timer.c 56.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27
28
29
30
#include <stdint.h>
#include <stdio.h>
#include <string.h>

31
#include STM32_HAL_H
32
33
34
#include "usbd_cdc_msc_hid.h"
#include "usbd_cdc_interface.h"

35
36
37
#include "py/nlr.h"
#include "py/runtime.h"
#include "py/gc.h"
38
39
#include "timer.h"
#include "servo.h"
40
#include "pin.h"
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
/// \moduleref pyb
/// \class Timer - periodically call a function
///
/// Timers can be used for a great variety of tasks.  At the moment, only
/// the simplest case is implemented: that of calling a function periodically.
///
/// Each timer consists of a counter that counts up at a certain rate.  The rate
/// at which it counts is the peripheral clock frequency (in Hz) divided by the
/// timer prescaler.  When the counter reaches the timer period it triggers an
/// event, and the counter resets back to zero.  By using the callback method,
/// the timer event can call a Python function.
///
/// Example usage to toggle an LED at a fixed frequency:
///
///     tim = pyb.Timer(4)              # create a timer object using timer 4
///     tim.init(freq=2)                # trigger at 2Hz
///     tim.callback(lambda t:pyb.LED(1).toggle())
///
/// Further examples:
///
///     tim = pyb.Timer(4, freq=100)    # freq in Hz
63
///     tim = pyb.Timer(4, prescaler=0, period=99)
64
65
///     tim.counter()                   # get counter (can also set)
///     tim.prescaler(2)                # set prescaler (can also get)
66
///     tim.period(199)                 # set period (can also get)
67
68
69
70
71
72
73
///     tim.callback(lambda t: ...)     # set callback for update interrupt (t=tim instance)
///     tim.callback(None)              # clear callback
///
/// *Note:* Timer 3 is reserved for internal use.  Timer 5 controls
/// the servo driver, and Timer 6 is used for timed ADC/DAC reading/writing.
/// It is recommended to use the other timers in your programs.

74
75
76
77
// The timers can be used by multiple drivers, and need a common point for
// the interrupts to be dispatched, so they are all collected here.
//
// TIM3:
78
//  - flash storage controller, to flush the cache
79
80
81
82
83
//  - USB CDC interface, interval, to check for new data
//  - LED 4, PWM to set the LED intensity
//
// TIM5:
//  - servo controller, PWM
84
85
86
87
//
// TIM6:
//  - ADC, DAC for read_timed and write_timed

88
89
90
91
92
93
94
95
96
97
typedef enum {
    CHANNEL_MODE_PWM_NORMAL,
    CHANNEL_MODE_PWM_INVERTED,
    CHANNEL_MODE_OC_TIMING,
    CHANNEL_MODE_OC_ACTIVE,
    CHANNEL_MODE_OC_INACTIVE,
    CHANNEL_MODE_OC_TOGGLE,
    CHANNEL_MODE_OC_FORCED_ACTIVE,
    CHANNEL_MODE_OC_FORCED_INACTIVE,
    CHANNEL_MODE_IC,
98
99
100
    CHANNEL_MODE_ENC_A,
    CHANNEL_MODE_ENC_B,
    CHANNEL_MODE_ENC_AB,
101
102
103
104
105
} pyb_channel_mode;

STATIC const struct {
    qstr        name;
    uint32_t    oc_mode;
106
} channel_mode_info[] = {
107
108
109
110
111
112
113
114
115
    { MP_QSTR_PWM,                TIM_OCMODE_PWM1 },
    { MP_QSTR_PWM_INVERTED,       TIM_OCMODE_PWM2 },
    { MP_QSTR_OC_TIMING,          TIM_OCMODE_TIMING },
    { MP_QSTR_OC_ACTIVE,          TIM_OCMODE_ACTIVE },
    { MP_QSTR_OC_INACTIVE,        TIM_OCMODE_INACTIVE },
    { MP_QSTR_OC_TOGGLE,          TIM_OCMODE_TOGGLE },
    { MP_QSTR_OC_FORCED_ACTIVE,   TIM_OCMODE_FORCED_ACTIVE },
    { MP_QSTR_OC_FORCED_INACTIVE, TIM_OCMODE_FORCED_INACTIVE },
    { MP_QSTR_IC,                 0 },
116
117
118
    { MP_QSTR_ENC_A,              TIM_ENCODERMODE_TI1 },
    { MP_QSTR_ENC_B,              TIM_ENCODERMODE_TI2 },
    { MP_QSTR_ENC_AB,             TIM_ENCODERMODE_TI12 },
119
120
121
122
123
124
125
126
127
128
129
};

typedef struct _pyb_timer_channel_obj_t {
    mp_obj_base_t base;
    struct _pyb_timer_obj_t *timer;
    uint8_t channel;
    uint8_t mode;
    mp_obj_t callback;
    struct _pyb_timer_channel_obj_t *next;
} pyb_timer_channel_obj_t;

130
131
typedef struct _pyb_timer_obj_t {
    mp_obj_base_t base;
132
133
    uint8_t tim_id;
    uint8_t is_32bit;
134
135
136
    mp_obj_t callback;
    TIM_HandleTypeDef tim;
    IRQn_Type irqn;
137
    pyb_timer_channel_obj_t *channel;
138
} pyb_timer_obj_t;
139

140
141
142
// The following yields TIM_IT_UPDATE when channel is zero and
// TIM_IT_CC1..TIM_IT_CC4 when channel is 1..4
#define TIMER_IRQ_MASK(channel) (1 << (channel))
143
#define TIMER_CNT_MASK(self)    ((self)->is_32bit ? 0xffffffff : 0xffff)
144
145
#define TIMER_CHANNEL(self)     ((((self)->channel) - 1) << 2)

146
147
TIM_HandleTypeDef TIM3_Handle;
TIM_HandleTypeDef TIM5_Handle;
148
TIM_HandleTypeDef TIM6_Handle;
149

150
// Used to divide down TIM3 and periodically call the flash storage IRQ
151
STATIC uint32_t tim3_counter = 0;
152

153
#define PYB_TIMER_OBJ_ALL_NUM MP_ARRAY_SIZE(MP_STATE_PORT(pyb_timer_obj_all))
154

155
STATIC uint32_t timer_get_source_freq(uint32_t tim_id);
156
157
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in);
STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback);
158
STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback);
159

160
161
162
void timer_init0(void) {
    tim3_counter = 0;
    for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
163
        MP_STATE_PORT(pyb_timer_obj_all)[i] = NULL;
164
165
166
    }
}

167
168
169
// unregister all interrupt sources
void timer_deinit(void) {
    for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
170
        pyb_timer_obj_t *tim = MP_STATE_PORT(pyb_timer_obj_all)[i];
171
172
173
174
175
176
        if (tim != NULL) {
            pyb_timer_deinit(tim);
        }
    }
}

177
178
179
180
181
182
// TIM3 is set-up for the USB CDC interface
void timer_tim3_init(void) {
    // set up the timer for USBD CDC
    __TIM3_CLK_ENABLE();

    TIM3_Handle.Instance = TIM3;
183
    TIM3_Handle.Init.Period = (USBD_CDC_POLLING_INTERVAL*1000) - 1; // TIM3 fires every USBD_CDC_POLLING_INTERVAL ms
184
    TIM3_Handle.Init.Prescaler = timer_get_source_freq(3) / 1000000 - 1; // TIM3 runs at 1MHz
185
    TIM3_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    TIM3_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
    HAL_TIM_Base_Init(&TIM3_Handle);

    HAL_NVIC_SetPriority(TIM3_IRQn, 6, 0);
    HAL_NVIC_EnableIRQ(TIM3_IRQn);

    if (HAL_TIM_Base_Start(&TIM3_Handle) != HAL_OK) {
        /* Starting Error */
    }
}

/* unused
void timer_tim3_deinit(void) {
    // reset TIM3 timer
    __TIM3_FORCE_RESET();
    __TIM3_RELEASE_RESET();
}
*/

// TIM5 is set-up for the servo controller
206
// This function inits but does not start the timer
207
208
209
210
211
212
213
214
215
216
void timer_tim5_init(void) {
    // TIM5 clock enable
    __TIM5_CLK_ENABLE();

    // set up and enable interrupt
    HAL_NVIC_SetPriority(TIM5_IRQn, 6, 0);
    HAL_NVIC_EnableIRQ(TIM5_IRQn);

    // PWM clock configuration
    TIM5_Handle.Instance = TIM5;
217
    TIM5_Handle.Init.Period = 2000 - 1; // timer cycles at 50Hz
218
    TIM5_Handle.Init.Prescaler = (timer_get_source_freq(5) / 100000) - 1; // timer runs at 100kHz
219
    TIM5_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
220
    TIM5_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
221

222
223
224
    HAL_TIM_PWM_Init(&TIM5_Handle);
}

225
#if defined(TIM6)
226
227
228
// Init TIM6 with a counter-overflow at the given frequency (given in Hz)
// TIM6 is used by the DAC and ADC for auto sampling at a given frequency
// This function inits but does not start the timer
229
TIM_HandleTypeDef *timer_tim6_init(uint freq) {
230
231
232
233
234
    // TIM6 clock enable
    __TIM6_CLK_ENABLE();

    // Timer runs at SystemCoreClock / 2
    // Compute the prescaler value so TIM6 triggers at freq-Hz
235
    uint32_t period = MAX(1, timer_get_source_freq(6) / freq);
236
237
238
239
240
241
242
243
244
245
    uint32_t prescaler = 1;
    while (period > 0xffff) {
        period >>= 1;
        prescaler <<= 1;
    }

    // Time base clock configuration
    TIM6_Handle.Instance = TIM6;
    TIM6_Handle.Init.Period = period - 1;
    TIM6_Handle.Init.Prescaler = prescaler - 1;
246
    TIM6_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // unused for TIM6
247
248
    TIM6_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; // unused for TIM6
    HAL_TIM_Base_Init(&TIM6_Handle);
249
250

    return &TIM6_Handle;
251
}
252
#endif
253

254
255
256
257
// Interrupt dispatch
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
    if (htim == &TIM3_Handle) {
        USBD_CDC_HAL_TIM_PeriodElapsedCallback();
258
259
260
261
262
263
264

        // Periodically raise a flash IRQ for the flash storage controller
        if (tim3_counter++ >= 500 / USBD_CDC_POLLING_INTERVAL) {
            tim3_counter = 0;
            NVIC->STIR = FLASH_IRQn;
        }

265
266
267
268
269
    } else if (htim == &TIM5_Handle) {
        servo_timer_irq_callback();
    }
}

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
// Get the frequency (in Hz) of the source clock for the given timer.
// On STM32F405/407/415/417 there are 2 cases for how the clock freq is set.
// If the APB prescaler is 1, then the timer clock is equal to its respective
// APB clock.  Otherwise (APB prescaler > 1) the timer clock is twice its
// respective APB clock.  See DM00031020 Rev 4, page 115.
STATIC uint32_t timer_get_source_freq(uint32_t tim_id) {
    uint32_t source;
    if (tim_id == 1 || (8 <= tim_id && tim_id <= 11)) {
        // TIM{1,8,9,10,11} are on APB2
        source = HAL_RCC_GetPCLK2Freq();
        if ((uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3) != RCC_HCLK_DIV1) {
            source *= 2;
        }
    } else {
        // TIM{2,3,4,5,6,7,12,13,14} are on APB1
        source = HAL_RCC_GetPCLK1Freq();
        if ((uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1) != RCC_HCLK_DIV1) {
            source *= 2;
        }
    }
    return source;
}

293
294
295
/******************************************************************************/
/* Micro Python bindings                                                      */

296
297
STATIC const mp_obj_type_t pyb_timer_channel_type;

Dave Hylands's avatar
Dave Hylands committed
298
299
300
301
// This is the largest value that we can multiply by 100 and have the result
// fit in a uint32_t.
#define MAX_PERIOD_DIV_100  42949672

302
303
304
305
306
307
308
309
310
311
312
313
// computes prescaler and period so TIM triggers at freq-Hz
STATIC uint32_t compute_prescaler_period_from_freq(pyb_timer_obj_t *self, mp_obj_t freq_in, uint32_t *period_out) {
    uint32_t source_freq = timer_get_source_freq(self->tim_id);
    uint32_t prescaler = 1;
    uint32_t period;
    if (0) {
    #if MICROPY_PY_BUILTINS_FLOAT
    } else if (MP_OBJ_IS_TYPE(freq_in, &mp_type_float)) {
        float freq = mp_obj_get_float(freq_in);
        if (freq <= 0) {
            goto bad_freq;
        }
314
315
316
317
318
        while (freq < 1 && prescaler < 6553) {
            prescaler *= 10;
            freq *= 10;
        }
        period = (float)source_freq / freq;
319
320
321
322
323
324
325
326
    #endif
    } else {
        mp_int_t freq = mp_obj_get_int(freq_in);
        if (freq <= 0) {
            goto bad_freq;
            bad_freq:
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "must have positive freq"));
        }
327
        period = source_freq / freq;
328
    }
329
    period = MAX(1, period);
330
    while (period > TIMER_CNT_MASK(self)) {
331
332
333
334
335
336
337
338
339
340
341
342
        // if we can divide exactly, do that first
        if (period % 5 == 0) {
            prescaler *= 5;
            period /= 5;
        } else if (period % 3 == 0) {
            prescaler *= 3;
            period /= 3;
        } else {
            // may not divide exactly, but loses minimal precision
            prescaler <<= 1;
            period >>= 1;
        }
343
344
345
346
347
    }
    *period_out = (period - 1) & TIMER_CNT_MASK(self);
    return (prescaler - 1) & 0xffff;
}

Dave Hylands's avatar
Dave Hylands committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
// Helper function for determining the period used for calculating percent
STATIC uint32_t compute_period(pyb_timer_obj_t *self) {
    // In center mode,  compare == period corresponds to 100%
    // In edge mode, compare == (period + 1) corresponds to 100%
    uint32_t period = (__HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self));
    if (period != 0xffffffff) {
        if (self->tim.Init.CounterMode == TIM_COUNTERMODE_UP ||
            self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN) {
            // Edge mode
            period++;
        }
    }
    return period;
}

363
// Helper function to compute PWM value from timer period and percent value.
Dave Hylands's avatar
Dave Hylands committed
364
365
366
// 'percent_in' can be an int or a float between 0 and 100 (out of range
// values are clamped).
STATIC uint32_t compute_pwm_value_from_percent(uint32_t period, mp_obj_t percent_in) {
367
368
369
    uint32_t cmp;
    if (0) {
    #if MICROPY_PY_BUILTINS_FLOAT
Dave Hylands's avatar
Dave Hylands committed
370
371
372
373
374
375
376
377
378
    } else if (MP_OBJ_IS_TYPE(percent_in, &mp_type_float)) {
        float percent = mp_obj_get_float(percent_in);
        if (percent <= 0.0) {
            cmp = 0;
        } else if (percent >= 100.0) {
            cmp = period;
        } else {
            cmp = percent / 100.0 * ((float)period);
        }
379
380
381
382
383
    #endif
    } else {
        // For integer arithmetic, if period is large and 100*period will
        // overflow, then divide period before multiplying by cmp.  Otherwise
        // do it the other way round to retain precision.
Dave Hylands's avatar
Dave Hylands committed
384
385
386
387
388
389
390
        mp_int_t percent = mp_obj_get_int(percent_in);
        if (percent <= 0) {
            cmp = 0;
        } else if (percent >= 100) {
            cmp = period;
        } else if (period > MAX_PERIOD_DIV_100) {
            cmp = (uint32_t)percent * (period / 100);
391
        } else {
Dave Hylands's avatar
Dave Hylands committed
392
            cmp = ((uint32_t)percent * period) / 100;
393
394
395
396
397
        }
    }
    return cmp;
}

Dave Hylands's avatar
Dave Hylands committed
398
399
400
401
// Helper function to compute percentage from timer perion and PWM value.
STATIC mp_obj_t compute_percent_from_pwm_value(uint32_t period, uint32_t cmp) {
    #if MICROPY_PY_BUILTINS_FLOAT
    float percent;
402
    if (cmp >= period) {
Dave Hylands's avatar
Dave Hylands committed
403
404
405
406
407
408
409
        percent = 100.0;
    } else {
        percent = (float)cmp * 100.0 / ((float)period);
    }
    return mp_obj_new_float(percent);
    #else
    mp_int_t percent;
410
    if (cmp >= period) {
Dave Hylands's avatar
Dave Hylands committed
411
        percent = 100;
412
413
    } else if (cmp > MAX_PERIOD_DIV_100) {
        percent = cmp / (period / 100);
Dave Hylands's avatar
Dave Hylands committed
414
415
416
417
418
419
420
    } else {
        percent = cmp * 100 / period;
    }
    return mp_obj_new_int(percent);
    #endif
}

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
// Computes the 8-bit value for the DTG field in the BDTR register.
//
// 1 tick = 1 count of the timer's clock (source_freq) divided by div.
// 0-128 ticks in inrements of 1
// 128-256 ticks in increments of 2
// 256-512 ticks in increments of 8
// 512-1008 ticks in increments of 16
STATIC uint32_t compute_dtg_from_ticks(mp_int_t ticks) {
    if (ticks <= 0) {
        return 0;
    }
    if (ticks < 128) {
        return ticks;
    }
    if (ticks < 256) {
        return 0x80 | ((ticks - 128) / 2);
    }
    if (ticks < 512) {
        return 0xC0 | ((ticks - 256) / 8);
    }
    if (ticks < 1008) {
        return 0xE0 | ((ticks - 512) / 16);
    }
    return 0xFF;
}

// Given the 8-bit value stored in the DTG field of the BDTR register, compute
// the number of ticks.
STATIC mp_int_t compute_ticks_from_dtg(uint32_t dtg) {
    if ((dtg & 0x80) == 0) {
        return dtg & 0x7F;
    }
    if ((dtg & 0xC0) == 0x80) {
        return 128 + ((dtg & 0x3F) * 2);
    }
    if ((dtg & 0xE0) == 0xC0) {
        return 256 + ((dtg & 0x1F) * 8);
    }
    return 512 + ((dtg & 0x1F) * 16);
}

STATIC void config_deadtime(pyb_timer_obj_t *self, mp_int_t ticks) {
    TIM_BreakDeadTimeConfigTypeDef deadTimeConfig;
    deadTimeConfig.OffStateRunMode  = TIM_OSSR_DISABLE;
    deadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
    deadTimeConfig.LockLevel        = TIM_LOCKLEVEL_OFF;
    deadTimeConfig.DeadTime         = compute_dtg_from_ticks(ticks);
    deadTimeConfig.BreakState       = TIM_BREAK_DISABLE;
    deadTimeConfig.BreakPolarity    = TIM_BREAKPOLARITY_LOW;
    deadTimeConfig.AutomaticOutput  = TIM_AUTOMATICOUTPUT_DISABLE;
    HAL_TIMEx_ConfigBreakDeadTime(&self->tim, &deadTimeConfig);
}

474
TIM_HandleTypeDef *pyb_timer_get_handle(mp_obj_t timer) {
475
476
477
    if (mp_obj_get_type(timer) != &pyb_timer_type) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "need a Timer object"));
    }
478
479
480
481
    pyb_timer_obj_t *self = timer;
    return &self->tim;
}

482
STATIC void pyb_timer_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
483
484
485
    pyb_timer_obj_t *self = self_in;

    if (self->tim.State == HAL_TIM_STATE_RESET) {
486
        mp_printf(print, "Timer(%u)", self->tim_id);
487
    } else {
488
489
490
491
        uint32_t prescaler = self->tim.Instance->PSC & 0xffff;
        uint32_t period = __HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self);
        // for efficiency, we compute and print freq as an int (not a float)
        uint32_t freq = timer_get_source_freq(self->tim_id) / ((prescaler + 1) * (period + 1));
492
        mp_printf(print, "Timer(%u, freq=%u, prescaler=%u, period=%u, mode=%s, div=%u",
493
            self->tim_id,
494
495
496
            freq,
            prescaler,
            period,
497
498
499
500
            self->tim.Init.CounterMode == TIM_COUNTERMODE_UP     ? "UP" :
            self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN   ? "DOWN" : "CENTER",
            self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV4 ? 4 :
            self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV2 ? 2 : 1);
501
        if (IS_TIM_ADVANCED_INSTANCE(self->tim.Instance)) {
502
503
            mp_printf(print, ", deadtime=%u",
                compute_ticks_from_dtg(self->tim.Instance->BDTR & TIM_BDTR_DTG));
504
        }
505
        mp_print_str(print, ")");
506
507
    }
}
508

509
510
511
512
513
/// \method init(*, freq, prescaler, period)
/// Initialise the timer.  Initialisation must be either by frequency (in Hz)
/// or by prescaler and period:
///
///     tim.init(freq=100)                  # set the timer to trigger at 100Hz
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
///     tim.init(prescaler=83, period=999)  # set the prescaler and period directly
///
/// Keyword arguments:
///
///   - `freq` - specifies the periodic frequency of the timer. You migh also
///              view this as the frequency with which the timer goes through
///              one complete cycle.
///
///   - `prescaler` [0-0xffff] - specifies the value to be loaded into the
///                 timer's Prescaler Register (PSC). The timer clock source is divided by
///     (`prescaler + 1`) to arrive at the timer clock. Timers 2-7 and 12-14
///     have a clock source of 84 MHz (pyb.freq()[2] * 2), and Timers 1, and 8-11
///     have a clock source of 168 MHz (pyb.freq()[3] * 2).
///
///   - `period` [0-0xffff] for timers 1, 3, 4, and 6-15. [0-0x3fffffff] for timers 2 & 5.
///              Specifies the value to be loaded into the timer's AutoReload
///     Register (ARR). This determines the period of the timer (i.e. when the
///     counter cycles). The timer counter will roll-over after `period + 1`
///     timer clock cycles.
///
///   - `mode` can be one of:
///     - `Timer.UP` - configures the timer to count from 0 to ARR (default)
///     - `Timer.DOWN` - configures the timer to count from ARR down to 0.
///     - `Timer.CENTER` - confgures the timer to count from 0 to ARR and
///       then back down to 0.
///
///   - `div` can be one of 1, 2, or 4. Divides the timer clock to determine
///       the sampling clock used by the digital filters.
///
///   - `callback` - as per Timer.callback()
///
545
546
547
548
549
550
551
552
///   - `deadtime` - specifies the amount of "dead" or inactive time between
///       transitions on complimentary channels (both channels will be inactive)
///       for this time). `deadtime` may be an integer between 0 and 1008, with
///       the following restrictions: 0-128 in steps of 1. 128-256 in steps of
///       2, 256-512 in steps of 8, and 512-1008 in steps of 16. `deadime`
///       measures ticks of `source_freq` divided by `div` clock ticks.
///       `deadtime` is only available on timers 1 and 8.
///
553
///  You must either specify freq or both of period and prescaler.
554
555
556
557
558
559
560
561
STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_freq,         MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_prescaler,    MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
        { MP_QSTR_period,       MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
        { MP_QSTR_mode,         MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = TIM_COUNTERMODE_UP} },
        { MP_QSTR_div,          MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
        { MP_QSTR_callback,     MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
562
        { MP_QSTR_deadtime,     MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
563
    };
564

565
    // parse args
566
567
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
568

569
570
    // set the TIM configuration values
    TIM_Base_InitTypeDef *init = &self->tim.Init;
571

572
573
574
575
    if (args[0].u_obj != mp_const_none) {
        // set prescaler and period from desired frequency
        init->Prescaler = compute_prescaler_period_from_freq(self, args[0].u_obj, &init->Period);
    } else if (args[1].u_int != 0xffffffff && args[2].u_int != 0xffffffff) {
576
        // set prescaler and period directly
577
578
        init->Prescaler = args[1].u_int;
        init->Period = args[2].u_int;
579
580
581
582
    } else {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "must specify either freq, or prescaler and period"));
    }

583
584
585
586
    init->CounterMode = args[3].u_int;
    if (!IS_TIM_COUNTER_MODE(init->CounterMode)) {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid mode (%d)", init->CounterMode));
    }
587

588
589
    init->ClockDivision = args[4].u_int == 2 ? TIM_CLOCKDIVISION_DIV2 :
                          args[4].u_int == 4 ? TIM_CLOCKDIVISION_DIV4 :
590
                                               TIM_CLOCKDIVISION_DIV1;
591

592
    init->RepetitionCounter = 0;
593

594
    // enable TIM clock
595
596
597
598
599
600
    switch (self->tim_id) {
        case 1: __TIM1_CLK_ENABLE(); break;
        case 2: __TIM2_CLK_ENABLE(); break;
        case 3: __TIM3_CLK_ENABLE(); break;
        case 4: __TIM4_CLK_ENABLE(); break;
        case 5: __TIM5_CLK_ENABLE(); break;
601
        #if defined(TIM6)
602
        case 6: __TIM6_CLK_ENABLE(); break;
603
604
        #endif
        #if defined(TIM7)
605
        case 7: __TIM7_CLK_ENABLE(); break;
606
607
        #endif
        #if defined(TIM8)
608
        case 8: __TIM8_CLK_ENABLE(); break;
609
        #endif
610
611
612
        case 9: __TIM9_CLK_ENABLE(); break;
        case 10: __TIM10_CLK_ENABLE(); break;
        case 11: __TIM11_CLK_ENABLE(); break;
613
        #if defined(TIM12)
614
        case 12: __TIM12_CLK_ENABLE(); break;
615
616
        #endif
        #if defined(TIM13)
617
        case 13: __TIM13_CLK_ENABLE(); break;
618
619
        #endif
        #if defined(TIM14)
620
        case 14: __TIM14_CLK_ENABLE(); break;
621
        #endif
622
    }
623
624

    // set IRQ priority (if not a special timer)
625
626
627
    if (self->tim_id != 3 && self->tim_id != 5) {
        HAL_NVIC_SetPriority(self->irqn, 0xe, 0xe); // next-to lowest priority
    }
628

629
    // init TIM
630
    HAL_TIM_Base_Init(&self->tim);
631
632
633
    if (IS_TIM_ADVANCED_INSTANCE(self->tim.Instance)) {
        config_deadtime(self, args[6].u_int);
    }
634
    if (args[5].u_obj == mp_const_none) {
635
636
        HAL_TIM_Base_Start(&self->tim);
    } else {
637
        pyb_timer_callback(self, args[5].u_obj);
638
639
    }

640
641
642
    return mp_const_none;
}

643
644
645
646
/// \classmethod \constructor(id, ...)
/// Construct a new timer object of the given id.  If additional
/// arguments are given, then the timer is initialised by `init(...)`.
/// `id` can be 1 to 14, excluding 3.
647
STATIC mp_obj_t pyb_timer_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
648
649
650
651
652
    // check arguments
    mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);

    // create new Timer object
    pyb_timer_obj_t *tim = m_new_obj(pyb_timer_obj_t);
653
654
    memset(tim, 0, sizeof(*tim));

655
656
    tim->base.type = &pyb_timer_type;
    tim->callback = mp_const_none;
657
    tim->channel = NULL;
658
659
660

    // get TIM number
    tim->tim_id = mp_obj_get_int(args[0]);
661
    tim->is_32bit = false;
662
663
664

    switch (tim->tim_id) {
        case 1: tim->tim.Instance = TIM1; tim->irqn = TIM1_UP_TIM10_IRQn; break;
665
        case 2: tim->tim.Instance = TIM2; tim->irqn = TIM2_IRQn; tim->is_32bit = true; break;
666
667
        case 3: nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "Timer 3 is for internal use only")); // TIM3 used for low-level stuff; go via regs if necessary
        case 4: tim->tim.Instance = TIM4; tim->irqn = TIM4_IRQn; break;
668
        case 5: tim->tim.Instance = TIM5; tim->irqn = TIM5_IRQn; tim->is_32bit = true; break;
669
        #if defined(TIM6)
670
        case 6: tim->tim.Instance = TIM6; tim->irqn = TIM6_DAC_IRQn; break;
671
672
        #endif
        #if defined(TIM7)
673
        case 7: tim->tim.Instance = TIM7; tim->irqn = TIM7_IRQn; break;
674
675
        #endif
        #if defined(TIM8)
676
        case 8: tim->tim.Instance = TIM8; tim->irqn = TIM8_UP_TIM13_IRQn; break;
677
        #endif
678
679
680
        case 9: tim->tim.Instance = TIM9; tim->irqn = TIM1_BRK_TIM9_IRQn; break;
        case 10: tim->tim.Instance = TIM10; tim->irqn = TIM1_UP_TIM10_IRQn; break;
        case 11: tim->tim.Instance = TIM11; tim->irqn = TIM1_TRG_COM_TIM11_IRQn; break;
681
        #if defined(TIM12)
682
        case 12: tim->tim.Instance = TIM12; tim->irqn = TIM8_BRK_TIM12_IRQn; break;
683
684
        #endif
        #if defined(TIM13)
685
        case 13: tim->tim.Instance = TIM13; tim->irqn = TIM8_UP_TIM13_IRQn; break;
686
687
        #endif
        #if defined(TIM14)
688
        case 14: tim->tim.Instance = TIM14; tim->irqn = TIM8_TRG_COM_TIM14_IRQn; break;
689
        #endif
690
691
692
        default: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Timer %d does not exist", tim->tim_id));
    }

693
694
695
696
697
    // set the global variable for interrupt callbacks
    if (tim->tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) {
        MP_STATE_PORT(pyb_timer_obj_all)[tim->tim_id - 1] = tim;
    }

698
699
700
701
702
703
704
705
    if (n_args > 1 || n_kw > 0) {
        // start the peripheral
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
        pyb_timer_init_helper(tim, n_args - 1, args + 1, &kw_args);
    }

    return (mp_obj_t)tim;
706
707
}

708
STATIC mp_obj_t pyb_timer_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
709
    return pyb_timer_init_helper(args[0], n_args - 1, args + 1, kw_args);
710
}
711
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_init_obj, 1, pyb_timer_init);
712

713
// timer.deinit()
714
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in) {
715
716
    pyb_timer_obj_t *self = self_in;

717
    // Disable the base interrupt
718
719
    pyb_timer_callback(self_in, mp_const_none);

720
721
722
723
724
725
726
727
728
729
730
    pyb_timer_channel_obj_t *chan = self->channel;
    self->channel = NULL;

    // Disable the channel interrupts
    while (chan != NULL) {
        pyb_timer_channel_callback(chan, mp_const_none);
        pyb_timer_channel_obj_t *prev_chan = chan;
        chan = chan->next;
        prev_chan->next = NULL;
    }

731
    self->tim.State = HAL_TIM_STATE_RESET;
732
733
734
    self->tim.Instance->CCER = 0x0000; // disable all capture/compare outputs
    self->tim.Instance->CR1 = 0x0000; // disable the timer and reset its state

735
736
737
738
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_deinit_obj, pyb_timer_deinit);

739
740
/// \method channel(channel, mode, ...)
///
741
742
/// If only a channel number is passed, then a previously initialized channel
/// object is returned (or `None` if there is no previous channel).
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
///
/// Othwerwise, a TimerChannel object is initialized and returned.
///
/// Each channel can be configured to perform pwm, output compare, or
/// input capture. All channels share the same underlying timer, which means
/// that they share the same timer clock.
///
/// Keyword arguments:
///
///   - `mode` can be one of:
///     - `Timer.PWM` - configure the timer in PWM mode (active high).
///     - `Timer.PWM_INVERTED` - configure the timer in PWM mode (active low).
///     - `Timer.OC_TIMING` - indicates that no pin is driven.
///     - `Timer.OC_ACTIVE` - the pin will be made active when a compare
///        match occurs (active is determined by polarity)
///     - `Timer.OC_INACTIVE` - the pin will be made inactive when a compare
///        match occurs.
///     - `Timer.OC_TOGGLE` - the pin will be toggled when an compare match occurs.
///     - `Timer.OC_FORCED_ACTIVE` - the pin is forced active (compare match is ignored).
///     - `Timer.OC_FORCED_INACTIVE` - the pin is forced inactive (compare match is ignored).
///     - `Timer.IC` - configure the timer in Input Capture mode.
764
765
766
///     - `Timer.ENC_A` --- configure the timer in Encoder mode. The counter only changes when CH1 changes.
///     - `Timer.ENC_B` --- configure the timer in Encoder mode. The counter only changes when CH2 changes.
///     - `Timer.ENC_AB` --- configure the timer in Encoder mode. The counter changes when CH1 or CH2 changes.
767
768
769
770
771
772
773
774
775
776
///
///   - `callback` - as per TimerChannel.callback()
///
///   - `pin` None (the default) or a Pin object. If specified (and not None)
///           this will cause the alternate function of the the indicated pin
///      to be configured for this timer channel. An error will be raised if
///      the pin doesn't support any alternate functions for this timer channel.
///
/// Keyword arguments for Timer.PWM modes:
///
777
///   - `pulse_width` - determines the initial pulse width value to use.
778
///   - `pulse_width_percent` - determines the initial pulse width percentage to use.
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
///
/// Keyword arguments for Timer.OC modes:
///
///   - `compare` - determines the initial value of the compare register.
///
///   - `polarity` can be one of:
///     - `Timer.HIGH` - output is active high
///     - `Timer.LOW` - output is acive low
///
/// Optional keyword arguments for Timer.IC modes:
///
///   - `polarity` can be one of:
///     - `Timer.RISING` - captures on rising edge.
///     - `Timer.FALLING` - captures on falling edge.
///     - `Timer.BOTH` - captures on both edges.
///
795
796
797
///   Note that capture only works on the primary channel, and not on the
///   complimentary channels.
///
798
799
800
801
802
803
804
805
/// Notes for Timer.ENC modes:
///
///   - Requires 2 pins, so one or both pins will need to be configured to use
///     the appropriate timer AF using the Pin API.
///   - Read the encoder value using the timer.counter() method.
///   - Only works on CH1 and CH2 (and not on CH1N or CH2N)
///   - The channel number is ignored when setting the encoder mode.
///
806
807
808
809
810
/// PWM Example:
///
///     timer = pyb.Timer(2, freq=1000)
///     ch2 = timer.channel(2, pyb.Timer.PWM, pin=pyb.Pin.board.X2, pulse_width=210000)
///     ch3 = timer.channel(3, pyb.Timer.PWM, pin=pyb.Pin.board.X3, pulse_width=420000)
811
812
813
814
815
816
817
818
819
820
STATIC mp_obj_t pyb_timer_channel(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_mode,                MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_callback,            MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_pin,                 MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_pulse_width,         MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_pulse_width_percent, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_compare,             MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_polarity,            MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
    };
821

822
823
    pyb_timer_obj_t *self = pos_args[0];
    mp_int_t channel = mp_obj_get_int(pos_args[1]);
824
825

    if (channel < 1 || channel > 4) {
826
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid channel (%d)", channel));
827
828
829
830
831
832
833
834
835
836
837
838
    }

    pyb_timer_channel_obj_t *chan = self->channel;
    pyb_timer_channel_obj_t *prev_chan = NULL;

    while (chan != NULL) {
        if (chan->channel == channel) {
            break;
        }
        prev_chan = chan;
        chan = chan->next;
    }
839
840
841

    // If only the channel number is given return the previously allocated
    // channel (or None if no previous channel).
842
    if (n_args == 2 && kw_args->used == 0) {
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
        if (chan) {
            return chan;
        }
        return mp_const_none;
    }

    // If there was already a channel, then remove it from the list. Note that
    // the order we do things here is important so as to appear atomic to
    // the IRQ handler.
    if (chan) {
        // Turn off any IRQ associated with the channel.
        pyb_timer_channel_callback(chan, mp_const_none);

        // Unlink the channel from the list.
        if (prev_chan) {
            prev_chan->next = chan->next;
        }
        self->channel = chan->next;
        chan->next = NULL;
    }

    // Allocate and initialize a new channel
865
866
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
867
868
869
870
871
872

    chan = m_new_obj(pyb_timer_channel_obj_t);
    memset(chan, 0, sizeof(*chan));
    chan->base.type = &pyb_timer_channel_type;
    chan->timer = self;
    chan->channel = channel;
873
874
    chan->mode = args[0].u_int;
    chan->callback = args[1].u_obj;
875

876
    mp_obj_t pin_obj = args[2].u_obj;
877
878
879
880
881
882
883
    if (pin_obj != mp_const_none) {
        if (!MP_OBJ_IS_TYPE(pin_obj, &pin_type)) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "pin argument needs to be be a Pin type"));
        }
        const pin_obj_t *pin = pin_obj;
        const pin_af_obj_t *af = pin_find_af(pin, AF_FN_TIM, self->tim_id);
        if (af == NULL) {
884
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %q doesn't have an af for TIM%d", pin->name, self->tim_id));
885
886
        }
        // pin.init(mode=AF_PP, af=idx)
887
        const mp_obj_t args2[6] = {
888
889
890
891
892
            (mp_obj_t)&pin_init_obj,
            pin_obj,
            MP_OBJ_NEW_QSTR(MP_QSTR_mode),  MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_PP),
            MP_OBJ_NEW_QSTR(MP_QSTR_af),    MP_OBJ_NEW_SMALL_INT(af->idx)
        };
893
        mp_call_method_n_kw(0, 2, args2);
894
895
896
897
898
899
900
901
902
903
904
905
906
907
    }

    // Link the channel to the timer before we turn the channel on.
    // Note that this needs to appear atomic to the IRQ handler (the write
    // to self->channel is atomic, so we're good, but I thought I'd mention
    // in case this was ever changed in the future).
    chan->next = self->channel;
    self->channel = chan;

    switch (chan->mode) {

        case CHANNEL_MODE_PWM_NORMAL:
        case CHANNEL_MODE_PWM_INVERTED: {
            TIM_OC_InitTypeDef oc_config;
908
            oc_config.OCMode = channel_mode_info[chan->mode].oc_mode;
909
            if (args[4].u_obj != mp_const_none) {
910
                // pulse width percent given
Dave Hylands's avatar
Dave Hylands committed
911
                uint32_t period = compute_period(self);
912
                oc_config.Pulse = compute_pwm_value_from_percent(period, args[4].u_obj);
913
            } else {
914
                // use absolute pulse width value (defaults to 0 if nothing given)
915
                oc_config.Pulse = args[3].u_int;
916
            }
917
918
919
920
921
922
923
924
925
926
927
928
            oc_config.OCPolarity   = TIM_OCPOLARITY_HIGH;
            oc_config.OCNPolarity  = TIM_OCNPOLARITY_HIGH;
            oc_config.OCFastMode   = TIM_OCFAST_DISABLE;
            oc_config.OCIdleState  = TIM_OCIDLESTATE_SET;
            oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;

            HAL_TIM_PWM_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan));
            if (chan->callback == mp_const_none) {
                HAL_TIM_PWM_Start(&self->tim, TIMER_CHANNEL(chan));
            } else {
                HAL_TIM_PWM_Start_IT(&self->tim, TIMER_CHANNEL(chan));
            }
929
930
931
932
            // Start the complimentary channel too (if its supported)
            if (IS_TIM_CCXN_INSTANCE(self->tim.Instance, TIMER_CHANNEL(chan))) {
                HAL_TIMEx_PWMN_Start(&self->tim, TIMER_CHANNEL(chan));
            }
933
934
935
936
937
938
939
940
941
942
            break;
        }

        case CHANNEL_MODE_OC_TIMING:
        case CHANNEL_MODE_OC_ACTIVE:
        case CHANNEL_MODE_OC_INACTIVE:
        case CHANNEL_MODE_OC_TOGGLE:
        case CHANNEL_MODE_OC_FORCED_ACTIVE:
        case CHANNEL_MODE_OC_FORCED_INACTIVE: {
            TIM_OC_InitTypeDef oc_config;
943
            oc_config.OCMode       = channel_mode_info[chan->mode].oc_mode;
944
945
            oc_config.Pulse        = args[5].u_int;
            oc_config.OCPolarity   = args[6].u_int;
946
947
948
            if (oc_config.OCPolarity == 0xffffffff) {
                oc_config.OCPolarity = TIM_OCPOLARITY_HIGH;
            }
949
950
951
952
953
            if (oc_config.OCPolarity == TIM_OCPOLARITY_HIGH) {
                oc_config.OCNPolarity  = TIM_OCNPOLARITY_HIGH;
            } else {
                oc_config.OCNPolarity  = TIM_OCNPOLARITY_LOW;
            }
954
955
956
957
958
            oc_config.OCFastMode   = TIM_OCFAST_DISABLE;
            oc_config.OCIdleState  = TIM_OCIDLESTATE_SET;
            oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;

            if (!IS_TIM_OC_POLARITY(oc_config.OCPolarity)) {
959
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", oc_config.OCPolarity));
960
961
962
963
964
965
966
            }
            HAL_TIM_OC_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan));
            if (chan->callback == mp_const_none) {
                HAL_TIM_OC_Start(&self->tim, TIMER_CHANNEL(chan));
            } else {
                HAL_TIM_OC_Start_IT(&self->tim, TIMER_CHANNEL(chan));
            }
967
968
969
970
            // Start the complimentary channel too (if its supported)
            if (IS_TIM_CCXN_INSTANCE(self->tim.Instance, TIMER_CHANNEL(chan))) {
                HAL_TIMEx_OCN_Start(&self->tim, TIMER_CHANNEL(chan));
            }
971
972
973
974
975
976
            break;
        }

        case CHANNEL_MODE_IC: {
            TIM_IC_InitTypeDef ic_config;

977
            ic_config.ICPolarity  = args[6].u_int;
978
979
980
981
982
983
984
985
            if (ic_config.ICPolarity == 0xffffffff) {
                ic_config.ICPolarity = TIM_ICPOLARITY_RISING;
            }
            ic_config.ICSelection = TIM_ICSELECTION_DIRECTTI;
            ic_config.ICPrescaler = TIM_ICPSC_DIV1;
            ic_config.ICFilter    = 0;

            if (!IS_TIM_IC_POLARITY(ic_config.ICPolarity)) {
986
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", ic_config.ICPolarity));
987
988
989
990
991
992
993
994
995
996
            }
            HAL_TIM_IC_ConfigChannel(&self->tim, &ic_config, TIMER_CHANNEL(chan));
            if (chan->callback == mp_const_none) {
                HAL_TIM_IC_Start(&self->tim, TIMER_CHANNEL(chan));
            } else {
                HAL_TIM_IC_Start_IT(&self->tim, TIMER_CHANNEL(chan));
            }
            break;
        }

997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
        case CHANNEL_MODE_ENC_A:
        case CHANNEL_MODE_ENC_B:
        case CHANNEL_MODE_ENC_AB: {
            TIM_Encoder_InitTypeDef enc_config;

            enc_config.EncoderMode = channel_mode_info[chan->mode].oc_mode;
            enc_config.IC1Polarity  = args[6].u_int;
            if (enc_config.IC1Polarity == 0xffffffff) {
                enc_config.IC1Polarity = TIM_ICPOLARITY_RISING;
            }
            enc_config.IC2Polarity  = enc_config.IC1Polarity;
            enc_config.IC1Selection = TIM_ICSELECTION_DIRECTTI;
            enc_config.IC2Selection = TIM_ICSELECTION_DIRECTTI;
            enc_config.IC1Prescaler = TIM_ICPSC_DIV1;
            enc_config.IC2Prescaler = TIM_ICPSC_DIV1;
            enc_config.IC1Filter    = 0;
            enc_config.IC2Filter    = 0;

            if (!IS_TIM_IC_POLARITY(enc_config.IC1Polarity)) {
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", enc_config.IC1Polarity));
            }
            // Only Timers 1, 2, 3, 4, 5, and 8 support encoder mode
            if (self->tim.Instance != TIM1
            &&  self->tim.Instance != TIM2
            &&  self->tim.Instance != TIM3
            &&  self->tim.Instance != TIM4
            &&  self->tim.Instance != TIM5
1024
1025
1026
1027
            #if defined(TIM8)
            &&  self->tim.Instance != TIM8
            #endif
            ) {
1028
1029
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "encoder not supported on timer %d", self->tim_id));
            }
1030
1031
1032
1033

            // Disable & clear the timer interrupt so that we don't trigger
            // an interrupt by initializing the timer.
            __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
1034
1035
            HAL_TIM_Encoder_Init(&self->tim, &enc_config);
            __HAL_TIM_SetCounter(&self->tim, 0);
1036
1037
1038
1039
1040
            if (self->callback != mp_const_none) {
                __HAL_TIM_CLEAR_FLAG(&self->tim, TIM_IT_UPDATE);
                __HAL_TIM_ENABLE_IT(&self->tim, TIM_IT_UPDATE);
            }
            HAL_TIM_Encoder_Start(&self->tim, TIM_CHANNEL_ALL);
1041
1042
1043
            break;
        }

1044
        default:
1045
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid mode (%d)", chan->mode));
1046
1047
1048
1049
    }

    return chan;
}
1050
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_channel_obj, 2, pyb_timer_channel);
1051

1052
1053
/// \method counter([value])
/// Get or set the timer counter.
1054
STATIC mp_obj_t pyb_timer_counter(mp_uint_t n_args, const mp_obj_t *args) {
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
    pyb_timer_obj_t *self = args[0];
    if (n_args == 1) {
        // get
        return mp_obj_new_int(self->tim.Instance->CNT);
    } else {
        // set
        __HAL_TIM_SetCounter(&self->tim, mp_obj_get_int(args[1]));
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_counter_obj, 1, 2, pyb_timer_counter);

1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
/// \method source_freq()
/// Get the frequency of the source of the timer.
STATIC mp_obj_t pyb_timer_source_freq(mp_obj_t self_in) {
    pyb_timer_obj_t *self = self_in;
    uint32_t source_freq = timer_get_source_freq(self->tim_id);
    return mp_obj_new_int(source_freq);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_source_freq_obj, pyb_timer_source_freq);

/// \method freq([value])
/// Get or set the frequency for the timer (changes prescaler and period if set).
STATIC mp_obj_t pyb_timer_freq(mp_uint_t n_args, const mp_obj_t *args) {
    pyb_timer_obj_t *self = args[0];
    if (n_args == 1) {
        // get
        uint32_t prescaler = self->tim.Instance->PSC & 0xffff;
        uint32_t period = __HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self);
        uint32_t source_freq = timer_get_source_freq(self->tim_id);
        uint32_t divide = ((prescaler + 1) * (period + 1));
1086
1087
        #if MICROPY_PY_BUILTINS_FLOAT
        if (source_freq % divide != 0) {
1088
            return mp_obj_new_float((float)source_freq / (float)divide);
1089
1090
1091
1092
        } else
        #endif
        {
            return mp_obj_new_int(source_freq / divide);
1093
1094
1095
1096
1097
1098
1099
        }
    } else {
        // set
        uint32_t period;
        uint32_t prescaler = compute_prescaler_period_from_freq(self, args[1], &period);
        self->tim.Instance->PSC = prescaler;
        __HAL_TIM_SetAutoreload(&self->tim, period);
1100
1101
1102
1103
        // Reset the counter to zero. Otherwise, if counter >= period it will
        // continue counting until it wraps (at either 16 or 32 bits depending
        // on the timer).
        __HAL_TIM_SetCounter(&self->tim, 0);
1104
1105
1106
1107
1108
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_freq_obj, 1, 2, pyb_timer_freq);

1109
1110
/// \method prescaler([value])
/// Get or set the prescaler for the timer.
1111
STATIC mp_obj_t pyb_timer_prescaler(mp_uint_t n_args, const mp_obj_t *args) {
1112
1113
1114
1115
1116
1117
    pyb_timer_obj_t *self = args[0];
    if (n_args == 1) {
        // get
        return mp_obj_new_int(self->tim.Instance->PSC & 0xffff);
    } else {
        // set
1118
        self->tim.Instance->PSC = mp_obj_get_int(args[1]) & 0xffff;
1119
1120
1121
1122
1123
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_prescaler_obj, 1, 2, pyb_timer_prescaler);

1124
1125
/// \method period([value])
/// Get or set the period of the timer.
1126
STATIC mp_obj_t pyb_timer_period(mp_uint_t n_args, const mp_obj_t *args) {
1127
1128
1129
    pyb_timer_obj_t *self = args[0];
    if (n_args == 1) {
        // get
1130
        return mp_obj_new_int(__HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self));
1131
1132
    } else {
        // set
1133
        __HAL_TIM_SetAutoreload(&self->tim, mp_obj_get_int(args[1]) & TIMER_CNT_MASK(self));
1134
1135
1136
1137
        // Reset the counter to zero. Otherwise, if counter >= period it will
        // continue counting until it wraps (at either 16 or 32 bits depending
        // on the timer).
        __HAL_TIM_SetCounter(&self->tim, 0); 
1138
1139
1140
1141
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_period_obj, 1, 2, pyb_timer_period);
1142

1143
1144
1145
1146
/// \method callback(fun)
/// Set the function to be called when the timer triggers.
/// `fun` is passed 1 argument, the timer object.
/// If `fun` is `None` then the callback will be disabled.
1147
1148
1149
1150
1151
1152
1153
STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback) {
    pyb_timer_obj_t *self = self_in;
    if (callback == mp_const_none) {
        // stop interrupt (but not timer)
        __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
        self->callback = mp_const_none;
    } else if (mp_obj_is_callable(callback)) {
1154
        __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
1155
        self->callback = callback;
1156
1157
1158
1159
        // start timer, so that it interrupts on overflow, but clear any
        // pending interrupts which may have been set by initializing it.
        __HAL_TIM_CLEAR_FLAG(&self->tim, TIM_IT_UPDATE);
        HAL_TIM_Base_Start_IT(&self->tim); // This will re-enable the IRQ
1160
        HAL_NVIC_EnableIRQ(self->irqn);
1161
1162
    } else {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "callback must be None or a callable object"));
1163
    }
1164
    return mp_const_none;
1165
}
1166
1167
1168
1169
1170
1171
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_callback_obj, pyb_timer_callback);

STATIC const mp_map_elem_t pyb_timer_locals_dict_table[] = {
    // instance methods
    { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_timer_init_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_timer_deinit_obj },
1172
    { MP_OBJ_NEW_QSTR(MP_QSTR_channel), (mp_obj_t)&pyb_timer_channel_obj },
1173
    { MP_OBJ_NEW_QSTR(MP_QSTR_counter), (mp_obj_t)&pyb_timer_counter_obj },
1174
1175
    { MP_OBJ_NEW_QSTR(MP_QSTR_source_freq), (mp_obj_t)&pyb_timer_source_freq_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_timer_freq_obj },
1176
1177
1178
    { MP_OBJ_NEW_QSTR(MP_QSTR_prescaler), (mp_obj_t)&pyb_timer_prescaler_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_period), (mp_obj_t)&pyb_timer_period_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&pyb_timer_callback_obj },
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
    { MP_OBJ_NEW_QSTR(MP_QSTR_UP),                  MP_OBJ_NEW_SMALL_INT(TIM_COUNTERMODE_UP) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_DOWN),                MP_OBJ_NEW_SMALL_INT(TIM_COUNTERMODE_DOWN) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_CENTER),              MP_OBJ_NEW_SMALL_INT(TIM_COUNTERMODE_CENTERALIGNED1) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_PWM),                 MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_PWM_NORMAL) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_PWM_INVERTED),        MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_PWM_INVERTED) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_TIMING),           MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_TIMING) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_ACTIVE),           MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_ACTIVE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_INACTIVE),         MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_INACTIVE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_TOGGLE),           MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_TOGGLE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_FORCED_ACTIVE),    MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_FORCED_ACTIVE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OC_FORCED_INACTIVE),  MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_FORCED_INACTIVE) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_IC),                  MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_IC) },
1191
1192
1193
    { MP_OBJ_NEW_QSTR(MP_QSTR_ENC_A),               MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_ENC_A) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_ENC_B),               MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_ENC_B) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_ENC_AB),              MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_ENC_AB) },
1194
1195
1196
1197
1198
    { MP_OBJ_NEW_QSTR(MP_QSTR_HIGH),                MP_OBJ_NEW_SMALL_INT(TIM_OCPOLARITY_HIGH) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_LOW),                 MP_OBJ_NEW_SMALL_INT(TIM_OCPOLARITY_LOW) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_RISING),              MP_OBJ_NEW_SMALL_INT(TIM_ICPOLARITY_RISING) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_FALLING),             MP_OBJ_NEW_SMALL_INT(TIM_ICPOLARITY_FALLING) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_BOTH),                MP_OBJ_NEW_SMALL_INT(TIM_ICPOLARITY_BOTHEDGE) },
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_locals_dict, pyb_timer_locals_dict_table);

const mp_obj_type_t pyb_timer_type = {
    { &mp_type_type },
    .name = MP_QSTR_Timer,
    .print = pyb_timer_print,
    .make_new = pyb_timer_make_new,
    .locals_dict = (mp_obj_t)&pyb_timer_locals_dict,
};

1210
1211
1212
1213
1214
1215
/// \moduleref pyb
/// \class TimerChannel - setup a channel for a timer.
///
/// Timer channels are used to generate/capture a signal using a timer.
///
/// TimerChannel objects are created using the Timer.channel() method.
1216
STATIC void pyb_timer_channel_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
1217
1218
    pyb_timer_channel_obj_t *self = self_in;

1219
    mp_printf(print, "TimerChannel(timer=%u, channel=%u, mode=%s)",
1220
1221
          self->timer->tim_id,
          self->channel,
1222
          qstr_str(channel_mode_info[self->mode].name));
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
}

/// \method capture([value])
/// Get or set the capture value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// capture is the logical name to use when the channel is in input capture mode.

/// \method compare([value])
/// Get or set the compare value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// compare is the logical name to use when the channel is in output compare mode.

/// \method pulse_width([value])
/// Get or set the pulse width value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// pulse_width is the logical name to use when the channel is in PWM mode.
Dave Hylands's avatar
Dave Hylands committed
1239
1240
1241
///
/// In edge aligned mode, a pulse_width of `period + 1` corresponds to a duty cycle of 100%
/// In center aligned mode, a pulse width of `period` corresponds to a duty cycle of 100%
1242
STATIC mp_obj_t pyb_timer_channel_capture_compare(mp_uint_t n_args, const mp_obj_t *args) {
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
    pyb_timer_channel_obj_t *self = args[0];
    if (n_args == 1) {
        // get
        return mp_obj_new_int(__HAL_TIM_GetCompare(&self->timer->tim, TIMER_CHANNEL(self)) & TIMER_CNT_MASK(self->timer));
    } else {
        // set
        __HAL_TIM_SetCompare(&self->timer->tim, TIMER_CHANNEL(self), mp_obj_get_int(args[1]) & TIMER_CNT_MASK(self->timer));
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_capture_compare_obj, 1, 2, pyb_timer_channel_capture_compare);

1255
1256
1257
1258
1259
1260
/// \method pulse_width_percent([value])
/// Get or set the pulse width percentage associated with a channel.  The value
/// is a number between 0 and 100 and sets the percentage of the timer period
/// for which the pulse is active.  The value can be an integer or
/// floating-point number for more accuracy.  For example, a value of 25 gives
/// a duty cycle of 25%.
1261
STATIC mp_obj_t pyb_timer_channel_pulse_width_percent(mp_uint_t n_args, const mp_obj_t *args) {
1262
    pyb_timer_channel_obj_t *self = args[0];
Dave Hylands's avatar
Dave Hylands committed
1263
    uint32_t period = compute_period(self->timer);
1264
1265
1266
    if (n_args == 1) {
        // get
        uint32_t cmp = __HAL_TIM_GetCompare(&self->timer->tim, TIMER_CHANNEL(self)) & TIMER_CNT_MASK(self->timer);
Dave Hylands's avatar
Dave Hylands committed
1267