stm32f4xx_rcc.c 92 KB
Newer Older
Damien's avatar
Damien committed
1
2
3
4
/**
  ******************************************************************************
  * @file    stm32f4xx_rcc.c
  * @author  MCD Application Team
5
6
  * @version V1.3.0
  * @date    08-November-2013
Damien's avatar
Damien committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
  * @brief   This file provides firmware functions to manage the following 
  *          functionalities of the Reset and clock control (RCC) peripheral:
  *           + Internal/external clocks, PLL, CSS and MCO configuration
  *           + System, AHB and APB busses clocks configuration
  *           + Peripheral clocks configuration
  *           + Interrupts and flags management
  *
 @verbatim                
 ===============================================================================
                      ##### RCC specific features #####
 ===============================================================================
    [..]  
      After reset the device is running from Internal High Speed oscillator 
      (HSI 16MHz) with Flash 0 wait state, Flash prefetch buffer, D-Cache 
      and I-Cache are disabled, and all peripherals are off except internal
      SRAM, Flash and JTAG.
      (+) There is no prescaler on High speed (AHB) and Low speed (APB) busses;
          all peripherals mapped on these busses are running at HSI speed.
      (+) The clock for all peripherals is switched off, except the SRAM and FLASH.
      (+) All GPIOs are in input floating state, except the JTAG pins which
          are assigned to be used for debug purpose.
    [..]          
      Once the device started from reset, the user application has to:        
      (+) Configure the clock source to be used to drive the System clock
          (if the application needs higher frequency/performance)
      (+) Configure the System clock frequency and Flash settings  
      (+) Configure the AHB and APB busses prescalers
      (+) Enable the clock for the peripheral(s) to be used
      (+) Configure the clock source(s) for peripherals which clocks are not
          derived from the System clock (I2S, RTC, ADC, USB OTG FS/SDIO/RNG)                                
 @endverbatim    
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
  *
  * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
  * You may not use this file except in compliance with the License.
  * You may obtain a copy of the License at:
  *
  *        http://www.st.com/software_license_agreement_liberty_v2
  *
  * Unless required by applicable law or agreed to in writing, software 
  * distributed under the License is distributed on an "AS IS" BASIS, 
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  * See the License for the specific language governing permissions and
  * limitations under the License.
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_rcc.h"

/** @addtogroup STM32F4xx_StdPeriph_Driver
  * @{
  */

/** @defgroup RCC 
  * @brief RCC driver modules
  * @{
  */ 

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* ------------ RCC registers bit address in the alias region ----------- */
#define RCC_OFFSET                (RCC_BASE - PERIPH_BASE)
/* --- CR Register ---*/
/* Alias word address of HSION bit */
#define CR_OFFSET                 (RCC_OFFSET + 0x00)
#define HSION_BitNumber           0x00
#define CR_HSION_BB               (PERIPH_BB_BASE + (CR_OFFSET * 32) + (HSION_BitNumber * 4))
/* Alias word address of CSSON bit */
#define CSSON_BitNumber           0x13
#define CR_CSSON_BB               (PERIPH_BB_BASE + (CR_OFFSET * 32) + (CSSON_BitNumber * 4))
/* Alias word address of PLLON bit */
#define PLLON_BitNumber           0x18
#define CR_PLLON_BB               (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLLON_BitNumber * 4))
/* Alias word address of PLLI2SON bit */
#define PLLI2SON_BitNumber        0x1A
#define CR_PLLI2SON_BB            (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLLI2SON_BitNumber * 4))

89
90
91
92
/* Alias word address of PLLSAION bit */
#define PLLSAION_BitNumber        0x1C
#define CR_PLLSAION_BB            (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLLSAION_BitNumber * 4))

Damien's avatar
Damien committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/* --- CFGR Register ---*/
/* Alias word address of I2SSRC bit */
#define CFGR_OFFSET               (RCC_OFFSET + 0x08)
#define I2SSRC_BitNumber          0x17
#define CFGR_I2SSRC_BB            (PERIPH_BB_BASE + (CFGR_OFFSET * 32) + (I2SSRC_BitNumber * 4))

/* --- BDCR Register ---*/
/* Alias word address of RTCEN bit */
#define BDCR_OFFSET               (RCC_OFFSET + 0x70)
#define RTCEN_BitNumber           0x0F
#define BDCR_RTCEN_BB             (PERIPH_BB_BASE + (BDCR_OFFSET * 32) + (RTCEN_BitNumber * 4))
/* Alias word address of BDRST bit */
#define BDRST_BitNumber           0x10
#define BDCR_BDRST_BB             (PERIPH_BB_BASE + (BDCR_OFFSET * 32) + (BDRST_BitNumber * 4))

/* --- CSR Register ---*/
/* Alias word address of LSION bit */
#define CSR_OFFSET                (RCC_OFFSET + 0x74)
#define LSION_BitNumber           0x00
#define CSR_LSION_BB              (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (LSION_BitNumber * 4))

/* --- DCKCFGR Register ---*/
/* Alias word address of TIMPRE bit */
#define DCKCFGR_OFFSET            (RCC_OFFSET + 0x8C)
#define TIMPRE_BitNumber          0x18
#define DCKCFGR_TIMPRE_BB         (PERIPH_BB_BASE + (DCKCFGR_OFFSET * 32) + (TIMPRE_BitNumber * 4))
/* ---------------------- RCC registers bit mask ------------------------ */
/* CFGR register bit mask */
#define CFGR_MCO2_RESET_MASK      ((uint32_t)0x07FFFFFF)
#define CFGR_MCO1_RESET_MASK      ((uint32_t)0xF89FFFFF)

/* RCC Flag Mask */
#define FLAG_MASK                 ((uint8_t)0x1F)

/* CR register byte 3 (Bits[23:16]) base address */
#define CR_BYTE3_ADDRESS          ((uint32_t)0x40023802)

/* CIR register byte 2 (Bits[15:8]) base address */
#define CIR_BYTE2_ADDRESS         ((uint32_t)(RCC_BASE + 0x0C + 0x01))

/* CIR register byte 3 (Bits[23:16]) base address */
#define CIR_BYTE3_ADDRESS         ((uint32_t)(RCC_BASE + 0x0C + 0x02))

/* BDCR register base address */
#define BDCR_ADDRESS              (PERIPH_BASE + BDCR_OFFSET)

/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
static __I uint8_t APBAHBPrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9};

/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/

/** @defgroup RCC_Private_Functions
  * @{
  */ 

/** @defgroup RCC_Group1 Internal and external clocks, PLL, CSS and MCO configuration functions
 *  @brief   Internal and external clocks, PLL, CSS and MCO configuration functions 
 *
@verbatim   
 ===================================================================================
 ##### Internal and  external clocks, PLL, CSS and MCO configuration functions #####
 ===================================================================================  
    [..]
      This section provide functions allowing to configure the internal/external clocks,
      PLLs, CSS and MCO pins.
  
      (#) HSI (high-speed internal), 16 MHz factory-trimmed RC used directly or through
          the PLL as System clock source.

      (#) LSI (low-speed internal), 32 KHz low consumption RC used as IWDG and/or RTC
          clock source.

      (#) HSE (high-speed external), 4 to 26 MHz crystal oscillator used directly or
          through the PLL as System clock source. Can be used also as RTC clock source.

      (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.   

      (#) PLL (clocked by HSI or HSE), featuring two different output clocks:
        (++) The first output is used to generate the high speed system clock (up to 168 MHz)
        (++) The second output is used to generate the clock for the USB OTG FS (48 MHz),
             the random analog generator (<=48 MHz) and the SDIO (<= 48 MHz).

      (#) PLLI2S (clocked by HSI or HSE), used to generate an accurate clock to achieve 
178
179
180
181
182
          high-quality audio performance on the I2S interface or SAI interface in case 
          of STM32F429x/439x devices.
     
      (#) PLLSAI clocked by (HSI or HSE), used to generate an accurate clock to SAI 
          interface and LCD TFT controller available only for STM32F42xxx/43xxx devices.
Damien's avatar
Damien committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
  
      (#) CSS (Clock security system), once enable and if a HSE clock failure occurs 
         (HSE used directly or through PLL as System clock source), the System clock
         is automatically switched to HSI and an interrupt is generated if enabled. 
         The interrupt is linked to the Cortex-M4 NMI (Non-Maskable Interrupt) 
         exception vector.   

      (#) MCO1 (microcontroller clock output), used to output HSI, LSE, HSE or PLL
          clock (through a configurable prescaler) on PA8 pin.

      (#) MCO2 (microcontroller clock output), used to output HSE, PLL, SYSCLK or PLLI2S
          clock (through a configurable prescaler) on PC9 pin.
 @endverbatim
  * @{
  */

/**
  * @brief  Resets the RCC clock configuration to the default reset state.
  * @note   The default reset state of the clock configuration is given below:
  *            - HSI ON and used as system clock source
  *            - HSE, PLL and PLLI2S OFF
  *            - AHB, APB1 and APB2 prescaler set to 1.
  *            - CSS, MCO1 and MCO2 OFF
  *            - All interrupts disabled
  * @note   This function doesn't modify the configuration of the
  *            - Peripheral clocks  
  *            - LSI, LSE and RTC clocks 
  * @param  None
  * @retval None
  */
void RCC_DeInit(void)
{
  /* Set HSION bit */
  RCC->CR |= (uint32_t)0x00000001;

  /* Reset CFGR register */
  RCC->CFGR = 0x00000000;

221
222
  /* Reset HSEON, CSSON, PLLON, PLLI2S and PLLSAI(STM32F42/43xxx devices) bits */
  RCC->CR &= (uint32_t)0xEAF6FFFF;
Damien's avatar
Damien committed
223
224
225
226
227
228
229

  /* Reset PLLCFGR register */
  RCC->PLLCFGR = 0x24003010;

  /* Reset PLLI2SCFGR register */
  RCC->PLLI2SCFGR = 0x20003000;

230
231
232
  /* Reset PLLSAICFGR register, only available for STM32F42/43xxx devices */
  RCC->PLLSAICFGR = 0x24003000;
 
Damien's avatar
Damien committed
233
234
235
236
237
238
  /* Reset HSEBYP bit */
  RCC->CR &= (uint32_t)0xFFFBFFFF;

  /* Disable all interrupts */
  RCC->CIR = 0x00000000;

239
240
  /* Disable Timers clock prescalers selection, only available for STM32F42/43xxx devices */
  RCC->DCKCFGR = 0x00000000; 
Damien's avatar
Damien committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

}

/**
  * @brief  Configures the External High Speed oscillator (HSE).
  * @note   After enabling the HSE (RCC_HSE_ON or RCC_HSE_Bypass), the application
  *         software should wait on HSERDY flag to be set indicating that HSE clock
  *         is stable and can be used to clock the PLL and/or system clock.
  * @note   HSE state can not be changed if it is used directly or through the
  *         PLL as system clock. In this case, you have to select another source
  *         of the system clock then change the HSE state (ex. disable it).
  * @note   The HSE is stopped by hardware when entering STOP and STANDBY modes.  
  * @note   This function reset the CSSON bit, so if the Clock security system(CSS)
  *         was previously enabled you have to enable it again after calling this
  *         function.    
  * @param  RCC_HSE: specifies the new state of the HSE.
  *          This parameter can be one of the following values:
  *            @arg RCC_HSE_OFF: turn OFF the HSE oscillator, HSERDY flag goes low after
  *                              6 HSE oscillator clock cycles.
  *            @arg RCC_HSE_ON: turn ON the HSE oscillator
  *            @arg RCC_HSE_Bypass: HSE oscillator bypassed with external clock
  * @retval None
  */
void RCC_HSEConfig(uint8_t RCC_HSE)
{
  /* Check the parameters */
  assert_param(IS_RCC_HSE(RCC_HSE));

  /* Reset HSEON and HSEBYP bits before configuring the HSE ------------------*/
  *(__IO uint8_t *) CR_BYTE3_ADDRESS = RCC_HSE_OFF;

  /* Set the new HSE configuration -------------------------------------------*/
  *(__IO uint8_t *) CR_BYTE3_ADDRESS = RCC_HSE;
}

/**
  * @brief  Waits for HSE start-up.
  * @note   This functions waits on HSERDY flag to be set and return SUCCESS if 
  *         this flag is set, otherwise returns ERROR if the timeout is reached 
  *         and this flag is not set. The timeout value is defined by the constant
  *         HSE_STARTUP_TIMEOUT in stm32f4xx.h file. You can tailor it depending
  *         on the HSE crystal used in your application. 
  * @param  None
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: HSE oscillator is stable and ready to use
  *          - ERROR: HSE oscillator not yet ready
  */
ErrorStatus RCC_WaitForHSEStartUp(void)
{
  __IO uint32_t startupcounter = 0;
  ErrorStatus status = ERROR;
  FlagStatus hsestatus = RESET;
  /* Wait till HSE is ready and if Time out is reached exit */
  do
  {
    hsestatus = RCC_GetFlagStatus(RCC_FLAG_HSERDY);
    startupcounter++;
  } while((startupcounter != HSE_STARTUP_TIMEOUT) && (hsestatus == RESET));

  if (RCC_GetFlagStatus(RCC_FLAG_HSERDY) != RESET)
  {
    status = SUCCESS;
  }
  else
  {
    status = ERROR;
  }
  return (status);
}

/**
  * @brief  Adjusts the Internal High Speed oscillator (HSI) calibration value.
  * @note   The calibration is used to compensate for the variations in voltage
  *         and temperature that influence the frequency of the internal HSI RC.
  * @param  HSICalibrationValue: specifies the calibration trimming value.
  *         This parameter must be a number between 0 and 0x1F.
  * @retval None
  */
void RCC_AdjustHSICalibrationValue(uint8_t HSICalibrationValue)
{
  uint32_t tmpreg = 0;
  /* Check the parameters */
  assert_param(IS_RCC_CALIBRATION_VALUE(HSICalibrationValue));

  tmpreg = RCC->CR;

  /* Clear HSITRIM[4:0] bits */
  tmpreg &= ~RCC_CR_HSITRIM;

  /* Set the HSITRIM[4:0] bits according to HSICalibrationValue value */
  tmpreg |= (uint32_t)HSICalibrationValue << 3;

  /* Store the new value */
  RCC->CR = tmpreg;
}

/**
  * @brief  Enables or disables the Internal High Speed oscillator (HSI).
  * @note   The HSI is stopped by hardware when entering STOP and STANDBY modes.
  *         It is used (enabled by hardware) as system clock source after startup
  *         from Reset, wakeup from STOP and STANDBY mode, or in case of failure
  *         of the HSE used directly or indirectly as system clock (if the Clock
  *         Security System CSS is enabled).             
  * @note   HSI can not be stopped if it is used as system clock source. In this case,
  *         you have to select another source of the system clock then stop the HSI.  
  * @note   After enabling the HSI, the application software should wait on HSIRDY
  *         flag to be set indicating that HSI clock is stable and can be used as
  *         system clock source.  
  * @param  NewState: new state of the HSI.
  *          This parameter can be: ENABLE or DISABLE.
  * @note   When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator
  *         clock cycles.  
  * @retval None
  */
void RCC_HSICmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  *(__IO uint32_t *) CR_HSION_BB = (uint32_t)NewState;
}

/**
  * @brief  Configures the External Low Speed oscillator (LSE).
  * @note   As the LSE is in the Backup domain and write access is denied to
  *         this domain after reset, you have to enable write access using 
  *         PWR_BackupAccessCmd(ENABLE) function before to configure the LSE
  *         (to be done once after reset).  
  * @note   After enabling the LSE (RCC_LSE_ON or RCC_LSE_Bypass), the application
  *         software should wait on LSERDY flag to be set indicating that LSE clock
  *         is stable and can be used to clock the RTC.
  * @param  RCC_LSE: specifies the new state of the LSE.
  *          This parameter can be one of the following values:
  *            @arg RCC_LSE_OFF: turn OFF the LSE oscillator, LSERDY flag goes low after
  *                              6 LSE oscillator clock cycles.
  *            @arg RCC_LSE_ON: turn ON the LSE oscillator
  *            @arg RCC_LSE_Bypass: LSE oscillator bypassed with external clock
  * @retval None
  */
void RCC_LSEConfig(uint8_t RCC_LSE)
{
  /* Check the parameters */
  assert_param(IS_RCC_LSE(RCC_LSE));

  /* Reset LSEON and LSEBYP bits before configuring the LSE ------------------*/
  /* Reset LSEON bit */
  *(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_OFF;

  /* Reset LSEBYP bit */
  *(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_OFF;

  /* Configure LSE (RCC_LSE_OFF is already covered by the code section above) */
  switch (RCC_LSE)
  {
    case RCC_LSE_ON:
      /* Set LSEON bit */
      *(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_ON;
      break;
    case RCC_LSE_Bypass:
      /* Set LSEBYP and LSEON bits */
      *(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_Bypass | RCC_LSE_ON;
      break;
    default:
      break;
  }
}

/**
  * @brief  Enables or disables the Internal Low Speed oscillator (LSI).
  * @note   After enabling the LSI, the application software should wait on 
  *         LSIRDY flag to be set indicating that LSI clock is stable and can
  *         be used to clock the IWDG and/or the RTC.
  * @note   LSI can not be disabled if the IWDG is running.  
  * @param  NewState: new state of the LSI.
  *          This parameter can be: ENABLE or DISABLE.
  * @note   When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator
  *         clock cycles. 
  * @retval None
  */
void RCC_LSICmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  *(__IO uint32_t *) CSR_LSION_BB = (uint32_t)NewState;
}

/**
  * @brief  Configures the main PLL clock source, multiplication and division factors.
  * @note   This function must be used only when the main PLL is disabled.
  *  
  * @param  RCC_PLLSource: specifies the PLL entry clock source.
  *          This parameter can be one of the following values:
  *            @arg RCC_PLLSource_HSI: HSI oscillator clock selected as PLL clock entry
  *            @arg RCC_PLLSource_HSE: HSE oscillator clock selected as PLL clock entry
  * @note   This clock source (RCC_PLLSource) is common for the main PLL and PLLI2S.  
  *  
  * @param  PLLM: specifies the division factor for PLL VCO input clock
  *          This parameter must be a number between 0 and 63.
  * @note   You have to set the PLLM parameter correctly to ensure that the VCO input
  *         frequency ranges from 1 to 2 MHz. It is recommended to select a frequency
  *         of 2 MHz to limit PLL jitter.
  *  
  * @param  PLLN: specifies the multiplication factor for PLL VCO output clock
  *          This parameter must be a number between 192 and 432.
  * @note   You have to set the PLLN parameter correctly to ensure that the VCO
  *         output frequency is between 192 and 432 MHz.
  *   
  * @param  PLLP: specifies the division factor for main system clock (SYSCLK)
  *          This parameter must be a number in the range {2, 4, 6, or 8}.
  * @note   You have to set the PLLP parameter correctly to not exceed 168 MHz on
  *         the System clock frequency.
  *  
  * @param  PLLQ: specifies the division factor for OTG FS, SDIO and RNG clocks
  *          This parameter must be a number between 4 and 15.
  * @note   If the USB OTG FS is used in your application, you have to set the
  *         PLLQ parameter correctly to have 48 MHz clock for the USB. However,
  *         the SDIO and RNG need a frequency lower than or equal to 48 MHz to work
  *         correctly.
  *   
  * @retval None
  */
void RCC_PLLConfig(uint32_t RCC_PLLSource, uint32_t PLLM, uint32_t PLLN, uint32_t PLLP, uint32_t PLLQ)
{
  /* Check the parameters */
  assert_param(IS_RCC_PLL_SOURCE(RCC_PLLSource));
  assert_param(IS_RCC_PLLM_VALUE(PLLM));
  assert_param(IS_RCC_PLLN_VALUE(PLLN));
  assert_param(IS_RCC_PLLP_VALUE(PLLP));
  assert_param(IS_RCC_PLLQ_VALUE(PLLQ));

  RCC->PLLCFGR = PLLM | (PLLN << 6) | (((PLLP >> 1) -1) << 16) | (RCC_PLLSource) |
                 (PLLQ << 24);
}

/**
  * @brief  Enables or disables the main PLL.
  * @note   After enabling the main PLL, the application software should wait on 
  *         PLLRDY flag to be set indicating that PLL clock is stable and can
  *         be used as system clock source.
  * @note   The main PLL can not be disabled if it is used as system clock source
  * @note   The main PLL is disabled by hardware when entering STOP and STANDBY modes.
  * @param  NewState: new state of the main PLL. This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_PLLCmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  *(__IO uint32_t *) CR_PLLON_BB = (uint32_t)NewState;
}

493
#if defined (STM32F40_41xxx) || defined (STM32F401xx)
Damien's avatar
Damien committed
494
495
496
/**
  * @brief  Configures the PLLI2S clock multiplication and division factors.
  *  
497
498
499
  * @note   This function can be used only for STM32F405xx/407xx, STM32F415xx/417xx 
  *         or STM32F401xx devices. 
  *    
Damien's avatar
Damien committed
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
  * @note   This function must be used only when the PLLI2S is disabled.
  * @note   PLLI2S clock source is common with the main PLL (configured in 
  *         RCC_PLLConfig function )  
  *             
  * @param  PLLI2SN: specifies the multiplication factor for PLLI2S VCO output clock
  *          This parameter must be a number between 192 and 432.
  * @note   You have to set the PLLI2SN parameter correctly to ensure that the VCO 
  *         output frequency is between 192 and 432 MHz.
  *    
  * @param  PLLI2SR: specifies the division factor for I2S clock
  *          This parameter must be a number between 2 and 7.
  * @note   You have to set the PLLI2SR parameter correctly to not exceed 192 MHz
  *         on the I2S clock frequency.
  *   
  * @retval None
  */
void RCC_PLLI2SConfig(uint32_t PLLI2SN, uint32_t PLLI2SR)
{
  /* Check the parameters */
  assert_param(IS_RCC_PLLI2SN_VALUE(PLLI2SN));
  assert_param(IS_RCC_PLLI2SR_VALUE(PLLI2SR));

  RCC->PLLI2SCFGR = (PLLI2SN << 6) | (PLLI2SR << 28);
}
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
#endif /* STM32F40_41xxx || STM32F401xx */

#if defined (STM32F427_437xx) || defined (STM32F429_439xx)
/**
  * @brief  Configures the PLLI2S clock multiplication and division factors.
  * 
  * @note   This function can be used only for STM32F42xxx/43xxx devices 
  *         
  * @note   This function must be used only when the PLLI2S is disabled.
  * @note   PLLI2S clock source is common with the main PLL (configured in 
  *         RCC_PLLConfig function )  
  *             
  * @param  PLLI2SN: specifies the multiplication factor for PLLI2S VCO output clock
  *          This parameter must be a number between 192 and 432.
  * @note   You have to set the PLLI2SN parameter correctly to ensure that the VCO 
  *         output frequency is between 192 and 432 MHz.
  * 
  * @param  PLLI2SQ: specifies the division factor for SAI1 clock
  *          This parameter must be a number between 2 and 15.
  *                 
  * @param  PLLI2SR: specifies the division factor for I2S clock
  *          This parameter must be a number between 2 and 7.
  * @note   You have to set the PLLI2SR parameter correctly to not exceed 192 MHz
  *         on the I2S clock frequency.
  * @note   the PLLI2SR parameter is only available with STM32F42xxx/43xxx devices.  
  *   
  * @retval None
  */
void RCC_PLLI2SConfig(uint32_t PLLI2SN, uint32_t PLLI2SQ, uint32_t PLLI2SR)
{
  /* Check the parameters */
  assert_param(IS_RCC_PLLI2SN_VALUE(PLLI2SN));
  assert_param(IS_RCC_PLLI2SQ_VALUE(PLLI2SQ));
  assert_param(IS_RCC_PLLI2SR_VALUE(PLLI2SR));

  RCC->PLLI2SCFGR = (PLLI2SN << 6) | (PLLI2SQ << 24) | (PLLI2SR << 28);
}
#endif /* STM32F427_437xx ||  STM32F429_439xx */
Damien's avatar
Damien committed
562
563
564
565
566
567
568
569
570
571
572
573
574
575

/**
  * @brief  Enables or disables the PLLI2S. 
  * @note   The PLLI2S is disabled by hardware when entering STOP and STANDBY modes.  
  * @param  NewState: new state of the PLLI2S. This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_PLLI2SCmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  *(__IO uint32_t *) CR_PLLI2SON_BB = (uint32_t)NewState;
}

576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
/**
  * @brief  Configures the PLLSAI clock multiplication and division factors.
  *
  * @note   This function can be used only for STM32F42xxx/43xxx devices 
  *        
  * @note   This function must be used only when the PLLSAI is disabled.
  * @note   PLLSAI clock source is common with the main PLL (configured in 
  *         RCC_PLLConfig function )  
  *             
  * @param  PLLSAIN: specifies the multiplication factor for PLLSAI VCO output clock
  *          This parameter must be a number between 192 and 432.
  * @note   You have to set the PLLSAIN parameter correctly to ensure that the VCO 
  *         output frequency is between 192 and 432 MHz.
  *           
  * @param  PLLSAIQ: specifies the division factor for SAI1 clock
  *          This parameter must be a number between 2 and 15.
  *            
  * @param  PLLSAIR: specifies the division factor for LTDC clock
  *          This parameter must be a number between 2 and 7.
  *   
  * @retval None
  */
void RCC_PLLSAIConfig(uint32_t PLLSAIN, uint32_t PLLSAIQ, uint32_t PLLSAIR)
{
  /* Check the parameters */
  assert_param(IS_RCC_PLLSAIN_VALUE(PLLSAIN));
  assert_param(IS_RCC_PLLSAIR_VALUE(PLLSAIR));

  RCC->PLLSAICFGR = (PLLSAIN << 6) | (PLLSAIQ << 24) | (PLLSAIR << 28);
}

/**
  * @brief  Enables or disables the PLLSAI. 
  * 
  * @note   This function can be used only for STM32F42xxx/43xxx devices 
  *       
  * @note   The PLLSAI is disabled by hardware when entering STOP and STANDBY modes.  
  * @param  NewState: new state of the PLLSAI. This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_PLLSAICmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  *(__IO uint32_t *) CR_PLLSAION_BB = (uint32_t)NewState;
}

Damien's avatar
Damien committed
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
/**
  * @brief  Enables or disables the Clock Security System.
  * @note   If a failure is detected on the HSE oscillator clock, this oscillator
  *         is automatically disabled and an interrupt is generated to inform the
  *         software about the failure (Clock Security System Interrupt, CSSI),
  *         allowing the MCU to perform rescue operations. The CSSI is linked to 
  *         the Cortex-M4 NMI (Non-Maskable Interrupt) exception vector.  
  * @param  NewState: new state of the Clock Security System.
  *         This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_ClockSecuritySystemCmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  *(__IO uint32_t *) CR_CSSON_BB = (uint32_t)NewState;
}

/**
  * @brief  Selects the clock source to output on MCO1 pin(PA8).
  * @note   PA8 should be configured in alternate function mode.
  * @param  RCC_MCO1Source: specifies the clock source to output.
  *          This parameter can be one of the following values:
  *            @arg RCC_MCO1Source_HSI: HSI clock selected as MCO1 source
  *            @arg RCC_MCO1Source_LSE: LSE clock selected as MCO1 source
  *            @arg RCC_MCO1Source_HSE: HSE clock selected as MCO1 source
  *            @arg RCC_MCO1Source_PLLCLK: main PLL clock selected as MCO1 source
  * @param  RCC_MCO1Div: specifies the MCO1 prescaler.
  *          This parameter can be one of the following values:
  *            @arg RCC_MCO1Div_1: no division applied to MCO1 clock
  *            @arg RCC_MCO1Div_2: division by 2 applied to MCO1 clock
  *            @arg RCC_MCO1Div_3: division by 3 applied to MCO1 clock
  *            @arg RCC_MCO1Div_4: division by 4 applied to MCO1 clock
  *            @arg RCC_MCO1Div_5: division by 5 applied to MCO1 clock
  * @retval None
  */
void RCC_MCO1Config(uint32_t RCC_MCO1Source, uint32_t RCC_MCO1Div)
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_MCO1SOURCE(RCC_MCO1Source));
  assert_param(IS_RCC_MCO1DIV(RCC_MCO1Div));  

  tmpreg = RCC->CFGR;

  /* Clear MCO1[1:0] and MCO1PRE[2:0] bits */
  tmpreg &= CFGR_MCO1_RESET_MASK;

  /* Select MCO1 clock source and prescaler */
  tmpreg |= RCC_MCO1Source | RCC_MCO1Div;

  /* Store the new value */
  RCC->CFGR = tmpreg;  
}

/**
  * @brief  Selects the clock source to output on MCO2 pin(PC9).
  * @note   PC9 should be configured in alternate function mode.
  * @param  RCC_MCO2Source: specifies the clock source to output.
  *          This parameter can be one of the following values:
  *            @arg RCC_MCO2Source_SYSCLK: System clock (SYSCLK) selected as MCO2 source
  *            @arg RCC_MCO2Source_PLLI2SCLK: PLLI2S clock selected as MCO2 source
  *            @arg RCC_MCO2Source_HSE: HSE clock selected as MCO2 source
  *            @arg RCC_MCO2Source_PLLCLK: main PLL clock selected as MCO2 source
  * @param  RCC_MCO2Div: specifies the MCO2 prescaler.
  *          This parameter can be one of the following values:
  *            @arg RCC_MCO2Div_1: no division applied to MCO2 clock
  *            @arg RCC_MCO2Div_2: division by 2 applied to MCO2 clock
  *            @arg RCC_MCO2Div_3: division by 3 applied to MCO2 clock
  *            @arg RCC_MCO2Div_4: division by 4 applied to MCO2 clock
  *            @arg RCC_MCO2Div_5: division by 5 applied to MCO2 clock
  * @retval None
  */
void RCC_MCO2Config(uint32_t RCC_MCO2Source, uint32_t RCC_MCO2Div)
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_MCO2SOURCE(RCC_MCO2Source));
  assert_param(IS_RCC_MCO2DIV(RCC_MCO2Div));
  
  tmpreg = RCC->CFGR;
  
  /* Clear MCO2 and MCO2PRE[2:0] bits */
  tmpreg &= CFGR_MCO2_RESET_MASK;

  /* Select MCO2 clock source and prescaler */
  tmpreg |= RCC_MCO2Source | RCC_MCO2Div;

  /* Store the new value */
  RCC->CFGR = tmpreg;  
}

/**
  * @}
  */

/** @defgroup RCC_Group2 System AHB and APB busses clocks configuration functions
 *  @brief   System, AHB and APB busses clocks configuration functions
 *
@verbatim   
 ===============================================================================
      ##### System, AHB and APB busses clocks configuration functions #####
 ===============================================================================  
    [..]
      This section provide functions allowing to configure the System, AHB, APB1 and 
      APB2 busses clocks.
  
      (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI,
          HSE and PLL.
          The AHB clock (HCLK) is derived from System clock through configurable 
          prescaler and used to clock the CPU, memory and peripherals mapped 
          on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived 
          from AHB clock through configurable prescalers and used to clock 
          the peripherals mapped on these busses. You can use 
          "RCC_GetClocksFreq()" function to retrieve the frequencies of these clocks.  

      -@- All the peripheral clocks are derived from the System clock (SYSCLK) except:
        (+@) I2S: the I2S clock can be derived either from a specific PLL (PLLI2S) or
             from an external clock mapped on the I2S_CKIN pin. 
             You have to use RCC_I2SCLKConfig() function to configure this clock. 
        (+@) RTC: the RTC clock can be derived either from the LSI, LSE or HSE clock
             divided by 2 to 31. You have to use RCC_RTCCLKConfig() and RCC_RTCCLKCmd()
             functions to configure this clock. 
        (+@) USB OTG FS, SDIO and RTC: USB OTG FS require a frequency equal to 48 MHz
             to work correctly, while the SDIO require a frequency equal or lower than
             to 48. This clock is derived of the main PLL through PLLQ divider.
        (+@) IWDG clock which is always the LSI clock.
       
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
      (#) For STM32F405xx/407xx and STM32F415xx/417xx devices, the maximum frequency 
         of the SYSCLK and HCLK is 168 MHz, PCLK2 84 MHz and PCLK1 42 MHz. Depending 
         on the device voltage range, the maximum frequency should be adapted accordingly:
 +-------------------------------------------------------------------------------------+     
 | Latency       |                HCLK clock frequency (MHz)                           |
 |               |---------------------------------------------------------------------|     
 |               | voltage range  | voltage range  | voltage range   | voltage range   |
 |               | 2.7 V - 3.6 V  | 2.4 V - 2.7 V  | 2.1 V - 2.4 V   | 1.8 V - 2.1 V   |
 |---------------|----------------|----------------|-----------------|-----------------|              
 |0WS(1CPU cycle)|0 < HCLK <= 30  |0 < HCLK <= 24  |0 < HCLK <= 22   |0 < HCLK <= 20   |
 |---------------|----------------|----------------|-----------------|-----------------|   
 |1WS(2CPU cycle)|30 < HCLK <= 60 |24 < HCLK <= 48 |22 < HCLK <= 44  |20 < HCLK <= 40  | 
 |---------------|----------------|----------------|-----------------|-----------------|   
 |2WS(3CPU cycle)|60 < HCLK <= 90 |48 < HCLK <= 72 |44 < HCLK <= 66  |40 < HCLK <= 60  |
 |---------------|----------------|----------------|-----------------|-----------------| 
 |3WS(4CPU cycle)|90 < HCLK <= 120|72 < HCLK <= 96 |66 < HCLK <= 88  |60 < HCLK <= 80  |
 |---------------|----------------|----------------|-----------------|-----------------| 
 |4WS(5CPU cycle)|120< HCLK <= 150|96 < HCLK <= 120|88 < HCLK <= 110 |80 < HCLK <= 100 |
 |---------------|----------------|----------------|-----------------|-----------------| 
 |5WS(6CPU cycle)|150< HCLK <= 168|120< HCLK <= 144|110 < HCLK <= 132|100 < HCLK <= 120| 
 |---------------|----------------|----------------|-----------------|-----------------| 
 |6WS(7CPU cycle)|      NA        |144< HCLK <= 168|132 < HCLK <= 154|120 < HCLK <= 140| 
 |---------------|----------------|----------------|-----------------|-----------------| 
 |7WS(8CPU cycle)|      NA        |      NA        |154 < HCLK <= 168|140 < HCLK <= 160|
 +---------------|----------------|----------------|-----------------|-----------------+ 
      (#) For STM32F42xxx/43xxx devices, the maximum frequency of the SYSCLK and HCLK is 180 MHz, 
          PCLK2 90 MHz and PCLK1 45 MHz. Depending on the device voltage range, the maximum 
Damien's avatar
Damien committed
780
781
782
783
784
785
786
          frequency should be adapted accordingly:
 +-------------------------------------------------------------------------------------+     
 | Latency       |                HCLK clock frequency (MHz)                           |
 |               |---------------------------------------------------------------------|     
 |               | voltage range  | voltage range  | voltage range   | voltage range   |
 |               | 2.7 V - 3.6 V  | 2.4 V - 2.7 V  | 2.1 V - 2.4 V   | 1.8 V - 2.1 V   |
 |---------------|----------------|----------------|-----------------|-----------------|              
787
 |0WS(1CPU cycle)|0 < HCLK <= 30  |0 < HCLK <= 24  |0 < HCLK <= 22   |0 < HCLK <= 20   |
Damien's avatar
Damien committed
788
 |---------------|----------------|----------------|-----------------|-----------------|   
789
 |1WS(2CPU cycle)|30 < HCLK <= 60 |24 < HCLK <= 48 |22 < HCLK <= 44  |20 < HCLK <= 40  | 
Damien's avatar
Damien committed
790
 |---------------|----------------|----------------|-----------------|-----------------|   
791
 |2WS(3CPU cycle)|60 < HCLK <= 90 |48 < HCLK <= 72 |44 < HCLK <= 66  |40 < HCLK <= 60  |
Damien's avatar
Damien committed
792
 |---------------|----------------|----------------|-----------------|-----------------| 
793
 |3WS(4CPU cycle)|90 < HCLK <= 120|72 < HCLK <= 96 |66 < HCLK <= 88  |60 < HCLK <= 80  |
Damien's avatar
Damien committed
794
 |---------------|----------------|----------------|-----------------|-----------------| 
795
 |4WS(5CPU cycle)|120< HCLK <= 150|96 < HCLK <= 120|88 < HCLK <= 110 |80 < HCLK <= 100 |
Damien's avatar
Damien committed
796
 |---------------|----------------|----------------|-----------------|-----------------| 
797
 |5WS(6CPU cycle)|120< HCLK <= 180|120< HCLK <= 144|110 < HCLK <= 132|100 < HCLK <= 120| 
Damien's avatar
Damien committed
798
 |---------------|----------------|----------------|-----------------|-----------------| 
799
 |6WS(7CPU cycle)|      NA        |144< HCLK <= 168|132 < HCLK <= 154|120 < HCLK <= 140| 
Damien's avatar
Damien committed
800
 |---------------|----------------|----------------|-----------------|-----------------| 
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
 |7WS(8CPU cycle)|      NA        |168< HCLK <= 180|154 < HCLK <= 176|140 < HCLK <= 160|
 |---------------|----------------|----------------|-----------------|-----------------| 
 |8WS(9CPU cycle)|      NA        |      NA        |176 < HCLK <= 180|160 < HCLK <= 168|
 +-------------------------------------------------------------------------------------+
   
      (#) For STM32F401xx devices, the maximum frequency of the SYSCLK and HCLK is 84 MHz, 
          PCLK2 84 MHz and PCLK1 42 MHz. Depending on the device voltage range, the maximum 
          frequency should be adapted accordingly:
 +-------------------------------------------------------------------------------------+     
 | Latency       |                HCLK clock frequency (MHz)                           |
 |               |---------------------------------------------------------------------|     
 |               | voltage range  | voltage range  | voltage range   | voltage range   |
 |               | 2.7 V - 3.6 V  | 2.4 V - 2.7 V  | 2.1 V - 2.4 V   | 1.8 V - 2.1 V   |
 |---------------|----------------|----------------|-----------------|-----------------|              
 |0WS(1CPU cycle)|0 < HCLK <= 30  |0 < HCLK <= 24  |0 < HCLK <= 22   |0 < HCLK <= 20   |
 |---------------|----------------|----------------|-----------------|-----------------|   
 |1WS(2CPU cycle)|30 < HCLK <= 60 |24 < HCLK <= 48 |22 < HCLK <= 44  |20 < HCLK <= 40  | 
 |---------------|----------------|----------------|-----------------|-----------------|   
 |2WS(3CPU cycle)|60 < HCLK <= 84 |48 < HCLK <= 72 |44 < HCLK <= 66  |40 < HCLK <= 60  |
 |---------------|----------------|----------------|-----------------|-----------------| 
 |3WS(4CPU cycle)|      NA        |72 < HCLK <= 84 |66 < HCLK <= 84  |60 < HCLK <= 80  |
 |---------------|----------------|----------------|-----------------|-----------------| 
 |4WS(5CPU cycle)|      NA        |      NA        |      NA         |80 < HCLK <= 84  | 
 +-------------------------------------------------------------------------------------+ 
  
      -@- On STM32F405xx/407xx and STM32F415xx/417xx devices: 
           (++) when VOS = '0', the maximum value of fHCLK = 144MHz. 
           (++) when VOS = '1', the maximum value of fHCLK = 168MHz. 
          [..] 
          On STM32F42xxx/43xxx devices:
           (++) when VOS[1:0] = '0x01', the maximum value of fHCLK is 120MHz.
           (++) when VOS[1:0] = '0x10', the maximum value of fHCLK is 144MHz.
           (++) when VOS[1:0] = '0x11', the maximum value of f  is 168MHz 
          [..]  
          On STM32F401x devices:
           (++) when VOS[1:0] = '0x01', the maximum value of fHCLK is 64MHz.
           (++) when VOS[1:0] = '0x10', the maximum value of fHCLK is 84MHz.
           You can use PWR_MainRegulatorModeConfig() function to control VOS bits.
Damien's avatar
Damien committed
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229

@endverbatim
  * @{
  */

/**
  * @brief  Configures the system clock (SYSCLK).
  * @note   The HSI is used (enabled by hardware) as system clock source after
  *         startup from Reset, wake-up from STOP and STANDBY mode, or in case
  *         of failure of the HSE used directly or indirectly as system clock
  *         (if the Clock Security System CSS is enabled).
  * @note   A switch from one clock source to another occurs only if the target
  *         clock source is ready (clock stable after startup delay or PLL locked). 
  *         If a clock source which is not yet ready is selected, the switch will
  *         occur when the clock source will be ready. 
  *         You can use RCC_GetSYSCLKSource() function to know which clock is
  *         currently used as system clock source. 
  * @param  RCC_SYSCLKSource: specifies the clock source used as system clock.
  *          This parameter can be one of the following values:
  *            @arg RCC_SYSCLKSource_HSI:    HSI selected as system clock source
  *            @arg RCC_SYSCLKSource_HSE:    HSE selected as system clock source
  *            @arg RCC_SYSCLKSource_PLLCLK: PLL selected as system clock source
  * @retval None
  */
void RCC_SYSCLKConfig(uint32_t RCC_SYSCLKSource)
{
  uint32_t tmpreg = 0;

  /* Check the parameters */
  assert_param(IS_RCC_SYSCLK_SOURCE(RCC_SYSCLKSource));

  tmpreg = RCC->CFGR;

  /* Clear SW[1:0] bits */
  tmpreg &= ~RCC_CFGR_SW;

  /* Set SW[1:0] bits according to RCC_SYSCLKSource value */
  tmpreg |= RCC_SYSCLKSource;

  /* Store the new value */
  RCC->CFGR = tmpreg;
}

/**
  * @brief  Returns the clock source used as system clock.
  * @param  None
  * @retval The clock source used as system clock. The returned value can be one
  *         of the following:
  *              - 0x00: HSI used as system clock
  *              - 0x04: HSE used as system clock
  *              - 0x08: PLL used as system clock
  */
uint8_t RCC_GetSYSCLKSource(void)
{
  return ((uint8_t)(RCC->CFGR & RCC_CFGR_SWS));
}

/**
  * @brief  Configures the AHB clock (HCLK).
  * @note   Depending on the device voltage range, the software has to set correctly
  *         these bits to ensure that HCLK not exceed the maximum allowed frequency
  *         (for more details refer to section above
  *           "CPU, AHB and APB busses clocks configuration functions")
  * @param  RCC_SYSCLK: defines the AHB clock divider. This clock is derived from 
  *         the system clock (SYSCLK).
  *          This parameter can be one of the following values:
  *            @arg RCC_SYSCLK_Div1: AHB clock = SYSCLK
  *            @arg RCC_SYSCLK_Div2: AHB clock = SYSCLK/2
  *            @arg RCC_SYSCLK_Div4: AHB clock = SYSCLK/4
  *            @arg RCC_SYSCLK_Div8: AHB clock = SYSCLK/8
  *            @arg RCC_SYSCLK_Div16: AHB clock = SYSCLK/16
  *            @arg RCC_SYSCLK_Div64: AHB clock = SYSCLK/64
  *            @arg RCC_SYSCLK_Div128: AHB clock = SYSCLK/128
  *            @arg RCC_SYSCLK_Div256: AHB clock = SYSCLK/256
  *            @arg RCC_SYSCLK_Div512: AHB clock = SYSCLK/512
  * @retval None
  */
void RCC_HCLKConfig(uint32_t RCC_SYSCLK)
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_HCLK(RCC_SYSCLK));

  tmpreg = RCC->CFGR;

  /* Clear HPRE[3:0] bits */
  tmpreg &= ~RCC_CFGR_HPRE;

  /* Set HPRE[3:0] bits according to RCC_SYSCLK value */
  tmpreg |= RCC_SYSCLK;

  /* Store the new value */
  RCC->CFGR = tmpreg;
}


/**
  * @brief  Configures the Low Speed APB clock (PCLK1).
  * @param  RCC_HCLK: defines the APB1 clock divider. This clock is derived from 
  *         the AHB clock (HCLK).
  *          This parameter can be one of the following values:
  *            @arg RCC_HCLK_Div1:  APB1 clock = HCLK
  *            @arg RCC_HCLK_Div2:  APB1 clock = HCLK/2
  *            @arg RCC_HCLK_Div4:  APB1 clock = HCLK/4
  *            @arg RCC_HCLK_Div8:  APB1 clock = HCLK/8
  *            @arg RCC_HCLK_Div16: APB1 clock = HCLK/16
  * @retval None
  */
void RCC_PCLK1Config(uint32_t RCC_HCLK)
{
  uint32_t tmpreg = 0;

  /* Check the parameters */
  assert_param(IS_RCC_PCLK(RCC_HCLK));

  tmpreg = RCC->CFGR;

  /* Clear PPRE1[2:0] bits */
  tmpreg &= ~RCC_CFGR_PPRE1;

  /* Set PPRE1[2:0] bits according to RCC_HCLK value */
  tmpreg |= RCC_HCLK;

  /* Store the new value */
  RCC->CFGR = tmpreg;
}

/**
  * @brief  Configures the High Speed APB clock (PCLK2).
  * @param  RCC_HCLK: defines the APB2 clock divider. This clock is derived from 
  *         the AHB clock (HCLK).
  *          This parameter can be one of the following values:
  *            @arg RCC_HCLK_Div1:  APB2 clock = HCLK
  *            @arg RCC_HCLK_Div2:  APB2 clock = HCLK/2
  *            @arg RCC_HCLK_Div4:  APB2 clock = HCLK/4
  *            @arg RCC_HCLK_Div8:  APB2 clock = HCLK/8
  *            @arg RCC_HCLK_Div16: APB2 clock = HCLK/16
  * @retval None
  */
void RCC_PCLK2Config(uint32_t RCC_HCLK)
{
  uint32_t tmpreg = 0;

  /* Check the parameters */
  assert_param(IS_RCC_PCLK(RCC_HCLK));

  tmpreg = RCC->CFGR;

  /* Clear PPRE2[2:0] bits */
  tmpreg &= ~RCC_CFGR_PPRE2;

  /* Set PPRE2[2:0] bits according to RCC_HCLK value */
  tmpreg |= RCC_HCLK << 3;

  /* Store the new value */
  RCC->CFGR = tmpreg;
}

/**
  * @brief  Returns the frequencies of different on chip clocks; SYSCLK, HCLK, 
  *         PCLK1 and PCLK2.       
  * 
  * @note   The system frequency computed by this function is not the real 
  *         frequency in the chip. It is calculated based on the predefined 
  *         constant and the selected clock source:
  * @note     If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
  * @note     If SYSCLK source is HSE, function returns values based on HSE_VALUE(**)
  * @note     If SYSCLK source is PLL, function returns values based on HSE_VALUE(**) 
  *           or HSI_VALUE(*) multiplied/divided by the PLL factors.         
  * @note     (*) HSI_VALUE is a constant defined in stm32f4xx.h file (default value
  *               16 MHz) but the real value may vary depending on the variations
  *               in voltage and temperature.
  * @note     (**) HSE_VALUE is a constant defined in stm32f4xx.h file (default value
  *                25 MHz), user has to ensure that HSE_VALUE is same as the real
  *                frequency of the crystal used. Otherwise, this function may
  *                have wrong result.
  *                
  * @note   The result of this function could be not correct when using fractional
  *         value for HSE crystal.
  *   
  * @param  RCC_Clocks: pointer to a RCC_ClocksTypeDef structure which will hold
  *          the clocks frequencies.
  *     
  * @note   This function can be used by the user application to compute the 
  *         baudrate for the communication peripherals or configure other parameters.
  * @note   Each time SYSCLK, HCLK, PCLK1 and/or PCLK2 clock changes, this function
  *         must be called to update the structure's field. Otherwise, any
  *         configuration based on this function will be incorrect.
  *    
  * @retval None
  */
void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks)
{
  uint32_t tmp = 0, presc = 0, pllvco = 0, pllp = 2, pllsource = 0, pllm = 2;

  /* Get SYSCLK source -------------------------------------------------------*/
  tmp = RCC->CFGR & RCC_CFGR_SWS;

  switch (tmp)
  {
    case 0x00:  /* HSI used as system clock source */
      RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
      break;
    case 0x04:  /* HSE used as system clock  source */
      RCC_Clocks->SYSCLK_Frequency = HSE_VALUE;
      break;
    case 0x08:  /* PLL used as system clock  source */

      /* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN
         SYSCLK = PLL_VCO / PLLP
         */    
      pllsource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) >> 22;
      pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM;
      
      if (pllsource != 0)
      {
        /* HSE used as PLL clock source */
        pllvco = (HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6);
      }
      else
      {
        /* HSI used as PLL clock source */
        pllvco = (HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6);      
      }

      pllp = (((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) >>16) + 1 ) *2;
      RCC_Clocks->SYSCLK_Frequency = pllvco/pllp;
      break;
    default:
      RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
      break;
  }
  /* Compute HCLK, PCLK1 and PCLK2 clocks frequencies ------------------------*/

  /* Get HCLK prescaler */
  tmp = RCC->CFGR & RCC_CFGR_HPRE;
  tmp = tmp >> 4;
  presc = APBAHBPrescTable[tmp];
  /* HCLK clock frequency */
  RCC_Clocks->HCLK_Frequency = RCC_Clocks->SYSCLK_Frequency >> presc;

  /* Get PCLK1 prescaler */
  tmp = RCC->CFGR & RCC_CFGR_PPRE1;
  tmp = tmp >> 10;
  presc = APBAHBPrescTable[tmp];
  /* PCLK1 clock frequency */
  RCC_Clocks->PCLK1_Frequency = RCC_Clocks->HCLK_Frequency >> presc;

  /* Get PCLK2 prescaler */
  tmp = RCC->CFGR & RCC_CFGR_PPRE2;
  tmp = tmp >> 13;
  presc = APBAHBPrescTable[tmp];
  /* PCLK2 clock frequency */
  RCC_Clocks->PCLK2_Frequency = RCC_Clocks->HCLK_Frequency >> presc;
}

/**
  * @}
  */

/** @defgroup RCC_Group3 Peripheral clocks configuration functions
 *  @brief   Peripheral clocks configuration functions 
 *
@verbatim   
 ===============================================================================
              ##### Peripheral clocks configuration functions #####
 ===============================================================================  
    [..] This section provide functions allowing to configure the Peripheral clocks. 
  
      (#) The RTC clock which is derived from the LSI, LSE or HSE clock divided 
          by 2 to 31.
     
      (#) After restart from Reset or wakeup from STANDBY, all peripherals are off
          except internal SRAM, Flash and JTAG. Before to start using a peripheral 
          you have to enable its interface clock. You can do this using 
          RCC_AHBPeriphClockCmd(), RCC_APB2PeriphClockCmd() and RCC_APB1PeriphClockCmd() functions.

      (#) To reset the peripherals configuration (to the default state after device reset)
          you can use RCC_AHBPeriphResetCmd(), RCC_APB2PeriphResetCmd() and 
          RCC_APB1PeriphResetCmd() functions.
     
      (#) To further reduce power consumption in SLEEP mode the peripheral clocks 
          can be disabled prior to executing the WFI or WFE instructions. 
          You can do this using RCC_AHBPeriphClockLPModeCmd(), 
          RCC_APB2PeriphClockLPModeCmd() and RCC_APB1PeriphClockLPModeCmd() functions.  

@endverbatim
  * @{
  */

/**
  * @brief  Configures the RTC clock (RTCCLK).
  * @note   As the RTC clock configuration bits are in the Backup domain and write
  *         access is denied to this domain after reset, you have to enable write
  *         access using PWR_BackupAccessCmd(ENABLE) function before to configure
  *         the RTC clock source (to be done once after reset).    
  * @note   Once the RTC clock is configured it can't be changed unless the  
  *         Backup domain is reset using RCC_BackupResetCmd() function, or by
  *         a Power On Reset (POR).
  *    
  * @param  RCC_RTCCLKSource: specifies the RTC clock source.
  *          This parameter can be one of the following values:
  *            @arg RCC_RTCCLKSource_LSE: LSE selected as RTC clock
  *            @arg RCC_RTCCLKSource_LSI: LSI selected as RTC clock
  *            @arg RCC_RTCCLKSource_HSE_Divx: HSE clock divided by x selected
  *                                            as RTC clock, where x:[2,31]
  *  
  * @note   If the LSE or LSI is used as RTC clock source, the RTC continues to
  *         work in STOP and STANDBY modes, and can be used as wakeup source.
  *         However, when the HSE clock is used as RTC clock source, the RTC
  *         cannot be used in STOP and STANDBY modes.    
  * @note   The maximum input clock frequency for RTC is 1MHz (when using HSE as
  *         RTC clock source).
  *  
  * @retval None
  */
void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource)
{
  uint32_t tmpreg = 0;

  /* Check the parameters */
  assert_param(IS_RCC_RTCCLK_SOURCE(RCC_RTCCLKSource));

  if ((RCC_RTCCLKSource & 0x00000300) == 0x00000300)
  { /* If HSE is selected as RTC clock source, configure HSE division factor for RTC clock */
    tmpreg = RCC->CFGR;

    /* Clear RTCPRE[4:0] bits */
    tmpreg &= ~RCC_CFGR_RTCPRE;

    /* Configure HSE division factor for RTC clock */
    tmpreg |= (RCC_RTCCLKSource & 0xFFFFCFF);

    /* Store the new value */
    RCC->CFGR = tmpreg;
  }
    
  /* Select the RTC clock source */
  RCC->BDCR |= (RCC_RTCCLKSource & 0x00000FFF);
}

/**
  * @brief  Enables or disables the RTC clock.
  * @note   This function must be used only after the RTC clock source was selected
  *         using the RCC_RTCCLKConfig function.
  * @param  NewState: new state of the RTC clock. This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_RTCCLKCmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  *(__IO uint32_t *) BDCR_RTCEN_BB = (uint32_t)NewState;
}

/**
  * @brief  Forces or releases the Backup domain reset.
  * @note   This function resets the RTC peripheral (including the backup registers)
  *         and the RTC clock source selection in RCC_CSR register.
  * @note   The BKPSRAM is not affected by this reset.    
  * @param  NewState: new state of the Backup domain reset.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_BackupResetCmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  *(__IO uint32_t *) BDCR_BDRST_BB = (uint32_t)NewState;
}

/**
  * @brief  Configures the I2S clock source (I2SCLK).
  * @note   This function must be called before enabling the I2S APB clock.
  * @param  RCC_I2SCLKSource: specifies the I2S clock source.
  *          This parameter can be one of the following values:
  *            @arg RCC_I2S2CLKSource_PLLI2S: PLLI2S clock used as I2S clock source
  *            @arg RCC_I2S2CLKSource_Ext: External clock mapped on the I2S_CKIN pin
  *                                        used as I2S clock source
  * @retval None
  */
void RCC_I2SCLKConfig(uint32_t RCC_I2SCLKSource)
{
  /* Check the parameters */
  assert_param(IS_RCC_I2SCLK_SOURCE(RCC_I2SCLKSource));

  *(__IO uint32_t *) CFGR_I2SSRC_BB = RCC_I2SCLKSource;
}

1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
/**
  * @brief  Configures the SAI clock Divider coming from PLLI2S.
  * 
  * @note   This function can be used only for STM32F42xxx/43xxx devices.
  *   
  * @note   This function must be called before enabling the PLLI2S.
  *              
  * @param  RCC_PLLI2SDivQ: specifies the PLLI2S division factor for SAI1 clock .
  *          This parameter must be a number between 1 and 32.
  *          SAI1 clock frequency = f(PLLI2S_Q) / RCC_PLLI2SDivQ 
  *              
  * @retval None
  */
void RCC_SAIPLLI2SClkDivConfig(uint32_t RCC_PLLI2SDivQ)  
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_PLLI2S_DIVQ_VALUE(RCC_PLLI2SDivQ));
  
  tmpreg = RCC->DCKCFGR;

  /* Clear PLLI2SDIVQ[4:0] bits */
  tmpreg &= ~(RCC_DCKCFGR_PLLI2SDIVQ);

  /* Set PLLI2SDIVQ values */
  tmpreg |= (RCC_PLLI2SDivQ - 1);

  /* Store the new value */
  RCC->DCKCFGR = tmpreg;
}

/**
  * @brief  Configures the SAI clock Divider coming from PLLSAI.
  * 
  * @note   This function can be used only for STM32F42xxx/43xxx devices.
  *        
  * @note   This function must be called before enabling the PLLSAI.
  *   
  * @param  RCC_PLLSAIDivQ: specifies the PLLSAI division factor for SAI1 clock .
  *          This parameter must be a number between 1 and 32.
  *          SAI1 clock frequency = f(PLLSAI_Q) / RCC_PLLSAIDivQ  
  *              
  * @retval None
  */
void RCC_SAIPLLSAIClkDivConfig(uint32_t RCC_PLLSAIDivQ)  
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_PLLSAI_DIVQ_VALUE(RCC_PLLSAIDivQ));
  
  tmpreg = RCC->DCKCFGR;

  /* Clear PLLI2SDIVQ[4:0] and PLLSAIDIVQ[4:0] bits */
  tmpreg &= ~(RCC_DCKCFGR_PLLSAIDIVQ);

  /* Set PLLSAIDIVQ values */
  tmpreg |= ((RCC_PLLSAIDivQ - 1) << 8);

  /* Store the new value */
  RCC->DCKCFGR = tmpreg;
}

/**
  * @brief  Configures SAI1BlockA clock source selection.
  * 
  * @note   This function can be used only for STM32F42xxx/43xxx devices.
  *       
  * @note   This function must be called before enabling PLLSAI, PLLI2S and  
  *         the SAI clock.
  * @param  RCC_SAIBlockACLKSource: specifies the SAI Block A clock source.
  *          This parameter can be one of the following values:
  *            @arg RCC_SAIACLKSource_PLLI2S: PLLI2S_Q clock divided by PLLI2SDIVQ used 
  *                                           as SAI1 Block A clock 
  *            @arg RCC_SAIACLKSource_PLLSAI: PLLISAI_Q clock divided by PLLSAIDIVQ used 
  *                                           as SAI1 Block A clock 
  *            @arg RCC_SAIACLKSource_Ext: External clock mapped on the I2S_CKIN pin
  *                                        used as SAI1 Block A clock
  * @retval None
  */
void RCC_SAIBlockACLKConfig(uint32_t RCC_SAIBlockACLKSource)
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_SAIACLK_SOURCE(RCC_SAIBlockACLKSource));
  
  tmpreg = RCC->DCKCFGR;

  /* Clear RCC_DCKCFGR_SAI1ASRC[1:0] bits */
  tmpreg &= ~RCC_DCKCFGR_SAI1ASRC;

  /* Set SAI Block A source selection value */
  tmpreg |= RCC_SAIBlockACLKSource;

  /* Store the new value */
  RCC->DCKCFGR = tmpreg;
}

/**
  * @brief  Configures SAI1BlockB clock source selection.
  * 
  * @note   This function can be used only for STM32F42xxx/43xxx devices.
  *       
  * @note   This function must be called before enabling PLLSAI, PLLI2S and  
  *         the SAI clock.
  * @param  RCC_SAIBlockBCLKSource: specifies the SAI Block B clock source.
  *          This parameter can be one of the following values:
  *            @arg RCC_SAIBCLKSource_PLLI2S: PLLI2S_Q clock divided by PLLI2SDIVQ used 
  *                                           as SAI1 Block B clock 
  *            @arg RCC_SAIBCLKSource_PLLSAI: PLLISAI_Q clock divided by PLLSAIDIVQ used 
  *                                           as SAI1 Block B clock 
  *            @arg RCC_SAIBCLKSource_Ext: External clock mapped on the I2S_CKIN pin
  *                                        used as SAI1 Block B clock
  * @retval None
  */
void RCC_SAIBlockBCLKConfig(uint32_t RCC_SAIBlockBCLKSource)
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_SAIBCLK_SOURCE(RCC_SAIBlockBCLKSource));
  
  tmpreg = RCC->DCKCFGR;

  /* Clear RCC_DCKCFGR_SAI1BSRC[1:0] bits */
  tmpreg &= ~RCC_DCKCFGR_SAI1BSRC;

  /* Set SAI Block B source selection value */
  tmpreg |= RCC_SAIBlockBCLKSource;

  /* Store the new value */
  RCC->DCKCFGR = tmpreg;
}


/**
  * @brief  Configures the LTDC clock Divider coming from PLLSAI.
  * 
  * @note   The LTDC peripheral is only available with STM32F429xx/439xx Devices.
  *      
  * @note   This function must be called before enabling the PLLSAI.
  *   
  * @param  RCC_PLLSAIDivR: specifies the PLLSAI division factor for LTDC clock .
  *          This parameter must be a number between 2 and 16.
  *          LTDC clock frequency = f(PLLSAI_R) / RCC_PLLSAIDivR  
  *            
  * @retval None
  */
void RCC_LTDCCLKDivConfig(uint32_t RCC_PLLSAIDivR)
{
  uint32_t tmpreg = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_PLLSAI_DIVR_VALUE(RCC_PLLSAIDivR));
  
  tmpreg = RCC->DCKCFGR;

  /* Clear PLLSAIDIVR[2:0] bits */
  tmpreg &= ~RCC_DCKCFGR_PLLSAIDIVR;

  /* Set PLLSAIDIVR values */
  tmpreg |= RCC_PLLSAIDivR;

  /* Store the new value */
  RCC->DCKCFGR = tmpreg;
}

Damien's avatar
Damien committed
1399
1400
1401
/**
  * @brief  Configures the Timers clocks prescalers selection.
  * 
1402
1403
  * @note   This function can be used only for STM32F42xxx/43xxx and STM32F401xx devices. 
  *   
Damien's avatar
Damien committed
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
  * @param  RCC_TIMCLKPrescaler : specifies the Timers clocks prescalers selection
  *         This parameter can be one of the following values:
  *            @arg RCC_TIMPrescDesactivated: The Timers kernels clocks prescaler is 
  *                 equal to HPRE if PPREx is corresponding to division by 1 or 2, 
  *                 else it is equal to [(HPRE * PPREx) / 2] if PPREx is corresponding to 
  *                 division by 4 or more.
  *                   
  *            @arg RCC_TIMPrescActivated: The Timers kernels clocks prescaler is 
  *                 equal to HPRE if PPREx is corresponding to division by 1, 2 or 4, 
  *                 else it is equal to [(HPRE * PPREx) / 4] if PPREx is corresponding 
  *                 to division by 8 or more.
  * @retval None
  */
void RCC_TIMCLKPresConfig(uint32_t RCC_TIMCLKPrescaler)
{
  /* Check the parameters */
  assert_param(IS_RCC_TIMCLK_PRESCALER(RCC_TIMCLKPrescaler));

  *(__IO uint32_t *) DCKCFGR_TIMPRE_BB = RCC_TIMCLKPrescaler;
  
}

/**
  * @brief  Enables or disables the AHB1 peripheral clock.
  * @note   After reset, the peripheral clock (used for registers read/write access)
  *         is disabled and the application software has to enable this clock before 
  *         using it.   
  * @param  RCC_AHBPeriph: specifies the AHB1 peripheral to gates its clock.
  *          This parameter can be any combination of the following values:
  *            @arg RCC_AHB1Periph_GPIOA:       GPIOA clock
  *            @arg RCC_AHB1Periph_GPIOB:       GPIOB clock 
  *            @arg RCC_AHB1Periph_GPIOC:       GPIOC clock
  *            @arg RCC_AHB1Periph_GPIOD:       GPIOD clock
  *            @arg RCC_AHB1Periph_GPIOE:       GPIOE clock
  *            @arg RCC_AHB1Periph_GPIOF:       GPIOF clock
  *            @arg RCC_AHB1Periph_GPIOG:       GPIOG clock
  *            @arg RCC_AHB1Periph_GPIOG:       GPIOG clock
1441
1442
1443
  *            @arg RCC_AHB1Periph_GPIOI:       GPIOI clock
  *            @arg RCC_AHB1Periph_GPIOJ:       GPIOJ clock (STM32F42xxx/43xxx devices) 
  *            @arg RCC_AHB1Periph_GPIOK:       GPIOK clock (STM32F42xxx/43xxx devices)  
Damien's avatar
Damien committed
1444
1445
1446
1447
  *            @arg RCC_AHB1Periph_CRC:         CRC clock
  *            @arg RCC_AHB1Periph_BKPSRAM:     BKPSRAM interface clock
  *            @arg RCC_AHB1Periph_CCMDATARAMEN CCM data RAM interface clock
  *            @arg RCC_AHB1Periph_DMA1:        DMA1 clock
1448
1449
  *            @arg RCC_AHB1Periph_DMA2:        DMA2 clock
  *            @arg RCC_AHB1Periph_DMA2D:       DMA2D clock (STM32F429xx/439xx devices)  
Damien's avatar
Damien committed
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
  *            @arg RCC_AHB1Periph_ETH_MAC:     Ethernet MAC clock
  *            @arg RCC_AHB1Periph_ETH_MAC_Tx:  Ethernet Transmission clock
  *            @arg RCC_AHB1Periph_ETH_MAC_Rx:  Ethernet Reception clock
  *            @arg RCC_AHB1Periph_ETH_MAC_PTP: Ethernet PTP clock
  *            @arg RCC_AHB1Periph_OTG_HS:      USB OTG HS clock
  *            @arg RCC_AHB1Periph_OTG_HS_ULPI: USB OTG HS ULPI clock
  * @param  NewState: new state of the specified peripheral clock.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_AHB1PeriphClockCmd(uint32_t RCC_AHB1Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_AHB1_CLOCK_PERIPH(RCC_AHB1Periph));

  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    RCC->AHB1ENR |= RCC_AHB1Periph;
  }
  else
  {
    RCC->AHB1ENR &= ~RCC_AHB1Periph;
  }
}

/**
  * @brief  Enables or disables the AHB2 peripheral clock.
  * @note   After reset, the peripheral clock (used for registers read/write access)
  *         is disabled and the application software has to enable this clock before 
  *         using it. 
  * @param  RCC_AHBPeriph: specifies the AHB2 peripheral to gates its clock.
  *          This parameter can be any combination of the following values:
  *            @arg RCC_AHB2Periph_DCMI:   DCMI clock
  *            @arg RCC_AHB2Periph_CRYP:   CRYP clock
  *            @arg RCC_AHB2Periph_HASH:   HASH clock
  *            @arg RCC_AHB2Periph_RNG:    RNG clock
  *            @arg RCC_AHB2Periph_OTG_FS: USB OTG FS clock
  * @param  NewState: new state of the specified peripheral clock.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_AHB2PeriphClockCmd(uint32_t RCC_AHB2Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_AHB2_PERIPH(RCC_AHB2Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->AHB2ENR |= RCC_AHB2Periph;
  }
  else
  {
    RCC->AHB2ENR &= ~RCC_AHB2Periph;
  }
}

/**
  * @brief  Enables or disables the AHB3 peripheral clock.
  * @note   After reset, the peripheral clock (used for registers read/write access)
  *         is disabled and the application software has to enable this clock before 
  *         using it. 
  * @param  RCC_AHBPeriph: specifies the AHB3 peripheral to gates its clock.
  *          This parameter must be: RCC_AHB3Periph_FSMC
1515
  *                                  or RCC_AHB3Periph_FMC (STM32F42xxx/43xxx devices)  
Damien's avatar
Damien committed
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
  * @param  NewState: new state of the specified peripheral clock.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_AHB3PeriphClockCmd(uint32_t RCC_AHB3Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_AHB3_PERIPH(RCC_AHB3Periph));  
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->AHB3ENR |= RCC_AHB3Periph;
  }
  else
  {
    RCC->AHB3ENR &= ~RCC_AHB3Periph;
  }
}

/**
  * @brief  Enables or disables the Low Speed APB (APB1) peripheral clock.
  * @note   After reset, the peripheral clock (used for registers read/write access)
  *         is disabled and the application software has to enable this clock before 
  *         using it. 
  * @param  RCC_APB1Periph: specifies the APB1 peripheral to gates its clock.
  *          This parameter can be any combination of the following values:
  *            @arg RCC_APB1Periph_TIM2:   TIM2 clock
  *            @arg RCC_APB1Periph_TIM3:   TIM3 clock
  *            @arg RCC_APB1Periph_TIM4:   TIM4 clock
  *            @arg RCC_APB1Periph_TIM5:   TIM5 clock
  *            @arg RCC_APB1Periph_TIM6:   TIM6 clock
  *            @arg RCC_APB1Periph_TIM7:   TIM7 clock
  *            @arg RCC_APB1Periph_TIM12:  TIM12 clock
  *            @arg RCC_APB1Periph_TIM13:  TIM13 clock
  *            @arg RCC_APB1Periph_TIM14:  TIM14 clock
  *            @arg RCC_APB1Periph_WWDG:   WWDG clock
  *            @arg RCC_APB1Periph_SPI2:   SPI2 clock
  *            @arg RCC_APB1Periph_SPI3:   SPI3 clock
  *            @arg RCC_APB1Periph_USART2: USART2 clock
  *            @arg RCC_APB1Periph_USART3: USART3 clock
  *            @arg RCC_APB1Periph_UART4:  UART4 clock
  *            @arg RCC_APB1Periph_UART5:  UART5 clock
  *            @arg RCC_APB1Periph_I2C1:   I2C1 clock
  *            @arg RCC_APB1Periph_I2C2:   I2C2 clock
  *            @arg RCC_APB1Periph_I2C3:   I2C3 clock
  *            @arg RCC_APB1Periph_CAN1:   CAN1 clock
  *            @arg RCC_APB1Periph_CAN2:   CAN2 clock
  *            @arg RCC_APB1Periph_PWR:    PWR clock
  *            @arg RCC_APB1Periph_DAC:    DAC clock
  *            @arg RCC_APB1Periph_UART7:  UART7 clock
  *            @arg RCC_APB1Periph_UART8:  UART8 clock
  * @param  NewState: new state of the specified peripheral clock.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));  
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->APB1ENR |= RCC_APB1Periph;
  }
  else
  {
    RCC->APB1ENR &= ~RCC_APB1Periph;
  }
}

/**
  * @brief  Enables or disables the High Speed APB (APB2) peripheral clock.
  * @note   After reset, the peripheral clock (used for registers read/write access)
  *         is disabled and the application software has to enable this clock before 
  *         using it.
  * @param  RCC_APB2Periph: specifies the APB2 peripheral to gates its clock.
  *          This parameter can be any combination of the following values:
  *            @arg RCC_APB2Periph_TIM1:   TIM1 clock
  *            @arg RCC_APB2Periph_TIM8:   TIM8 clock
  *            @arg RCC_APB2Periph_USART1: USART1 clock
  *            @arg RCC_APB2Periph_USART6: USART6 clock
  *            @arg RCC_APB2Periph_ADC1:   ADC1 clock
  *            @arg RCC_APB2Periph_ADC2:   ADC2 clock
  *            @arg RCC_APB2Periph_ADC3:   ADC3 clock
  *            @arg RCC_APB2Periph_SDIO:   SDIO clock
  *            @arg RCC_APB2Periph_SPI1:   SPI1 clock
  *            @arg RCC_APB2Periph_SPI4:   SPI4 clock
  *            @arg RCC_APB2Periph_SYSCFG: SYSCFG clock
  *            @arg RCC_APB2Periph_TIM9:   TIM9 clock
  *            @arg RCC_APB2Periph_TIM10:  TIM10 clock
  *            @arg RCC_APB2Periph_TIM11:  TIM11 clock
  *            @arg RCC_APB2Periph_SPI5:   SPI5 clock
  *            @arg RCC_APB2Periph_SPI6:   SPI6 clock
1611
1612
  *            @arg RCC_APB2Periph_SAI1:   SAI1 clock (STM32F42xxx/43xxx devices) 
  *            @arg RCC_APB2Periph_LTDC:   LTDC clock (STM32F429xx/439xx devices) 
Damien's avatar
Damien committed
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
  * @param  NewState: new state of the specified peripheral clock.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->APB2ENR |= RCC_APB2Periph;
  }
  else
  {
    RCC->APB2ENR &= ~RCC_APB2Periph;
  }
}

/**
  * @brief  Forces or releases AHB1 peripheral reset.
  * @param  RCC_AHB1Periph: specifies the AHB1 peripheral to reset.
  *          This parameter can be any combination of the following values:
  *            @arg RCC_AHB1Periph_GPIOA:   GPIOA clock
  *            @arg RCC_AHB1Periph_GPIOB:   GPIOB clock 
  *            @arg RCC_AHB1Periph_GPIOC:   GPIOC clock
  *            @arg RCC_AHB1Periph_GPIOD:   GPIOD clock
  *            @arg RCC_AHB1Periph_GPIOE:   GPIOE clock
  *            @arg RCC_AHB1Periph_GPIOF:   GPIOF clock
  *            @arg RCC_AHB1Periph_GPIOG:   GPIOG clock
  *            @arg RCC_AHB1Periph_GPIOG:   GPIOG clock
1645
1646
1647
  *            @arg RCC_AHB1Periph_GPIOI:   GPIOI clock
  *            @arg RCC_AHB1Periph_GPIOJ:   GPIOJ clock (STM32F42xxx/43xxx devices) 
  *            @arg RCC_AHB1Periph_GPIOK:   GPIOK clock (STM32F42xxx/43xxxdevices)   
Damien's avatar
Damien committed
1648
1649
  *            @arg RCC_AHB1Periph_CRC:     CRC clock
  *            @arg RCC_AHB1Periph_DMA1:    DMA1 clock
1650
1651
  *            @arg RCC_AHB1Periph_DMA2:    DMA2 clock
  *            @arg RCC_AHB1Periph_DMA2D:   DMA2D clock (STM32F429xx/439xx devices)   
Damien's avatar
Damien committed
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
  *            @arg RCC_AHB1Periph_ETH_MAC: Ethernet MAC clock
  *            @arg RCC_AHB1Periph_OTG_HS:  USB OTG HS clock
  *                  
  * @param  NewState: new state of the specified peripheral reset.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_AHB1PeriphResetCmd(uint32_t RCC_AHB1Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_AHB1_RESET_PERIPH(RCC_AHB1Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->AHB1RSTR |= RCC_AHB1Periph;
  }
  else
  {
    RCC->AHB1RSTR &= ~RCC_AHB1Periph;
  }
}

/**
  * @brief  Forces or releases AHB2 peripheral reset.
  * @param  RCC_AHB2Periph: specifies the AHB2 peripheral to reset.
  *          This parameter can be any combination of the following values:
  *            @arg RCC_AHB2Periph_DCMI:   DCMI clock
  *            @arg RCC_AHB2Periph_CRYP:   CRYP clock
  *            @arg RCC_AHB2Periph_HASH:   HASH clock
  *            @arg RCC_AHB2Periph_RNG:    RNG clock
  *            @arg RCC_AHB2Periph_OTG_FS: USB OTG FS clock
  * @param  NewState: new state of the specified peripheral reset.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_AHB2PeriphResetCmd(uint32_t RCC_AHB2Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_AHB2_PERIPH(RCC_AHB2Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->AHB2RSTR |= RCC_AHB2Periph;
  }
  else
  {
    RCC->AHB2RSTR &= ~RCC_AHB2Periph;
  }
}

/**
  * @brief  Forces or releases AHB3 peripheral reset.
  * @param  RCC_AHB3Periph: specifies the AHB3 peripheral to reset.
  *          This parameter must be: RCC_AHB3Periph_FSMC
1708
  *                                  or RCC_AHB3Periph_FMC (STM32F42xxx/43xxx devices)  
Damien's avatar
Damien committed
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
  * @param  NewState: new state of the specified peripheral reset.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_AHB3PeriphResetCmd(uint32_t RCC_AHB3Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_AHB3_PERIPH(RCC_AHB3Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->AHB3RSTR |= RCC_AHB3Periph;
  }
  else
  {
    RCC->AHB3RSTR &= ~RCC_AHB3Periph;
  }
}

/**
  * @brief  Forces or releases Low Speed APB (APB1) peripheral reset.
  * @param  RCC_APB1Periph: specifies the APB1 peripheral to reset.
  *          This parameter can be any combination of the following values:
  *            @arg RCC_APB1Periph_TIM2:   TIM2 clock
  *            @arg RCC_APB1Periph_TIM3:   TIM3 clock
  *            @arg RCC_APB1Periph_TIM4:   TIM4 clock
  *            @arg RCC_APB1Periph_TIM5:   TIM5 clock
  *            @arg RCC_APB1Periph_TIM6:   TIM6 clock
  *            @arg RCC_APB1Periph_TIM7:   TIM7 clock
  *            @arg RCC_APB1Periph_TIM12:  TIM12 clock
  *            @arg RCC_APB1Periph_TIM13:  TIM13 clock
  *            @arg RCC_APB1Periph_TIM14:  TIM14 clock
  *            @arg RCC_APB1Periph_WWDG:   WWDG clock
  *            @arg RCC_APB1Periph_SPI2:   SPI2 clock
  *            @arg RCC_APB1Periph_SPI3:   SPI3 clock
  *            @arg RCC_APB1Periph_USART2: USART2 clock
  *            @arg RCC_APB1Periph_USART3: USART3 clock
  *            @arg RCC_APB1Periph_UART4:  UART4 clock
  *            @arg RCC_APB1Periph_UART5:  UART5 clock
  *            @arg RCC_APB1Periph_I2C1:   I2C1 clock
  *            @arg RCC_APB1Periph_I2C2:   I2C2 clock
  *            @arg RCC_APB1Periph_I2C3:   I2C3 clock
  *            @arg RCC_APB1Periph_CAN1:   CAN1 clock
  *            @arg RCC_APB1Periph_CAN2:   CAN2 clock
  *            @arg RCC_APB1Periph_PWR:    PWR clock
  *            @arg RCC_APB1Periph_DAC:    DAC clock
  *            @arg RCC_APB1Periph_UART7:  UART7 clock
  *            @arg RCC_APB1Periph_UART8:  UART8 clock  
  * @param  NewState: new state of the specified peripheral reset.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_APB1PeriphResetCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    RCC->APB1RSTR |= RCC_APB1Periph;
  }
  else
  {
    RCC->APB1RSTR &= ~RCC_APB1Periph;
  }
}

/**
  * @brief  Forces or releases High Speed APB (APB2) peripheral reset.
  * @param  RCC_APB2Periph: specifies the APB2 peripheral to reset.
  *          This parameter can be any combination of the following values:
  *            @arg RCC_APB2Periph_TIM1:   TIM1 clock
  *            @arg RCC_APB2Periph_TIM8:   TIM8 clock
  *            @arg RCC_APB2Periph_USART1: USART1 clock
  *            @arg RCC_APB2Periph_USART6: USART6 clock
  *            @arg RCC_APB2Periph_ADC1:   ADC1 clock
  *            @arg RCC_APB2Periph_ADC2:   ADC2 clock
  *            @arg RCC_APB2Periph_ADC3:   ADC3 clock
  *            @arg RCC_APB2Periph_SDIO:   SDIO clock
  *            @arg RCC_APB2Periph_SPI1:   SPI1 clock
  *            @arg RCC_APB2Periph_SPI4:   SPI4 clock  
  *            @arg RCC_APB2Periph_SYSCFG: SYSCFG clock
  *            @arg RCC_APB2Periph_TIM9:   TIM9 clock
  *            @arg RCC_APB2Periph_TIM10:  TIM10 clock
  *            @arg RCC_APB2Periph_TIM11:  TIM11 clock
  *            @arg RCC_APB2Periph_SPI5:   SPI5 clock
1796
1797
1798
  *            @arg RCC_APB2Periph_SPI6:   SPI6 clock
  *            @arg RCC_APB2Periph_SAI1:   SAI1 clock (STM32F42xxx/43xxx devices) 
  *            @arg RCC_APB2Periph_LTDC:   LTDC clock (STM32F429xx/439xx devices)   
Damien's avatar
Damien committed
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
  * @param  NewState: new state of the specified peripheral reset.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_APB2PeriphResetCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_APB2_RESET_PERIPH(RCC_APB2Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    RCC->APB2RSTR |= RCC_APB2Periph;
  }
  else
  {
    RCC->APB2RSTR &= ~RCC_APB2Periph;
  }
}

/**
  * @brief  Enables or disables the AHB1 peripheral clock during Low Power (Sleep) mode.
  * @note   Peripheral clock gating in SLEEP mode can be used to further reduce
  *         power consumption.
  * @note   After wakeup from SLEEP mode, the peripheral clock is enabled again.
  * @note   By default, all peripheral clocks are enabled during SLEEP mode.
  * @param  RCC_AHBPeriph: specifies the AHB1 peripheral to gates its clock.
  *          This parameter can be any combination of the following values:
  *            @arg RCC_AHB1Periph_GPIOA:       GPIOA clock
  *            @arg RCC_AHB1Periph_GPIOB:       GPIOB clock 
  *            @arg RCC_AHB1Periph_GPIOC:       GPIOC clock
  *            @arg RCC_AHB1Periph_GPIOD:       GPIOD clock
  *            @arg RCC_AHB1Periph_GPIOE:       GPIOE clock
  *            @arg RCC_AHB1Periph_GPIOF:       GPIOF clock
  *            @arg RCC_AHB1Periph_GPIOG:       GPIOG clock
  *            @arg RCC_AHB1Periph_GPIOG:       GPIOG clock
1834
1835
1836
  *            @arg RCC_AHB1Periph_GPIOI:       GPIOI clock
  *            @arg RCC_AHB1Periph_GPIOJ:       GPIOJ clock (STM32F42xxx/43xxx devices) 
  *            @arg RCC_AHB1Periph_GPIOK:       GPIOK clock (STM32F42xxx/43xxx devices)   
Damien's avatar
Damien committed
1837
1838
1839
1840
  *            @arg RCC_AHB1Periph_CRC:         CRC clock
  *            @arg RCC_AHB1Periph_BKPSRAM:     BKPSRAM interface clock
  *            @arg RCC_AHB1Periph_DMA1:        DMA1 clock
  *            @arg RCC_AHB1Periph_DMA2:        DMA2 clock
1841
  *            @arg RCC_AHB1Periph_DMA2D:       DMA2D clock (STM32F429xx/439xx devices) 
Damien's avatar
Damien committed
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
  *            @arg RCC_AHB1Periph_ETH_MAC:     Ethernet MAC clock
  *            @arg RCC_AHB1Periph_ETH_MAC_Tx:  Ethernet Transmission clock
  *            @arg RCC_AHB1Periph_ETH_MAC_Rx:  Ethernet Reception clock
  *            @arg RCC_AHB1Periph_ETH_MAC_PTP: Ethernet PTP clock
  *            @arg RCC_AHB1Periph_OTG_HS:      USB OTG HS clock
  *            @arg RCC_AHB1Periph_OTG_HS_ULPI: USB OTG HS ULPI clock
  * @param  NewState: new state of the specified peripheral clock.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_AHB1PeriphClockLPModeCmd(uint32_t RCC_AHB1Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_AHB1_LPMODE_PERIPH(RCC_AHB1Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    RCC->AHB1LPENR |= RCC_AHB1Periph;
  }
  else
  {
    RCC->AHB1LPENR &= ~RCC_AHB1Periph;
  }
}

/**
  * @brief  Enables or disables the AHB2 peripheral clock during Low Power (Sleep) mode.
  * @note   Peripheral clock gating in SLEEP mode can be used to further reduce
  *           power consumption.
  * @note   After wakeup from SLEEP mode, the peripheral clock is enabled again.
  * @note   By default, all peripheral clocks are enabled during SLEEP mode.
  * @param  RCC_AHBPeriph: specifies the AHB2 peripheral to gates its clock.
  *          This parameter can be any combination of the following values:
  *            @arg RCC_AHB2Periph_DCMI:   DCMI clock
  *            @arg RCC_AHB2Periph_CRYP:   CRYP clock
  *            @arg RCC_AHB2Periph_HASH:   HASH clock
  *            @arg RCC_AHB2Periph_RNG:    RNG clock
  *            @arg RCC_AHB2Periph_OTG_FS: USB OTG FS clock  
  * @param  NewState: new state of the specified peripheral clock.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_AHB2PeriphClockLPModeCmd(uint32_t RCC_AHB2Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_AHB2_PERIPH(RCC_AHB2Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    RCC->AHB2LPENR |= RCC_AHB2Periph;
  }
  else
  {
    RCC->AHB2LPENR &= ~RCC_AHB2Periph;
  }
}

/**
  * @brief  Enables or disables the AHB3 peripheral clock during Low Power (Sleep) mode.
  * @note   Peripheral clock gating in SLEEP mode can be used to further reduce
  *         power consumption.
  * @note   After wakeup from SLEEP mode, the peripheral clock is enabled again.
  * @note   By default, all peripheral clocks are enabled during SLEEP mode.
  * @param  RCC_AHBPeriph: specifies the AHB3 peripheral to gates its clock.
  *          This parameter must be: RCC_AHB3Periph_FSMC
1907
  *                                  or RCC_AHB3Periph_FMC (STM32F429x/439x devices) 
Damien's avatar
Damien committed
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
  * @param  NewState: new state of the specified peripheral clock.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_AHB3PeriphClockLPModeCmd(uint32_t RCC_AHB3Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_AHB3_PERIPH(RCC_AHB3Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    RCC->AHB3LPENR |= RCC_AHB3Periph;
  }
  else
  {
    RCC->AHB3LPENR &= ~RCC_AHB3Periph;
  }
}

/**
  * @brief  Enables or disables the APB1 peripheral clock during Low Power (Sleep) mode.
  * @note   Peripheral clock gating in SLEEP mode can be used to further reduce
  *         power consumption.
  * @note   After wakeup from SLEEP mode, the peripheral clock is enabled again.
  * @note   By default, all peripheral clocks are enabled during SLEEP mode.
  * @param  RCC_APB1Periph: specifies the APB1 peripheral to gates its clock.
  *          This parameter can be any combination of the following values:
  *            @arg RCC_APB1Periph_TIM2:   TIM2 clock
  *            @arg RCC_APB1Periph_TIM3:   TIM3 clock
  *            @arg RCC_APB1Periph_TIM4:   TIM4 clock
  *            @arg RCC_APB1Periph_TIM5:   TIM5 clock
  *            @arg RCC_APB1Periph_TIM6:   TIM6 clock
  *            @arg RCC_APB1Periph_TIM7:   TIM7 clock
  *            @arg RCC_APB1Periph_TIM12:  TIM12 clock
  *            @arg RCC_APB1Periph_TIM13:  TIM13 clock
  *            @arg RCC_APB1Periph_TIM14:  TIM14 clock
  *            @arg RCC_APB1Periph_WWDG:   WWDG clock
  *            @arg RCC_APB1Periph_SPI2:   SPI2 clock
  *            @arg RCC_APB1Periph_SPI3:   SPI3 clock
  *            @arg RCC_APB1Periph_USART2: USART2 clock
  *            @arg RCC_APB1Periph_USART3: USART3 clock
  *            @arg RCC_APB1Periph_UART4:  UART4 clock
  *            @arg RCC_APB1Periph_UART5:  UART5 clock
  *            @arg RCC_APB1Periph_I2C1:   I2C1 clock
  *            @arg RCC_APB1Periph_I2C2:   I2C2 clock
  *            @arg RCC_APB1Periph_I2C3:   I2C3 clock
  *            @arg RCC_APB1Periph_CAN1:   CAN1 clock
  *            @arg RCC_APB1Periph_CAN2:   CAN2 clock
  *            @arg RCC_APB1Periph_PWR:    PWR clock
  *            @arg RCC_APB1Periph_DAC:    DAC clock
  *            @arg RCC_APB1Periph_UART7:  UART7 clock
  *            @arg RCC_APB1Periph_UART8:  UART8 clock
  * @param  NewState: new state of the specified peripheral clock.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_APB1PeriphClockLPModeCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    RCC->APB1LPENR |= RCC_APB1Periph;
  }
  else
  {
    RCC->APB1LPENR &= ~RCC_APB1Periph;
  }
}

/**
  * @brief  Enables or disables the APB2 peripheral clock during Low Power (Sleep) mode.
  * @note   Peripheral clock gating in SLEEP mode can be used to further reduce
  *         power consumption.
  * @note   After wakeup from SLEEP mode, the peripheral clock is enabled again.
  * @note   By default, all peripheral clocks are enabled during SLEEP mode.
  * @param  RCC_APB2Periph: specifies the APB2 peripheral to gates its clock.
  *          This parameter can be any combination of the following values:
  *            @arg RCC_APB2Periph_TIM1:   TIM1 clock
  *            @arg RCC_APB2Periph_TIM8:   TIM8 clock
  *            @arg RCC_APB2Periph_USART1: USART1 clock
  *            @arg RCC_APB2Periph_USART6: USART6 clock
  *            @arg RCC_APB2Periph_ADC1:   ADC1 clock
  *            @arg RCC_APB2Periph_ADC2:   ADC2 clock
  *            @arg RCC_APB2Periph_ADC3:   ADC3 clock
  *            @arg RCC_APB2Periph_SDIO:   SDIO clock
  *            @arg RCC_APB2Periph_SPI1:   SPI1 clock
  *            @arg RCC_APB2Periph_SPI4:   SPI4 clock
  *            @arg RCC_APB2Periph_SYSCFG: SYSCFG clock
  *            @arg RCC_APB2Periph_TIM9:   TIM9 clock
  *            @arg RCC_APB2Periph_TIM10:  TIM10 clock
  *            @arg RCC_APB2Periph_TIM11:  TIM11 clock
  *            @arg RCC_APB2Periph_SPI5:   SPI5 clock
2002
2003
2004
  *            @arg RCC_APB2Periph_SPI6:   SPI6 clock
  *            @arg RCC_APB2Periph_SAI1:   SAI1 clock (STM32F42xxx/43xxx devices) 
  *            @arg RCC_APB2Periph_LTDC:   LTDC clock (STM32F429xx/439xx devices)   
Damien's avatar
Damien committed
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
  * @param  NewState: new state of the specified peripheral clock.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_APB2PeriphClockLPModeCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    RCC->APB2LPENR |= RCC_APB2Periph;
  }
  else
  {
    RCC->APB2LPENR &= ~RCC_APB2Periph;
  }
}

/**
  * @}
  */

/** @defgroup RCC_Group4 Interrupts and flags management functions
 *  @brief   Interrupts and flags management functions 
 *
@verbatim   
 ===============================================================================
                ##### Interrupts and flags management functions #####
 ===============================================================================  

@endverbatim
  * @{
  */

/**
  * @brief  Enables or disables the specified RCC interrupts.
  * @param  RCC_IT: specifies the RCC interrupt sources to be enabled or disabled.
  *          This parameter can be any combination of the following values:
  *            @arg RCC_IT_LSIRDY: LSI ready interrupt
  *            @arg RCC_IT_LSERDY: LSE ready interrupt
  *            @arg RCC_IT_HSIRDY: HSI ready interrupt
  *            @arg RCC_IT_HSERDY: HSE ready interrupt
  *            @arg RCC_IT_PLLRDY: main PLL ready interrupt
  *            @arg RCC_IT_PLLI2SRDY: PLLI2S ready interrupt
2050
  *            @arg RCC_IT_PLLSAIRDY: PLLSAI ready interrupt (only for STM32F42xxx/43xxx devices)
Damien's avatar
Damien committed
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
  * @param  NewState: new state of the specified RCC interrupts.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_ITConfig(uint8_t RCC_IT, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_IT(RCC_IT));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    /* Perform Byte access to RCC_CIR[14:8] bits to enable the selected interrupts */
    *(__IO uint8_t *) CIR_BYTE2_ADDRESS |= RCC_IT;
  }
  else
  {
    /* Perform Byte access to RCC_CIR[14:8] bits to disable the selected interrupts */
    *(__IO uint8_t *) CIR_BYTE2_ADDRESS &= (uint8_t)~RCC_IT;
  }
}

/**
  * @brief  Checks whether the specified RCC flag is set or not.
  * @param  RCC_FLAG: specifies the flag to check.
  *          This parameter can be one of the following values:
  *            @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready
  *            @arg RCC_FLAG_HSERDY: HSE oscillator clock ready
  *            @arg RCC_FLAG_PLLRDY: main PLL clock ready
  *            @arg RCC_FLAG_PLLI2SRDY: PLLI2S clock ready
2080
  *            @arg RCC_FLAG_PLLSAIRDY: PLLSAI clock ready (only for STM32F42xxx/43xxx devices)
Damien's avatar
Damien committed
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
  *            @arg RCC_FLAG_LSERDY: LSE oscillator clock ready
  *            @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready
  *            @arg RCC_FLAG_BORRST: POR/PDR or BOR reset
  *            @arg RCC_FLAG_PINRST: Pin reset
  *            @arg RCC_FLAG_PORRST: POR/PDR reset
  *            @arg RCC_FLAG_SFTRST: Software reset
  *            @arg RCC_FLAG_IWDGRST: Independent Watchdog reset
  *            @arg RCC_FLAG_WWDGRST: Window Watchdog reset
  *            @arg RCC_FLAG_LPWRRST: Low Power reset
  * @retval The new state of RCC_FLAG (SET or RESET).
  */
FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG)
{
  uint32_t tmp = 0;
  uint32_t statusreg = 0;
  FlagStatus bitstatus = RESET;

  /* Check the parameters */
  assert_param(IS_RCC_FLAG(RCC_FLAG));

  /* Get the RCC register index */
  tmp = RCC_FLAG >> 5;
  if (tmp == 1)               /* The flag to check is in CR register */
  {
    statusreg = RCC->CR;
  }
  else if (tmp == 2)          /* The flag to check is in BDCR register */
  {
    statusreg = RCC->BDCR;
  }
  else                       /* The flag to check is in CSR register */
  {
    statusreg = RCC->CSR;
  }

  /* Get the flag position */
  tmp = RCC_FLAG & FLAG_MASK;
  if ((statusreg & ((uint32_t)1 << tmp)) != (uint32_t)RESET)
  {
    bitstatus = SET;
  }
  else
  {
    bitstatus = RESET;
  }
  /* Return the flag status */
  return bitstatus;
}

/**
  * @brief  Clears the RCC reset flags.
  *         The reset flags are: RCC_FLAG_PINRST, RCC_FLAG_PORRST,  RCC_FLAG_SFTRST,
  *         RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST, RCC_FLAG_LPWRRST
  * @param  None
  * @retval None
  */
void RCC_ClearFlag(void)
{
  /* Set RMVF bit to clear the reset flags */
  RCC->CSR |= RCC_CSR_RMVF;
}

/**
  * @brief  Checks whether the specified RCC interrupt has occurred or not.
  * @param  RCC_IT: specifies the RCC interrupt source to check.
  *          This parameter can be one of the following values:
  *            @arg RCC_IT_LSIRDY: LSI ready interrupt
  *            @arg RCC_IT_LSERDY: LSE ready interrupt
  *            @arg RCC_IT_HSIRDY: HSI ready interrupt
  *            @arg RCC_IT_HSERDY: HSE ready interrupt
  *            @arg RCC_IT_PLLRDY: main PLL ready interrupt
2152
2153
  *            @arg RCC_IT_PLLI2SRDY: PLLI2S ready interrupt           
  *            @arg RCC_IT_PLLSAIRDY: PLLSAI clock ready interrupt (only for STM32F42xxx/43xxx devices)    
Damien's avatar
Damien committed
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
  *            @arg RCC_IT_CSS: Clock Security System interrupt
  * @retval The new state of RCC_IT (SET or RESET).
  */
ITStatus RCC_GetITStatus(uint8_t RCC_IT)
{
  ITStatus bitstatus = RESET;

  /* Check the parameters */
  assert_param(IS_RCC_GET_IT(RCC_IT));

  /* Check the status of the specified RCC interrupt */
  if ((RCC->CIR & RCC_IT) != (uint32_t)RESET)
  {
    bitstatus = SET;
  }
  else
  {
    bitstatus = RESET;
  }
  /* Return the RCC_IT status */
  return  bitstatus;
}

/**
  * @brief  Clears the RCC's interrupt pending bits.
  * @param  RCC_IT: specifies the interrupt pending bit to clear.
  *          This parameter can be any combination of the following values:
  *            @arg RCC_IT_LSIRDY: LSI ready interrupt
  *            @arg RCC_IT_LSERDY: LSE ready interrupt
  *            @arg RCC_IT_HSIRDY: HSI ready interrupt
  *            @arg RCC_IT_HSERDY: HSE ready interrupt
  *            @arg RCC_IT_PLLRDY: main PLL ready interrupt
  *            @arg RCC_IT_PLLI2SRDY: PLLI2S ready interrupt  
2187
  *            @arg RCC_IT_PLLSAIRDY: PLLSAI ready interrupt (only for STM32F42xxx/43xxx devices)   
Damien's avatar
Damien committed
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
  *            @arg RCC_IT_CSS: Clock Security System interrupt
  * @retval None
  */
void RCC_ClearITPendingBit(uint8_t RCC_IT)
{
  /* Check the parameters */
  assert_param(IS_RCC_CLEAR_IT(RCC_IT));

  /* Perform Byte access to RCC_CIR[23:16] bits to clear the selected interrupt
     pending bits */
  *(__IO uint8_t *) CIR_BYTE3_ADDRESS = RCC_IT;
}

/**
  * @}
  */ 

/**
  * @}
  */ 

/**
  * @}
  */ 

/**
  * @}
  */ 

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/