modpyb.c 15.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27
28
29
#include <stdint.h>
#include <stdio.h>

30
#include "stm32f4xx_hal.h"
31
32

#include "mpconfig.h"
33
34
#include "misc.h"
#include "nlr.h"
35
36
37
38
#include "qstr.h"
#include "obj.h"
#include "gc.h"
#include "gccollect.h"
Dave Hylands's avatar
Dave Hylands committed
39
#include "irq.h"
40
41
#include "systick.h"
#include "pyexec.h"
42
#include "led.h"
43
#include "pin.h"
44
#include "timer.h"
45
#include "extint.h"
46
#include "usrsw.h"
47
#include "rng.h"
48
#include "rtc.h"
Damien George's avatar
Damien George committed
49
50
#include "i2c.h"
#include "spi.h"
Damien George's avatar
Damien George committed
51
#include "uart.h"
Dave Hylands's avatar
Dave Hylands committed
52
#include "adc.h"
53
#include "storage.h"
Damien George's avatar
Damien George committed
54
#include "sdcard.h"
55
#include "accel.h"
56
#include "servo.h"
Damien George's avatar
Damien George committed
57
#include "dac.h"
58
#include "lcd.h"
59
#include "usb.h"
60
#include "pybstdio.h"
61
#include "ff.h"
62
#include "portmodules.h"
63

64
65
66
67
/// \module pyb - functions related to the pyboard
///
/// The `pyb` module contains specific functions related to the pyboard.

68
69
/// \function bootloader()
/// Activate the bootloader without BOOT* pins.
70
STATIC NORETURN mp_obj_t pyb_bootloader(void) {
71
    pyb_usb_dev_stop();
72
73
74
75
76
    storage_flush();

    HAL_RCC_DeInit();
    HAL_DeInit();

77
    __HAL_REMAPMEMORY_SYSTEMFLASH();
78
79
80
81
82
83

    // arm-none-eabi-gcc 4.9.0 does not correctly inline this
    // MSP function, so we write it out explicitly here.
    //__set_MSP(*((uint32_t*) 0x00000000));
    __ASM volatile ("movs r3, #0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp");

84
    ((void (*)(void)) *((uint32_t*) 0x00000004))();
85
86
87

    while (1);
}
88
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_bootloader_obj, pyb_bootloader);
89

90
91
/// \function info([dump_alloc_table])
/// Print out lots of information about the board.
92
STATIC mp_obj_t pyb_info(uint n_args, const mp_obj_t *args) {
93
94
95
96
97
98
99
100
101
    // get and print unique id; 96 bits
    {
        byte *id = (byte*)0x1fff7a10;
        printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
    }

    // get and print clock speeds
    // SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
    {
102
        printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n",
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
               HAL_RCC_GetSysClockFreq(),
               HAL_RCC_GetHCLKFreq(),
               HAL_RCC_GetPCLK1Freq(),
               HAL_RCC_GetPCLK2Freq());
    }

    // to print info about memory
    {
        printf("_etext=%p\n", &_etext);
        printf("_sidata=%p\n", &_sidata);
        printf("_sdata=%p\n", &_sdata);
        printf("_edata=%p\n", &_edata);
        printf("_sbss=%p\n", &_sbss);
        printf("_ebss=%p\n", &_ebss);
        printf("_estack=%p\n", &_estack);
        printf("_ram_start=%p\n", &_ram_start);
        printf("_heap_start=%p\n", &_heap_start);
        printf("_heap_end=%p\n", &_heap_end);
        printf("_ram_end=%p\n", &_ram_end);
    }

    // qstr info
    {
        uint n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
        qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
        printf("qstr:\n  n_pool=%u\n  n_qstr=%u\n  n_str_data_bytes=%u\n  n_total_bytes=%u\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
    }

    // GC info
    {
        gc_info_t info;
        gc_info(&info);
        printf("GC:\n");
136
137
138
        printf("  " UINT_FMT " total\n", info.total);
        printf("  " UINT_FMT " : " UINT_FMT "\n", info.used, info.free);
        printf("  1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block);
139
140
141
142
143
144
    }

    // free space on flash
    {
        DWORD nclst;
        FATFS *fatfs;
145
        f_getfree("/flash", &nclst, &fatfs);
146
147
148
        printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512));
    }

149
150
151
152
153
    if (n_args == 1) {
        // arg given means dump gc allocation table
        gc_dump_alloc_table();
    }

154
155
    return mp_const_none;
}
156
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_info_obj, 0, 1, pyb_info);
157

158
159
/// \function unique_id()
/// Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU.
160
161
162
163
164
165
STATIC mp_obj_t pyb_unique_id(void) {
    byte *id = (byte*)0x1fff7a10;
    return mp_obj_new_bytes(id, 12);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_unique_id_obj, pyb_unique_id);

166
167
/// \function freq()
/// Return a tuple of clock frequencies: (SYSCLK, HCLK, PCLK1, PCLK2).
168
169
170
171
172
173
174
175
176
177
178
179
// TODO should also be able to set frequency via this function
STATIC mp_obj_t pyb_freq(void) {
    mp_obj_t tuple[4] = {
       mp_obj_new_int(HAL_RCC_GetSysClockFreq()),
       mp_obj_new_int(HAL_RCC_GetHCLKFreq()),
       mp_obj_new_int(HAL_RCC_GetPCLK1Freq()),
       mp_obj_new_int(HAL_RCC_GetPCLK2Freq()),
    };
    return mp_obj_new_tuple(4, tuple);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_freq_obj, pyb_freq);

180
181
/// \function sync()
/// Sync all file systems.
182
183
184
185
186
187
STATIC mp_obj_t pyb_sync(void) {
    storage_flush();
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_sync_obj, pyb_sync);

188
189
/// \function millis()
/// Returns the number of milliseconds since the board was last reset.
190
///
191
192
193
/// The result is always a micropython smallint (31-bit signed number), so
/// after 2^30 milliseconds (about 12.4 days) this will start to return
/// negative numbers.
194
STATIC mp_obj_t pyb_millis(void) {
195
196
197
198
    // We want to "cast" the 32 bit unsigned into a small-int.  This means
    // copying the MSB down 1 bit (extending the sign down), which is
    // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
    return MP_OBJ_NEW_SMALL_INT(HAL_GetTick());
199
200
201
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_millis_obj, pyb_millis);

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/// \function elapsed_millis(start)
/// Returns the number of milliseconds which have elapsed since `start`.
///
/// This function takes care of counter wrap, and always returns a positive
/// number. This means it can be used to measure periods upto about 12.4 days.
///
/// Example:
///     start = pyb.millis()
///     while pyb.elapsed_millis(start) < 1000:
///         # Perform some operation
STATIC mp_obj_t pyb_elapsed_millis(mp_obj_t start) {
    uint32_t startMillis = mp_obj_get_int(start);
    uint32_t currMillis = HAL_GetTick();
    return MP_OBJ_NEW_SMALL_INT((currMillis - startMillis) & 0x3fffffff);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_millis_obj, pyb_elapsed_millis);

219
220
221
/// \function micros()
/// Returns the number of microseconds since the board was last reset.
///
222
223
224
/// The result is always a micropython smallint (31-bit signed number), so
/// after 2^30 microseconds (about 17.8 minutes) this will start to return
/// negative numbers.
225
STATIC mp_obj_t pyb_micros(void) {
226
227
228
229
    // We want to "cast" the 32 bit unsigned into a small-int.  This means
    // copying the MSB down 1 bit (extending the sign down), which is
    // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
    return MP_OBJ_NEW_SMALL_INT(sys_tick_get_microseconds());
230
231
232
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_micros_obj, pyb_micros);

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/// \function elapsed_micros(start)
/// Returns the number of microseconds which have elapsed since `start`.
///
/// This function takes care of counter wrap, and always returns a positive
/// number. This means it can be used to measure periods upto about 17.8 minutes.
///
/// Example:
///     start = pyb.micros()
///     while pyb.elapsed_micros(start) < 1000:
///         # Perform some operation
STATIC mp_obj_t pyb_elapsed_micros(mp_obj_t start) {
    uint32_t startMicros = mp_obj_get_int(start);
    uint32_t currMicros = sys_tick_get_microseconds();
    return MP_OBJ_NEW_SMALL_INT((currMicros - startMicros) & 0x3fffffff);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_micros_obj, pyb_elapsed_micros);

250
251
/// \function delay(ms)
/// Delay for the given number of milliseconds.
252
STATIC mp_obj_t pyb_delay(mp_obj_t ms_in) {
253
    mp_int_t ms = mp_obj_get_int(ms_in);
254
255
256
    if (ms >= 0) {
        HAL_Delay(ms);
    }
257
258
259
260
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_delay_obj, pyb_delay);

261
262
/// \function udelay(us)
/// Delay for the given number of microseconds.
263
STATIC mp_obj_t pyb_udelay(mp_obj_t usec_in) {
264
    mp_int_t usec = mp_obj_get_int(usec_in);
265
266
267
268
    if (usec > 0) {
        uint32_t count = 0;
        const uint32_t utime = (168 * usec / 4);
        while (++count <= utime) {
269
270
        }
    }
271
    return mp_const_none;
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_udelay_obj, pyb_udelay);

#if 0
STATIC void SYSCLKConfig_STOP(void) {
    /* After wake-up from STOP reconfigure the system clock */
    /* Enable HSE */
    RCC_HSEConfig(RCC_HSE_ON);

    /* Wait till HSE is ready */
    while (RCC_GetFlagStatus(RCC_FLAG_HSERDY) == RESET) {
    }

    /* Enable PLL */
    RCC_PLLCmd(ENABLE);

    /* Wait till PLL is ready */
    while (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) {
    }

    /* Select PLL as system clock source */
    RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);

    /* Wait till PLL is used as system clock source */
    while (RCC_GetSYSCLKSource() != 0x08) {
    }
}
#endif

STATIC mp_obj_t pyb_stop(void) {
#if 0
    PWR_EnterSTANDBYMode();
    //PWR_FlashPowerDownCmd(ENABLE); don't know what the logic is with this

    /* Enter Stop Mode */
    PWR_EnterSTOPMode(PWR_Regulator_LowPower, PWR_STOPEntry_WFI);

309
    /* Configures system clock after wake-up from STOP: enable HSE, PLL and select
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
     *        PLL as system clock source (HSE and PLL are disabled in STOP mode) */
    SYSCLKConfig_STOP();

    //PWR_FlashPowerDownCmd(DISABLE);
#endif
    return mp_const_none;
}

MP_DEFINE_CONST_FUN_OBJ_0(pyb_stop_obj, pyb_stop);

STATIC mp_obj_t pyb_standby(void) {
#if 0
    PWR_EnterSTANDBYMode();
#endif
    return mp_const_none;
}

MP_DEFINE_CONST_FUN_OBJ_0(pyb_standby_obj, pyb_standby);

329
330
/// \function have_cdc()
/// Return True if USB is connected as a serial device, False otherwise.
331
332
333
334
335
STATIC mp_obj_t pyb_have_cdc(void ) {
    return MP_BOOL(usb_vcp_is_connected());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_have_cdc_obj, pyb_have_cdc);

336
337
338
339
/// \function repl_uart(uart)
/// Get or set the UART object that the REPL is repeated on.
STATIC mp_obj_t pyb_repl_uart(uint n_args, const mp_obj_t *args) {
    if (n_args == 0) {
340
        if (pyb_stdio_uart == NULL) {
341
342
            return mp_const_none;
        } else {
343
            return pyb_stdio_uart;
344
345
346
        }
    } else {
        if (args[0] == mp_const_none) {
347
            pyb_stdio_uart = NULL;
348
        } else if (mp_obj_get_type(args[0]) == &pyb_uart_type) {
349
            pyb_stdio_uart = args[0];
350
351
352
353
354
355
356
357
        } else {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "need a UART object"));
        }
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_repl_uart_obj, 0, 1, pyb_repl_uart);

358
359
360
/// \function hid((buttons, x, y, z))
/// Takes a 4-tuple (or list) and sends it to the USB host (the PC) to
/// signal a HID mouse-motion event.
361
STATIC mp_obj_t pyb_hid_send_report(mp_obj_t arg) {
362
363
    mp_obj_t *items;
    mp_obj_get_array_fixed_n(arg, 4, &items);
364
365
366
367
368
369
370
371
    uint8_t data[4];
    data[0] = mp_obj_get_int(items[0]);
    data[1] = mp_obj_get_int(items[1]);
    data[2] = mp_obj_get_int(items[2]);
    data[3] = mp_obj_get_int(items[3]);
    usb_hid_send_report(data);
    return mp_const_none;
}
372
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_hid_send_report_obj, pyb_hid_send_report);
373
374

MP_DECLARE_CONST_FUN_OBJ(pyb_main_obj); // defined in main.c
375
MP_DECLARE_CONST_FUN_OBJ(pyb_usb_mode_obj); // defined in main.c
376
377
378
379

STATIC const mp_map_elem_t pyb_module_globals_table[] = {
    { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_pyb) },

380
    { MP_OBJ_NEW_QSTR(MP_QSTR_bootloader), (mp_obj_t)&pyb_bootloader_obj },
381
    { MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&pyb_info_obj },
382
383
    { MP_OBJ_NEW_QSTR(MP_QSTR_unique_id), (mp_obj_t)&pyb_unique_id_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_freq_obj },
384
385
    { MP_OBJ_NEW_QSTR(MP_QSTR_repl_info), (mp_obj_t)&pyb_set_repl_info_obj },

386
    { MP_OBJ_NEW_QSTR(MP_QSTR_wfi), (mp_obj_t)&pyb_wfi_obj },
387
388
389
    { MP_OBJ_NEW_QSTR(MP_QSTR_disable_irq), (mp_obj_t)&pyb_disable_irq_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_enable_irq), (mp_obj_t)&pyb_enable_irq_obj },

390
391
392
    { MP_OBJ_NEW_QSTR(MP_QSTR_stop), (mp_obj_t)&pyb_stop_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_standby), (mp_obj_t)&pyb_standby_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_main), (mp_obj_t)&pyb_main_obj },
393
    { MP_OBJ_NEW_QSTR(MP_QSTR_usb_mode), (mp_obj_t)&pyb_usb_mode_obj },
394

395
    { MP_OBJ_NEW_QSTR(MP_QSTR_have_cdc), (mp_obj_t)&pyb_have_cdc_obj },
396
    { MP_OBJ_NEW_QSTR(MP_QSTR_repl_uart), (mp_obj_t)&pyb_repl_uart_obj },
397
    { MP_OBJ_NEW_QSTR(MP_QSTR_hid), (mp_obj_t)&pyb_hid_send_report_obj },
398
    { MP_OBJ_NEW_QSTR(MP_QSTR_USB_VCP), (mp_obj_t)&pyb_usb_vcp_type },
399

400
    { MP_OBJ_NEW_QSTR(MP_QSTR_millis), (mp_obj_t)&pyb_millis_obj },
401
    { MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_millis), (mp_obj_t)&pyb_elapsed_millis_obj },
402
    { MP_OBJ_NEW_QSTR(MP_QSTR_micros), (mp_obj_t)&pyb_micros_obj },
403
    { MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_micros), (mp_obj_t)&pyb_elapsed_micros_obj },
404
405
406
407
    { MP_OBJ_NEW_QSTR(MP_QSTR_delay), (mp_obj_t)&pyb_delay_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_udelay), (mp_obj_t)&pyb_udelay_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_sync), (mp_obj_t)&pyb_sync_obj },

408
409
    { MP_OBJ_NEW_QSTR(MP_QSTR_Timer), (mp_obj_t)&pyb_timer_type },

410
#if MICROPY_HW_ENABLE_RNG
411
    { MP_OBJ_NEW_QSTR(MP_QSTR_rng), (mp_obj_t)&pyb_rng_get_obj },
412
413
414
#endif

#if MICROPY_HW_ENABLE_RTC
415
    { MP_OBJ_NEW_QSTR(MP_QSTR_RTC), (mp_obj_t)&pyb_rtc_type },
416
417
#endif

418
419
420
    { MP_OBJ_NEW_QSTR(MP_QSTR_Pin), (mp_obj_t)&pin_type },
    { MP_OBJ_NEW_QSTR(MP_QSTR_ExtInt), (mp_obj_t)&extint_type },

421
422
423
#if MICROPY_HW_ENABLE_SERVO
    { MP_OBJ_NEW_QSTR(MP_QSTR_pwm), (mp_obj_t)&pyb_pwm_set_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_servo), (mp_obj_t)&pyb_servo_set_obj },
424
    { MP_OBJ_NEW_QSTR(MP_QSTR_Servo), (mp_obj_t)&pyb_servo_type },
425
426
427
#endif

#if MICROPY_HW_HAS_SWITCH
428
    { MP_OBJ_NEW_QSTR(MP_QSTR_Switch), (mp_obj_t)&pyb_switch_type },
429
430
431
432
433
434
#endif

#if MICROPY_HW_HAS_SDCARD
    { MP_OBJ_NEW_QSTR(MP_QSTR_SD), (mp_obj_t)&pyb_sdcard_obj },
#endif

435
    { MP_OBJ_NEW_QSTR(MP_QSTR_LED), (mp_obj_t)&pyb_led_type },
436
    { MP_OBJ_NEW_QSTR(MP_QSTR_I2C), (mp_obj_t)&pyb_i2c_type },
Damien George's avatar
Damien George committed
437
    { MP_OBJ_NEW_QSTR(MP_QSTR_SPI), (mp_obj_t)&pyb_spi_type },
Damien George's avatar
Damien George committed
438
    { MP_OBJ_NEW_QSTR(MP_QSTR_UART), (mp_obj_t)&pyb_uart_type },
439
440

    { MP_OBJ_NEW_QSTR(MP_QSTR_ADC), (mp_obj_t)&pyb_adc_type },
441
    { MP_OBJ_NEW_QSTR(MP_QSTR_ADCAll), (mp_obj_t)&pyb_adc_all_type },
Damien George's avatar
Damien George committed
442
443
444

#if MICROPY_HW_ENABLE_DAC
    { MP_OBJ_NEW_QSTR(MP_QSTR_DAC), (mp_obj_t)&pyb_dac_type },
445
446
#endif

447
448
449
#if MICROPY_HW_HAS_MMA7660
    { MP_OBJ_NEW_QSTR(MP_QSTR_Accel), (mp_obj_t)&pyb_accel_type },
#endif
450
451
452
453

#if MICROPY_HW_HAS_LCD
    { MP_OBJ_NEW_QSTR(MP_QSTR_LCD), (mp_obj_t)&pyb_lcd_type },
#endif
454
455
};

456
457
458
459
460
STATIC const mp_obj_dict_t pyb_module_globals = {
    .base = {&mp_type_dict},
    .map = {
        .all_keys_are_qstrs = 1,
        .table_is_fixed_array = 1,
461
462
        .used = MP_ARRAY_SIZE(pyb_module_globals_table),
        .alloc = MP_ARRAY_SIZE(pyb_module_globals_table),
463
464
        .table = (mp_map_elem_t*)pyb_module_globals_table,
    },
465
466
467
468
469
};

const mp_obj_module_t pyb_module = {
    .base = { &mp_type_module },
    .name = MP_QSTR_pyb,
470
    .globals = (mp_obj_dict_t*)&pyb_module_globals,
471
};