->tim, TIM_IT_UPDATE);
                __HAL_TIM_ENABLE_IT(&self->tim, TIM_IT_UPDATE);
            }
            HAL_TIM_Encoder_Start(&self->tim, TIM_CHANNEL_ALL);
1031
1032
1033
            break;
        }

1034
        default:
1035
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid mode (%d)", chan->mode));
1036
1037
1038
1039
    }

    return chan;
}
1040
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_channel_obj, 2, pyb_timer_channel);
1041

1042
1043
/// \method counter([value])
/// Get or set the timer counter.
1044
STATIC mp_obj_t pyb_timer_counter(mp_uint_t n_args, const mp_obj_t *args) {
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
    pyb_timer_obj_t *self = args[0];
    if (n_args == 1) {
        // get
        return mp_obj_new_int(self->tim.Instance->CNT);
    } else {
        // set
        __HAL_TIM_SetCounter(&self->tim, mp_obj_get_int(args[1]));
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_counter_obj, 1, 2, pyb_timer_counter);

1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
/// \method source_freq()
/// Get the frequency of the source of the timer.
STATIC mp_obj_t pyb_timer_source_freq(mp_obj_t self_in) {
    pyb_timer_obj_t *self = self_in;
    uint32_t source_freq = timer_get_source_freq(self->tim_id);
    return mp_obj_new_int(source_freq);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_source_freq_obj, pyb_timer_source_freq);

/// \method freq([value])
/// Get or set the frequency for the timer (changes prescaler and period if set).
STATIC mp_obj_t pyb_timer_freq(mp_uint_t n_args, const mp_obj_t *args) {
    pyb_timer_obj_t *self = args[0];
    if (n_args == 1) {
        // get
        uint32_t prescaler = self->tim.Instance->PSC & 0xffff;
        uint32_t period = __HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self);
        uint32_t source_freq = timer_get_source_freq(self->tim_id);
        uint32_t divide = ((prescaler + 1) * (period + 1));
1076
1077
        #if MICROPY_PY_BUILTINS_FLOAT
        if (source_freq % divide != 0) {
1078
            return mp_obj_new_float((float)source_freq / (float)divide);
1079
1080
1081
1082
        } else
        #endif
        {
            return mp_obj_new_int(source_freq / divide);
1083
1084
1085
1086
1087
1088
1089
        }
    } else {
        // set
        uint32_t period;
        uint32_t prescaler = compute_prescaler_period_from_freq(self, args[1], &period);
        self->tim.Instance->PSC = prescaler;
        __HAL_TIM_SetAutoreload(&self->tim, period);
1090
1091
1092
1093
        // Reset the counter to zero. Otherwise, if counter >= period it will
        // continue counting until it wraps (at either 16 or 32 bits depending
        // on the timer).
        __HAL_TIM_SetCounter(&self->tim, 0);
1094
1095
1096
1097
1098
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_freq_obj, 1, 2, pyb_timer_freq);

1099
1100
/// \method prescaler([value])
/// Get or set the prescaler for the timer.
1101
STATIC mp_obj_t pyb_timer_prescaler(mp_uint_t n_args, const mp_obj_t *args) {
1102
1103
1104
1105
1106
1107
    pyb_timer_obj_t *self = args[0];
    if (n_args == 1) {
        // get
        return mp_obj_new_int(self->tim.Instance->PSC & 0xffff);
    } else {
        // set
1108
        self->tim.Instance->PSC = mp_obj_get_int(args[1]) & 0xffff;
1109
1110
1111
1112
1113
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_prescaler_obj, 1, 2, pyb_timer_prescaler);

1114
1115
/// \method period([value])
/// Get or set the period of the timer.
1116
STATIC mp_obj_t pyb_timer_period(mp_uint_t n_args, const mp_obj_t *args) {
1117
1118
1119
    pyb_timer_obj_t *self = args[0];
    if (n_args == 1) {
        // get
1120
        return mp_obj_new_int(__HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self));
1121
1122
    } else {
        // set
1123
        __HAL_TIM_SetAutoreload(&self->tim, mp_obj_get_int(args[1]) & TIMER_CNT_MASK(self));
1124
1125
1126
1127
        // Reset the counter to zero. Otherwise, if counter >= period it will
        // continue counting until it wraps (at either 16 or 32 bits depending
        // on the timer).
        __HAL_TIM_SetCounter(&self->tim, 0); 
1128
1129
1130
1131
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_period_obj, 1, 2, pyb_timer_period);
1132

1133
1134
1135
1136
/// \method callback(fun)
/// Set the function to be called when the timer triggers.
/// `fun` is passed 1 argument, the timer object.
/// If `fun` is `None` then the callback will be disabled.
1137
1138
1139
1140
1141
1142
1143
STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback) {
    pyb_timer_obj_t *self = self_in;
    if (callback == mp_const_none) {
        // stop interrupt (but not timer)
        __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
        self->callback = mp_const_none;
    } else if (mp_obj_is_callable(callback)) {
1144
        __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
1145
        self->callback = callback;
1146
1147
1148
1149
        // start timer, so that it interrupts on overflow, but clear any
        // pending interrupts which may have been set by initializing it.
        __HAL_TIM_CLEAR_FLAG(&self->tim, TIM_IT_UPDATE);
        HAL_TIM_Base_Start_IT(&self->tim); // This will re-enable the IRQ
1150
        HAL_NVIC_EnableIRQ(self->irqn);
1151
1152
    } else {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "callback must be None or a callable object"));
1153
    }
1154
    return mp_const_none;
1155
}
1156
1157
1158
1159
1160
1161
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_callback_obj, pyb_timer_callback);

STATIC const mp_map_elem_t pyb_timer_locals_dict_table[] = {
    // instance methods
    { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_timer_init_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_timer_deinit_obj },
1162
    { MP_OBJ_NEW_QSTR(MP_QSTR_channel), (mp_obj_t)&pyb_timer_channel_obj },
1163
    { MP_OBJ_NEW_QSTR(MP_QSTR_counter), (mp_obj_t)&pyb_timer_counter_obj },
1164
1165
    { MP_OBJ_NEW_QSTR(MP_QSTR_source_freq), (mp_obj_t)&pyb_timer_source_freq_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_timer_freq_obj },
1166
1167
1168
    { MP_OBJ_NEW_QSTR(MP_QSTR_prescaler), (mp_obj_t)&pyb_timer_prescaler_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_period), (mp_obj_t)&pyb_timer_period_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&pyb_timer_callback_obj },
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
    { MP_OBJ_NEW_QSTR(MP_QSTR_UP),                  MP_OBJ_NEW_SMALL_INT(TIM_COUNTERMODE_UP) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_DOWN),                MP_OBJ_NEW_SMALL_INT(TIM_COUNTERMODE_DOWN) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_CENTER),              MP_OBJ_NEW_SMALL_INT(TIM_COUNTERMODE_CENTERALIGNED1) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_PWM),                 MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_PWM_NORMAL) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_PWM_INVERTED),        MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_PWM_INVERTED) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_TIMING),           MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_TIMING) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_ACTIVE),           MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_ACTIVE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_INACTIVE),         MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_INACTIVE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_TOGGLE),           MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_TOGGLE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_FORCED_ACTIVE),    MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_FORCED_ACTIVE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_FORCED_INACTIVE),  MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_FORCED_INACTIVE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_IC),                  MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_IC) },
1181
1182
1183
    { MP_OBJ_NEW_QSTR(MP_QSTR_ENC_A),               MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_ENC_A) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_ENC_B),               MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_ENC_B) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_ENC_AB),              MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_ENC_AB) },
1184
1185
1186
1187
1188
    { MP_OBJ_NEW_QSTR(MP_QSTR_HIGH),                MP_OBJ_NEW_SMALL_INT(TIM_OCPOLARITY_HIGH) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_LOW),                 MP_OBJ_NEW_SMALL_INT(TIM_OCPOLARITY_LOW) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_RISING),              MP_OBJ_NEW_SMALL_INT(TIM_ICPOLARITY_RISING) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_FALLING),             MP_OBJ_NEW_SMALL_INT(TIM_ICPOLARITY_FALLING) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_BOTH),                MP_OBJ_NEW_SMALL_INT(TIM_ICPOLARITY_BOTHEDGE) },
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_locals_dict, pyb_timer_locals_dict_table);

const mp_obj_type_t pyb_timer_type = {
    { &mp_type_type },
    .name = MP_QSTR_Timer,
    .print = pyb_timer_print,
    .make_new = pyb_timer_make_new,
    .locals_dict = (mp_obj_t)&pyb_timer_locals_dict,
};

1200
1201
1202
1203
1204
1205
/// \moduleref pyb
/// \class TimerChannel - setup a channel for a timer.
///
/// Timer channels are used to generate/capture a signal using a timer.
///
/// TimerChannel objects are created using the Timer.channel() method.
1206
STATIC void pyb_timer_channel_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
1207
1208
    pyb_timer_channel_obj_t *self = self_in;

1209
    mp_printf(print, "TimerChannel(timer=%u, channel=%u, mode=%s)",
1210
1211
          self->timer->tim_id,
          self->channel,
1212
          qstr_str(channel_mode_info[self->mode].name));
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
}

/// \method capture([value])
/// Get or set the capture value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// capture is the logical name to use when the channel is in input capture mode.

/// \method compare([value])
/// Get or set the compare value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// compare is the logical name to use when the channel is in output compare mode.

/// \method pulse_width([value])
/// Get or set the pulse width value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// pulse_width is the logical name to use when the channel is in PWM mode.
Dave Hylands's avatar
Dave Hylands committed
1229
1230
1231
///
/// In edge aligned mode, a pulse_width of `period + 1` corresponds to a duty cycle of 100%
/// In center aligned mode, a pulse width of `period` corresponds to a duty cycle of 100%
1232
STATIC mp_obj_t pyb_timer_channel_capture_compare(mp_uint_t n_args, const mp_obj_t *args) {
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
    pyb_timer_channel_obj_t *self = args[0];
    if (n_args == 1) {
        // get
        return mp_obj_new_int(__HAL_TIM_GetCompare(&self->timer->tim, TIMER_CHANNEL(self)) & TIMER_CNT_MASK(self->timer));
    } else {
        // set
        __HAL_TIM_SetCompare(&self->timer->tim, TIMER_CHANNEL(self), mp_obj_get_int(args[1]) & TIMER_CNT_MASK(self->timer));
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_capture_compare_obj, 1, 2, pyb_timer_channel_capture_compare);

1245
1246
1247
1248
1249
1250
/// \method pulse_width_percent([value])
/// Get or set the pulse width percentage associated with a channel.  The value
/// is a number between 0 and 100 and sets the percentage of the timer period
/// for which the pulse is active.  The value can be an integer or
/// floating-point number for more accuracy.  For example, a value of 25 gives
/// a duty cycle of 25%.
1251
STATIC mp_obj_t pyb_timer_channel_pulse_width_percent(mp_uint_t n_args, const mp_obj_t *args) {
1252
    pyb_timer_channel_obj_t *self = args[0];
Dave Hylands's avatar
Dave Hylands committed
1253
    uint32_t period = compute_period(self->timer);
1254
1255
1256
    if (n_args == 1) {
        // get
        uint32_t cmp = __HAL_TIM_GetCompare(&self->timer->tim, TIMER_CHANNEL(self)) & TIMER_CNT_MASK(self->timer);