stm32_it.c 20.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * Original template from ST Cube library.  See below for header.
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

/**
  ******************************************************************************
  * @file    Templates/Src/stm32f4xx_it.c
  * @author  MCD Application Team
  * @version V1.0.1
  * @date    26-February-2014
  * @brief   Main Interrupt Service Routines.
  *          This file provides template for all exceptions handler and
  *          peripherals interrupt service routine.
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */

#include <stdio.h>

70
#include "stm32_it.h"
71
#include STM32_HAL_H
72

73
#include "py/obj.h"
74
#include "pendsv.h"
75
#include "irq.h"
76
#include "pybthread.h"
77
78
#include "extint.h"
#include "timer.h"
79
#include "uart.h"
80
#include "storage.h"
81
#include "can.h"
82
#include "dma.h"
83
#include "i2c.h"
84
85

extern void __fatal_error(const char*);
86
87
extern PCD_HandleTypeDef pcd_fs_handle;
extern PCD_HandleTypeDef pcd_hs_handle;
88

89
90
91
92
/******************************************************************************/
/*            Cortex-M4 Processor Exceptions Handlers                         */
/******************************************************************************/

93
94
95
96
97
98
99
// Set the following to 1 to get some more information on the Hard Fault
// More information about decoding the fault registers can be found here:
// http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0646a/Cihdjcfc.html
#define REPORT_HARD_FAULT_REGS  0

#if REPORT_HARD_FAULT_REGS

100
#include "py/mphal.h"
101

102
STATIC char *fmt_hex(uint32_t val, char *buf) {
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    const char *hexDig = "0123456789abcdef";

    buf[0] = hexDig[(val >> 28) & 0x0f];
    buf[1] = hexDig[(val >> 24) & 0x0f];
    buf[2] = hexDig[(val >> 20) & 0x0f];
    buf[3] = hexDig[(val >> 16) & 0x0f];
    buf[4] = hexDig[(val >> 12) & 0x0f];
    buf[5] = hexDig[(val >>  8) & 0x0f];
    buf[6] = hexDig[(val >>  4) & 0x0f];
    buf[7] = hexDig[(val >>  0) & 0x0f];
    buf[8] = '\0';

    return buf;
}

118
STATIC void print_reg(const char *label, uint32_t val) {
119
120
121
122
123
124
125
    char hexStr[9];

    mp_hal_stdout_tx_str(label);
    mp_hal_stdout_tx_str(fmt_hex(val, hexStr));
    mp_hal_stdout_tx_str("\r\n");
}

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
// The ARMv7M Architecture manual (section B.1.5.6) says that upon entry
// to an exception, that the registers will be in the following order on the
// // stack: R0, R1, R2, R3, R12, LR, PC, XPSR

typedef struct {
    uint32_t    r0, r1, r2, r3, r12, lr, pc, xpsr;
} ExceptionRegisters_t;

void HardFault_C_Handler(ExceptionRegisters_t *regs) {
    print_reg("R0    ", regs->r0);
    print_reg("R1    ", regs->r1);
    print_reg("R2    ", regs->r2);
    print_reg("R3    ", regs->r3);
    print_reg("R12   ", regs->r12);
    print_reg("LR    ", regs->lr);
    print_reg("PC    ", regs->pc);
    print_reg("XPSR  ", regs->xpsr);
143

144
145
146
147
148
149
150
151
152
153
    uint32_t cfsr = SCB->CFSR;

    print_reg("HFSR  ", SCB->HFSR);
    print_reg("CFSR  ", cfsr);
    if (cfsr & 0x80) {
        print_reg("MMFAR ", SCB->MMFAR);
    }
    if (cfsr & 0x8000) {
        print_reg("BFAR  ", SCB->BFAR);
    }
154
155
156
157
158
    /* Go to infinite loop when Hard Fault exception occurs */
    while (1) {
        __fatal_error("HardFault");
    }
}
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
// Naked functions have no compiler generated gunk, so are the best thing to
// use for asm functions.
__attribute__((naked))
void HardFault_Handler(void) {

    // From the ARMv7M Architecture Reference Manual, section B.1.5.6
    // on entry to the Exception, the LR register contains, amongst other
    // things, the value of CONTROL.SPSEL. This can be found in bit 3.
    //
    // If CONTROL.SPSEL is 0, then the exception was stacked up using the
    // main stack pointer (aka MSP). If CONTROL.SPSEL is 1, then the exception
    // was stacked up using the process stack pointer (aka PSP).

    __asm volatile(
    " tst lr, #4    \n"         // Test Bit 3 to see which stack pointer we should use.
    " ite eq        \n"         // Tell the assembler that the nest 2 instructions are if-then-else
    " mrseq r0, msp \n"         // Make R0 point to main stack pointer
    " mrsne r0, psp \n"         // Make R0 point to process stack pointer
    " b HardFault_C_Handler \n" // Off to C land
    );
}
#else
void HardFault_Handler(void) {
183
184
185
186
187
    /* Go to infinite loop when Hard Fault exception occurs */
    while (1) {
        __fatal_error("HardFault");
    }
}
188
189
190
191
192
193
194
195
196
#endif // REPORT_HARD_FAULT_REGS

/**
  * @brief   This function handles NMI exception.
  * @param  None
  * @retval None
  */
void NMI_Handler(void) {
}
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

/**
  * @brief  This function handles Memory Manage exception.
  * @param  None
  * @retval None
  */
void MemManage_Handler(void) {
    /* Go to infinite loop when Memory Manage exception occurs */
    while (1) {
        __fatal_error("MemManage");
    }
}

/**
  * @brief  This function handles Bus Fault exception.
  * @param  None
  * @retval None
  */
void BusFault_Handler(void) {
    /* Go to infinite loop when Bus Fault exception occurs */
    while (1) {
        __fatal_error("BusFault");
    }
}

/**
  * @brief  This function handles Usage Fault exception.
  * @param  None
  * @retval None
  */
void UsageFault_Handler(void) {
    /* Go to infinite loop when Usage Fault exception occurs */
    while (1) {
        __fatal_error("UsageFault");
    }
}

/**
  * @brief  This function handles SVCall exception.
  * @param  None
  * @retval None
  */
void SVC_Handler(void) {
}

/**
  * @brief  This function handles Debug Monitor exception.
  * @param  None
  * @retval None
  */
void DebugMon_Handler(void) {
}

/**
  * @brief  This function handles PendSVC exception.
  * @param  None
  * @retval None
  */
void PendSV_Handler(void) {
    pendsv_isr_handler();
}

/**
  * @brief  This function handles SysTick Handler.
  * @param  None
  * @retval None
  */
void SysTick_Handler(void) {
265
266
267
    // Instead of calling HAL_IncTick we do the increment here of the counter.
    // This is purely for efficiency, since SysTick is called 1000 times per
    // second at the highest interrupt priority.
268
269
270
271
    // Note: we don't need uwTick to be declared volatile here because this is
    // the only place where it can be modified, and the code is more efficient
    // without the volatile specifier.
    extern uint32_t uwTick;
272
    uwTick += 1;
273
274
275
276
277

    // Read the systick control regster. This has the side effect of clearing
    // the COUNTFLAG bit, which makes the logic in sys_tick_get_microseconds
    // work properly.
    SysTick->CTRL;
278

279
280
    // Right now we have the storage and DMA controllers to process during
    // this interrupt and we use custom dispatch handlers.  If this needs to
281
282
    // be generalised in the future then a dispatch table can be used as
    // follows: ((void(*)(void))(systick_dispatch[uwTick & 0xf]))();
283
284
285
286
287

    if (STORAGE_IDLE_TICK(uwTick)) {
        NVIC->STIR = FLASH_IRQn;
    }

288
    if (DMA_IDLE_ENABLED() && DMA_IDLE_TICK(uwTick)) {
289
        dma_idle_handler(uwTick);
290
    }
291
292
293
294
295

    // signal a thread switch at 4ms=250Hz
    if (pyb_thread_enabled && (uwTick & 0x03) == 0x03) {
        SCB->ICSR = SCB_ICSR_PENDSVSET_Msk;
    }
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
}

/******************************************************************************/
/*                 STM32F4xx Peripherals Interrupt Handlers                   */
/*  Add here the Interrupt Handler for the used peripheral(s) (PPP), for the  */
/*  available peripheral interrupt handler's name please refer to the startup */
/*  file (startup_stm32f4xx.s).                                               */
/******************************************************************************/

/**
  * @brief  This function handles USB-On-The-Go FS global interrupt request.
  * @param  None
  * @retval None
  */
#if defined(USE_USB_FS)
311
void OTG_FS_IRQHandler(void) {
312
    IRQ_ENTER(OTG_FS_IRQn);
313
    HAL_PCD_IRQHandler(&pcd_fs_handle);
314
    IRQ_EXIT(OTG_FS_IRQn);
315
}
316
#endif
317
318
#if defined(USE_USB_HS)
void OTG_HS_IRQHandler(void) {
319
    IRQ_ENTER(OTG_HS_IRQn);
320
    HAL_PCD_IRQHandler(&pcd_hs_handle);
321
    IRQ_EXIT(OTG_HS_IRQn);
322
323
324
}
#endif

325
#if defined(USE_USB_FS) || defined(USE_USB_HS)
326
/**
327
328
  * @brief  This function handles USB OTG Common FS/HS Wakeup functions.
  * @param  *pcd_handle for FS or HS
329
330
  * @retval None
  */
331
STATIC void OTG_CMD_WKUP_Handler(PCD_HandleTypeDef *pcd_handle) {
332

333
  if (pcd_handle->Init.low_power_enable) {
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    /* Reset SLEEPDEEP bit of Cortex System Control Register */
    SCB->SCR &= (uint32_t)~((uint32_t)(SCB_SCR_SLEEPDEEP_Msk | SCB_SCR_SLEEPONEXIT_Msk));

    /* Configures system clock after wake-up from STOP: enable HSE, PLL and select
    PLL as system clock source (HSE and PLL are disabled in STOP mode) */

    __HAL_RCC_HSE_CONFIG(RCC_HSE_ON);

    /* Wait till HSE is ready */
    while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
    {}

    /* Enable the main PLL. */
    __HAL_RCC_PLL_ENABLE();

    /* Wait till PLL is ready */
    while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
    {}

    /* Select PLL as SYSCLK */
    MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK);

    while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL)
    {}

    /* ungate PHY clock */
360
     __HAL_PCD_UNGATE_PHYCLOCK(pcd_handle);
361
  }
362
363
364
365
366
367
368
369
370
371
372

}
#endif

#if defined(USE_USB_FS)
/**
  * @brief  This function handles USB OTG FS Wakeup IRQ Handler.
  * @param  None
  * @retval None
  */
void OTG_FS_WKUP_IRQHandler(void) {
373
    IRQ_ENTER(OTG_FS_WKUP_IRQn);
374
375
376

  OTG_CMD_WKUP_Handler(&pcd_fs_handle);

377
378
  /* Clear EXTI pending Bit*/
  __HAL_USB_FS_EXTI_CLEAR_FLAG();
379

380
    IRQ_EXIT(OTG_FS_WKUP_IRQn);
381
}
382
383
#endif

384
385
386
387
388
389
390
#if defined(USE_USB_HS)
/**
  * @brief  This function handles USB OTG HS Wakeup IRQ Handler.
  * @param  None
  * @retval None
  */
void OTG_HS_WKUP_IRQHandler(void) {
391
    IRQ_ENTER(OTG_HS_WKUP_IRQn);
392
393
394
395
396
397

  OTG_CMD_WKUP_Handler(&pcd_hs_handle);

  /* Clear EXTI pending Bit*/
  __HAL_USB_HS_EXTI_CLEAR_FLAG();

398
    IRQ_EXIT(OTG_HS_WKUP_IRQn);
399
400
401
402
403
404
405
406
407
408
409
410
411
412
}
#endif

/**
  * @brief  This function handles PPP interrupt request.
  * @param  None
  * @retval None
  */
/*void PPP_IRQHandler(void)
{
}*/

// Handle a flash (erase/program) interrupt.
void FLASH_IRQHandler(void) {
413
    IRQ_ENTER(FLASH_IRQn);
414
415
416
417
418
419
420
421
422
    // This calls the real flash IRQ handler, if needed
    /*
    uint32_t flash_cr = FLASH->CR;
    if ((flash_cr & FLASH_IT_EOP) || (flash_cr & FLASH_IT_ERR)) {
        HAL_FLASH_IRQHandler();
    }
    */
    // This call the storage IRQ handler, to check if the flash cache needs flushing
    storage_irq_handler();
423
    IRQ_EXIT(FLASH_IRQn);
424
425
426
427
428
429
430
431
}

/**
  * @brief  These functions handle the EXTI interrupt requests.
  * @param  None
  * @retval None
  */
void EXTI0_IRQHandler(void) {
432
    IRQ_ENTER(EXTI0_IRQn);
433
    Handle_EXTI_Irq(0);
434
    IRQ_EXIT(EXTI0_IRQn);
435
436
437
}

void EXTI1_IRQHandler(void) {
438
    IRQ_ENTER(EXTI1_IRQn);
439
    Handle_EXTI_Irq(1);
440
    IRQ_EXIT(EXTI1_IRQn);
441
442
443
}

void EXTI2_IRQHandler(void) {
444
    IRQ_ENTER(EXTI2_IRQn);
445
    Handle_EXTI_Irq(2);
446
    IRQ_EXIT(EXTI2_IRQn);
447
448
449
}

void EXTI3_IRQHandler(void) {
450
    IRQ_ENTER(EXTI3_IRQn);
451
    Handle_EXTI_Irq(3);
452
    IRQ_EXIT(EXTI3_IRQn);
453
454
455
}

void EXTI4_IRQHandler(void) {
456
    IRQ_ENTER(EXTI4_IRQn);
457
    Handle_EXTI_Irq(4);
458
    IRQ_EXIT(EXTI4_IRQn);
459
460
461
}

void EXTI9_5_IRQHandler(void) {
462
    IRQ_ENTER(EXTI9_5_IRQn);
463
464
465
466
467
    Handle_EXTI_Irq(5);
    Handle_EXTI_Irq(6);
    Handle_EXTI_Irq(7);
    Handle_EXTI_Irq(8);
    Handle_EXTI_Irq(9);
468
    IRQ_EXIT(EXTI9_5_IRQn);
469
470
471
}

void EXTI15_10_IRQHandler(void) {
472
    IRQ_ENTER(EXTI15_10_IRQn);
473
474
475
476
477
478
    Handle_EXTI_Irq(10);
    Handle_EXTI_Irq(11);
    Handle_EXTI_Irq(12);
    Handle_EXTI_Irq(13);
    Handle_EXTI_Irq(14);
    Handle_EXTI_Irq(15);
479
    IRQ_EXIT(EXTI15_10_IRQn);
480
481
482
}

void PVD_IRQHandler(void) {
483
    IRQ_ENTER(PVD_IRQn);
484
    Handle_EXTI_Irq(EXTI_PVD_OUTPUT);
485
    IRQ_EXIT(PVD_IRQn);
486
487
}

488
489
490
491
492
493
494
495
#if defined(MCU_SERIES_L4)
void PVD_PVM_IRQHandler(void) {
    IRQ_ENTER(PVD_PVM_IRQn);
    Handle_EXTI_Irq(EXTI_PVD_OUTPUT);
    IRQ_EXIT(PVD_PVM_IRQn);
}
#endif

496
void RTC_Alarm_IRQHandler(void) {
497
    IRQ_ENTER(RTC_Alarm_IRQn);
498
    Handle_EXTI_Irq(EXTI_RTC_ALARM);
499
    IRQ_EXIT(RTC_Alarm_IRQn);
500
501
502
503
}

#if defined(ETH)    // The 407 has ETH, the 405 doesn't
void ETH_WKUP_IRQHandler(void)  {
504
    IRQ_ENTER(ETH_WKUP_IRQn);
505
    Handle_EXTI_Irq(EXTI_ETH_WAKEUP);
506
    IRQ_EXIT(ETH_WKUP_IRQn);
507
508
509
510
}
#endif

void TAMP_STAMP_IRQHandler(void) {
511
    IRQ_ENTER(TAMP_STAMP_IRQn);
512
    Handle_EXTI_Irq(EXTI_RTC_TIMESTAMP);
513
    IRQ_EXIT(TAMP_STAMP_IRQn);
514
515
516
}

void RTC_WKUP_IRQHandler(void) {
517
    IRQ_ENTER(RTC_WKUP_IRQn);
518
519
    RTC->ISR &= ~(1 << 10); // clear wakeup interrupt flag
    Handle_EXTI_Irq(EXTI_RTC_WAKEUP); // clear EXTI flag and execute optional callback
520
    IRQ_EXIT(RTC_WKUP_IRQn);
521
522
523
}

void TIM1_BRK_TIM9_IRQHandler(void) {
524
    IRQ_ENTER(TIM1_BRK_TIM9_IRQn);
525
    timer_irq_handler(9);
526
    IRQ_EXIT(TIM1_BRK_TIM9_IRQn);
527
528
}

529
530
531
532
533
534
535
536
#if defined(MCU_SERIES_L4)
void TIM1_BRK_TIM15_IRQHandler(void) {
    IRQ_ENTER(TIM1_BRK_TIM15_IRQn);
    timer_irq_handler(15);
    IRQ_EXIT(TIM1_BRK_TIM15_IRQn);
}
#endif

537
void TIM1_UP_TIM10_IRQHandler(void) {
538
    IRQ_ENTER(TIM1_UP_TIM10_IRQn);
539
540
    timer_irq_handler(1);
    timer_irq_handler(10);
541
    IRQ_EXIT(TIM1_UP_TIM10_IRQn);
542
543
}

544
545
546
547
548
549
550
551
552
#if defined(MCU_SERIES_L4)
void TIM1_UP_TIM16_IRQHandler(void) {
    IRQ_ENTER(TIM1_UP_TIM16_IRQn);
    timer_irq_handler(1);
    timer_irq_handler(16);
    IRQ_EXIT(TIM1_UP_TIM16_IRQn);
}
#endif

553
void TIM1_TRG_COM_TIM11_IRQHandler(void) {
554
    IRQ_ENTER(TIM1_TRG_COM_TIM11_IRQn);
555
    timer_irq_handler(11);
556
    IRQ_EXIT(TIM1_TRG_COM_TIM11_IRQn);
557
558
}

559
560
561
562
563
564
565
566
#if defined(MCU_SERIES_L4)
void TIM1_TRG_COM_TIM17_IRQHandler(void) {
    IRQ_ENTER(TIM1_TRG_COM_TIM17_IRQn);
    timer_irq_handler(17);
    IRQ_EXIT(TIM1_TRG_COM_TIM17_IRQn);
}
#endif

567
568
569
570
571
572
void TIM1_CC_IRQHandler(void) {
    IRQ_ENTER(TIM1_CC_IRQn);
    timer_irq_handler(1);
    IRQ_EXIT(TIM1_CC_IRQn);
}

573
void TIM2_IRQHandler(void) {
574
    IRQ_ENTER(TIM2_IRQn);
575
    timer_irq_handler(2);
576
    IRQ_EXIT(TIM2_IRQn);
577
578
579
}

void TIM3_IRQHandler(void) {
580
    IRQ_ENTER(TIM3_IRQn);
581
    timer_irq_handler(3);
582
    IRQ_EXIT(TIM3_IRQn);
583
584
585
}

void TIM4_IRQHandler(void) {
586
    IRQ_ENTER(TIM4_IRQn);
587
    timer_irq_handler(4);
588
    IRQ_EXIT(TIM4_IRQn);
589
590
591
}

void TIM5_IRQHandler(void) {
592
    IRQ_ENTER(TIM5_IRQn);
593
594
    timer_irq_handler(5);
    HAL_TIM_IRQHandler(&TIM5_Handle);
595
    IRQ_EXIT(TIM5_IRQn);
596
597
}

598
#if defined(TIM6) // STM32F401 doesn't have TIM6
599
void TIM6_DAC_IRQHandler(void) {
600
    IRQ_ENTER(TIM6_DAC_IRQn);
601
    timer_irq_handler(6);
602
    IRQ_EXIT(TIM6_DAC_IRQn);
603
}
604
#endif
605

606
#if defined(TIM7) // STM32F401 doesn't have TIM7
607
void TIM7_IRQHandler(void) {
608
    IRQ_ENTER(TIM7_IRQn);
609
    timer_irq_handler(7);
610
    IRQ_EXIT(TIM7_IRQn);
611
}
612
#endif
613

614
#if defined(TIM8) // STM32F401 doesn't have TIM8
615
void TIM8_BRK_TIM12_IRQHandler(void) {
616
    IRQ_ENTER(TIM8_BRK_TIM12_IRQn);
617
    timer_irq_handler(12);
618
    IRQ_EXIT(TIM8_BRK_TIM12_IRQn);
619
620
621
}

void TIM8_UP_TIM13_IRQHandler(void) {
622
    IRQ_ENTER(TIM8_UP_TIM13_IRQn);
623
624
    timer_irq_handler(8);
    timer_irq_handler(13);
625
    IRQ_EXIT(TIM8_UP_TIM13_IRQn);
626
627
}

628
629
630
631
632
633
634
635
#if defined(MCU_SERIES_L4)
void TIM8_UP_IRQHandler(void) {
    IRQ_ENTER(TIM8_UP_IRQn);
    timer_irq_handler(8);
    IRQ_EXIT(TIM8_UP_IRQn);
}
#endif

636
637
638
639
640
641
void TIM8_CC_IRQHandler(void) {
    IRQ_ENTER(TIM8_CC_IRQn);
    timer_irq_handler(8);
    IRQ_EXIT(TIM8_CC_IRQn);
}

642
void TIM8_TRG_COM_TIM14_IRQHandler(void) {
643
    IRQ_ENTER(TIM8_TRG_COM_TIM14_IRQn);
644
    timer_irq_handler(14);
645
    IRQ_EXIT(TIM8_TRG_COM_TIM14_IRQn);
646
}
647
#endif
648
649
650

// UART/USART IRQ handlers
void USART1_IRQHandler(void) {
651
    IRQ_ENTER(USART1_IRQn);
652
    uart_irq_handler(1);
653
    IRQ_EXIT(USART1_IRQn);
654
655
656
}

void USART2_IRQHandler(void) {
657
    IRQ_ENTER(USART2_IRQn);
658
    uart_irq_handler(2);
659
    IRQ_EXIT(USART2_IRQn);
660
661
662
}

void USART3_IRQHandler(void) {
663
    IRQ_ENTER(USART3_IRQn);
664
    uart_irq_handler(3);
665
    IRQ_EXIT(USART3_IRQn);
666
667
668
}

void UART4_IRQHandler(void) {
669
    IRQ_ENTER(UART4_IRQn);
670
    uart_irq_handler(4);
671
    IRQ_EXIT(UART4_IRQn);
672
673
}

Dave Hylands's avatar
Dave Hylands committed
674
void UART5_IRQHandler(void) {
675
    IRQ_ENTER(UART5_IRQn);
Dave Hylands's avatar
Dave Hylands committed
676
    uart_irq_handler(5);
677
    IRQ_EXIT(UART5_IRQn);
Dave Hylands's avatar
Dave Hylands committed
678
679
}

680
void USART6_IRQHandler(void) {
681
    IRQ_ENTER(USART6_IRQn);
682
    uart_irq_handler(6);
683
    IRQ_EXIT(USART6_IRQn);
684
}
685

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
#if defined(MICROPY_HW_UART7_TX)
void UART7_IRQHandler(void) {
    IRQ_ENTER(UART7_IRQn);
    uart_irq_handler(7);
    IRQ_EXIT(UART7_IRQn);
}
#endif

#if defined(MICROPY_HW_UART8_TX)
void UART8_IRQHandler(void) {
    IRQ_ENTER(UART8_IRQn);
    uart_irq_handler(8);
    IRQ_EXIT(UART8_IRQn);
}
#endif

702
703
#if MICROPY_HW_ENABLE_CAN
void CAN1_RX0_IRQHandler(void) {
704
    IRQ_ENTER(CAN1_RX0_IRQn);
705
    can_rx_irq_handler(PYB_CAN_1, CAN_FIFO0);
706
    IRQ_EXIT(CAN1_RX0_IRQn);
707
708
709
}

void CAN1_RX1_IRQHandler(void) {
710
    IRQ_ENTER(CAN1_RX1_IRQn);
711
    can_rx_irq_handler(PYB_CAN_1, CAN_FIFO1);
712
    IRQ_EXIT(CAN1_RX1_IRQn);
713
714
715
}

void CAN2_RX0_IRQHandler(void) {
716
    IRQ_ENTER(CAN2_RX0_IRQn);
717
    can_rx_irq_handler(PYB_CAN_2, CAN_FIFO0);
718
    IRQ_EXIT(CAN2_RX0_IRQn);
719
720
721
}

void CAN2_RX1_IRQHandler(void) {
722
    IRQ_ENTER(CAN2_RX1_IRQn);
723
    can_rx_irq_handler(PYB_CAN_2, CAN_FIFO1);
724
    IRQ_EXIT(CAN2_RX1_IRQn);
725
726
}
#endif // MICROPY_HW_ENABLE_CAN
727
728
729
730

#if defined(MICROPY_HW_I2C1_SCL)
void I2C1_EV_IRQHandler(void) {
    IRQ_ENTER(I2C1_EV_IRQn);
731
    i2c_ev_irq_handler(1);
732
733
734
735
736
    IRQ_EXIT(I2C1_EV_IRQn);
}

void I2C1_ER_IRQHandler(void) {
    IRQ_ENTER(I2C1_ER_IRQn);
737
    i2c_er_irq_handler(1);
738
739
740
741
742
743
744
    IRQ_EXIT(I2C1_ER_IRQn);
}
#endif // defined(MICROPY_HW_I2C1_SCL)

#if defined(MICROPY_HW_I2C2_SCL)
void I2C2_EV_IRQHandler(void) {
    IRQ_ENTER(I2C2_EV_IRQn);
745
    i2c_ev_irq_handler(2);
746
747
748
749
750
    IRQ_EXIT(I2C2_EV_IRQn);
}

void I2C2_ER_IRQHandler(void) {
    IRQ_ENTER(I2C2_ER_IRQn);
751
    i2c_er_irq_handler(2);
752
753
754
755
756
757
758
    IRQ_EXIT(I2C2_ER_IRQn);
}
#endif // defined(MICROPY_HW_I2C2_SCL)

#if defined(MICROPY_HW_I2C3_SCL)
void I2C3_EV_IRQHandler(void) {
    IRQ_ENTER(I2C3_EV_IRQn);
759
    i2c_ev_irq_handler(3);
760
761
762
763
764
    IRQ_EXIT(I2C3_EV_IRQn);
}

void I2C3_ER_IRQHandler(void) {
    IRQ_ENTER(I2C3_ER_IRQn);
765
    i2c_er_irq_handler(3);
766
767
768
    IRQ_EXIT(I2C3_ER_IRQn);
}
#endif // defined(MICROPY_HW_I2C3_SCL)