main.c 24.5 KB
Newer Older
Damien's avatar
Damien committed
1
2
3
4
5
6
7
8
#include <stm32f4xx.h>
#include <stm32f4xx_rcc.h>
#include "std.h"

#include "font_petme128_8x8.h"

void delay_ms(int ms);

9
static void impl02_c_version() {
Damien's avatar
Damien committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
    int x = 0;
    while (x < 400) {
        int y = 0;
        while (y < 400) {
            volatile int z = 0;
            while (z < 400) {
                z = z + 1;
            }
            y = y + 1;
        }
        x = x + 1;
    }
}

void set_bits(__IO uint32_t *addr, uint32_t shift, uint32_t mask, uint32_t value) {
    uint32_t x = *addr;
    x &= ~(mask << shift);
    x |= (value << shift);
    *addr = x;
}

void gpio_init() {
    RCC->AHB1ENR |= RCC_AHB1ENR_CCMDATARAMEN | RCC_AHB1ENR_GPIOCEN | RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOAEN;
}

#define PYB_LEDR_PORT (GPIOA)
#define PYB_LEDR1_PORT_NUM (8)
#define PYB_LEDR2_PORT_NUM (10)
#define PYB_LEDG_PORT (GPIOC)
#define PYB_LEDG1_PORT_NUM (4)
#define PYB_LEDG2_PORT_NUM (5)

void gpio_pin_init(GPIO_TypeDef *gpio, uint32_t pin, uint32_t moder, uint32_t otyper, uint32_t ospeedr, uint32_t pupdr) {
    set_bits(&gpio->MODER, 2 * pin, 3, moder);
    set_bits(&gpio->OTYPER, pin, 1, otyper);
    set_bits(&gpio->OSPEEDR, 2 * pin, 3, ospeedr);
    set_bits(&gpio->PUPDR, 2 * pin, 3, pupdr);
}

void gpio_pin_af(GPIO_TypeDef *gpio, uint32_t pin, uint32_t af) {
    // set the AF bits for the given pin
    // pins 0-7 use low word of AFR, pins 8-15 use high word
    set_bits(&gpio->AFR[pin >> 3], 4 * (pin & 0x07), 0xf, af);
}

55
static void mma_init() {
Damien's avatar
Damien committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    RCC->APB1ENR |= RCC_APB1ENR_I2C1EN; // enable I2C1
    gpio_pin_init(GPIOB, 6 /* B6 is SCL */, 2 /* AF mode */, 1 /* open drain output */, 1 /* 25 MHz */, 0 /* no pull up or pull down */);
    gpio_pin_init(GPIOB, 7 /* B7 is SDA */, 2 /* AF mode */, 1 /* open drain output */, 1 /* 25 MHz */, 0 /* no pull up or pull down */);
    gpio_pin_af(GPIOB, 6, 4 /* AF 4 for I2C1 */);
    gpio_pin_af(GPIOB, 7, 4 /* AF 4 for I2C1 */);

    // get clock speeds
    RCC_ClocksTypeDef rcc_clocks;
    RCC_GetClocksFreq(&rcc_clocks);

    // disable the I2C peripheral before we configure it
    I2C1->CR1 &= ~I2C_CR1_PE;

    // program peripheral input clock
    I2C1->CR2 = 4; // no interrupts; 4 MHz (hopefully!) (could go up to 42MHz)

    // configure clock control reg
    uint32_t freq = rcc_clocks.PCLK1_Frequency / (100000 << 1); // want 100kHz, this is the formula for freq
    I2C1->CCR = freq; // standard mode (speed), freq calculated as above

    // configure rise time reg
    I2C1->TRISE = (rcc_clocks.PCLK1_Frequency / 1000000) + 1; // formula for trise, gives maximum rise time

    // enable the I2C peripheral
    I2C1->CR1 |= I2C_CR1_PE;

    // set START bit in CR1 to generate a start cond!
}

85
static uint32_t i2c_get_sr() {
Damien's avatar
Damien committed
86
87
88
89
90
91
    // must read SR1 first, then SR2, as the read can clear some flags
    uint32_t sr1 = I2C1->SR1;
    uint32_t sr2 = I2C1->SR2;
    return (sr2 << 16) | sr1;
}

92
static void mma_restart(uint8_t addr, int write) {
Damien's avatar
Damien committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    // send start condition
    I2C1->CR1 |= I2C_CR1_START;

    // wait for BUSY, MSL and SB --> Slave has acknowledged start condition
    while ((i2c_get_sr() & 0x00030001) != 0x00030001) {
    }

    if (write) {
        // send address and write bit
        I2C1->DR = (addr << 1) | 0;
        // wait for BUSY, MSL, ADDR, TXE and TRA
        while ((i2c_get_sr() & 0x00070082) != 0x00070082) {
        }
    } else {
        // send address and read bit
        I2C1->DR = (addr << 1) | 1;
        // wait for BUSY, MSL and ADDR flags
        while ((i2c_get_sr() & 0x00030002) != 0x00030002) {
        }
    }
}

115
static void mma_start(uint8_t addr, int write) {
Damien's avatar
Damien committed
116
117
118
119
120
121
122
123
    // wait until I2C is not busy
    while (I2C1->SR2 & I2C_SR2_BUSY) {
    }

    // do rest of start
    mma_restart(addr, write);
}

124
static void mma_send_byte(uint8_t data) {
Damien's avatar
Damien committed
125
126
127
128
129
130
131
132
133
134
135
136
    // send byte
    I2C1->DR = data;
    // wait for TRA, BUSY, MSL, TXE and BTF (byte transmitted)
    int timeout = 1000000;
    while ((i2c_get_sr() & 0x00070084) != 0x00070084) {
        if (timeout-- <= 0) {
            printf("mma_send_byte timed out!\n");
            break;
        }
    }
}

137
static uint8_t mma_read_ack() {
Damien's avatar
Damien committed
138
139
140
141
142
143
144
145
146
147
    // enable ACK of received byte
    I2C1->CR1 |= I2C_CR1_ACK;
    // wait for BUSY, MSL and RXNE (byte received)
    while ((i2c_get_sr() & 0x00030040) != 0x00030040) {
    }
    // read and return data
    uint8_t data = I2C1->DR;
    return data;
}

148
static uint8_t mma_read_nack() {
Damien's avatar
Damien committed
149
150
151
152
153
154
155
156
157
158
159
160
    // disable ACK of received byte (to indicate end of receiving)
    I2C1->CR1 &= (uint16_t)~((uint16_t)I2C_CR1_ACK);
    // last byte should apparently also generate a stop condition
    I2C1->CR1 |= I2C_CR1_STOP;
    // wait for BUSY, MSL and RXNE (byte received)
    while ((i2c_get_sr() & 0x00030040) != 0x00030040) {
    }
    // read and return data
    uint8_t data = I2C1->DR;
    return data;
}

161
static void mma_stop() {
Damien's avatar
Damien committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
    // send stop condition
    I2C1->CR1 |= I2C_CR1_STOP;
}

void led_init() {
    // set the output high (so LED is off)
    PYB_LEDR_PORT->BSRRL = 1 << PYB_LEDR1_PORT_NUM;
    PYB_LEDR_PORT->BSRRL = 1 << PYB_LEDR2_PORT_NUM;
    PYB_LEDG_PORT->BSRRL = 1 << PYB_LEDG1_PORT_NUM;
    PYB_LEDG_PORT->BSRRL = 1 << PYB_LEDG2_PORT_NUM;
    // make it an open drain output
    gpio_pin_init(PYB_LEDR_PORT, PYB_LEDR1_PORT_NUM, 1, 1, 0, 0);
    gpio_pin_init(PYB_LEDR_PORT, PYB_LEDR2_PORT_NUM, 1, 1, 0, 0);
    gpio_pin_init(PYB_LEDG_PORT, PYB_LEDG1_PORT_NUM, 1, 1, 0, 0);
    gpio_pin_init(PYB_LEDG_PORT, PYB_LEDG2_PORT_NUM, 1, 1, 0, 0);
}

static void led_state(uint32_t led_port, int s) {
    if (s == 0) {
        // LED off, output is high
        if (led_port == PYB_LEDR1_PORT_NUM || led_port == PYB_LEDR2_PORT_NUM) {
            PYB_LEDR_PORT->BSRRL = 1 << led_port;
        } else {
            PYB_LEDG_PORT->BSRRL = 1 << led_port;
        }
    } else {
        // LED on, output is low
        if (led_port == PYB_LEDR1_PORT_NUM || led_port == PYB_LEDR2_PORT_NUM) {
            PYB_LEDR_PORT->BSRRH = 1 << led_port;
        } else {
            PYB_LEDG_PORT->BSRRH = 1 << led_port;
        }
    }
}

#define PYB_USRSW_PORT (GPIOA)
#define PYB_USRSW_PORT_NUM (13)

void sw_init() {
    // make it an input with pull-up
    gpio_pin_init(PYB_USRSW_PORT, PYB_USRSW_PORT_NUM, 0, 0, 0, 1);
}

int sw_get() {
    if (PYB_USRSW_PORT->IDR & (1 << PYB_USRSW_PORT_NUM)) {
        // pulled high, so switch is not pressed
        return 0;
    } else {
        // pulled low, so switch is pressed
        return 1;
    }
}

#define PYB_LCD_PORT        (GPIOA)
#define PYB_LCD_CS1_PIN     (0)
#define PYB_LCD_RST_PIN     (1)
#define PYB_LCD_A0_PIN      (2)
#define PYB_LCD_SCL_PIN     (3)
#define PYB_LCD_SI_PIN      (4)

static void lcd_comm_out(uint8_t i) {
    delay_ms(0);
    PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_CS1_PIN; // CS=0; enable
    PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_A0_PIN; // A0=0; select instr reg
    // send byte bigendian, latches on rising clock
    for (uint32_t n = 0; n < 8; n++) {
        delay_ms(0);
        PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_SCL_PIN; // SCL=0
        if ((i & 0x80) == 0) {
            PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_SI_PIN; // SI=0
        } else {
            PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SI_PIN; // SI=1
        }
        i <<= 1;
        delay_ms(0);
        PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SCL_PIN; // SCL=1
    }
    PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_CS1_PIN; // CS=1; disable

    /*
    in Python, native types:
    CS1_PIN(const) = 0
    n = int(0)
    delay_ms(0)
    PORT[word:BSRRH] = 1 << CS1_PIN
    for n in range(0, 8):
        delay_ms(0)
        PORT[word:BSRRH] = 1 << SCL_PIN
        if i & 0x80 == 0:
            PORT[word:BSRRH] = 1 << SI_PIN
        else:
            PORT[word:BSRRL] = 1 << SI_PIN
        i <<= 1
        delay_ms(0)
        PORT[word:BSRRL] = 1 << SCL_PIN
    */
}

static void lcd_data_out(uint8_t i) {
    delay_ms(0);
    PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_CS1_PIN; // CS=0; enable
    PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_A0_PIN; // A0=1; select data reg
    // send byte bigendian, latches on rising clock
    for (uint32_t n = 0; n < 8; n++) {
        delay_ms(0);
        PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_SCL_PIN; // SCL=0
        if ((i & 0x80) == 0) {
            PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_SI_PIN; // SI=0
        } else {
            PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SI_PIN; // SI=1
        }
        i <<= 1;
        delay_ms(0);
        PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SCL_PIN; // SCL=1
    }
    PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_CS1_PIN; // CS=1; disable
}

#define LCD_BUF_W (16)
#define LCD_BUF_H (4)
char lcd_buffer[LCD_BUF_W * LCD_BUF_H];
int lcd_line;
int lcd_column;
int lcd_next_line;

void lcd_print_strn(const char *str, unsigned int len) {
    int redraw_min = lcd_line * LCD_BUF_W + lcd_column;
    int redraw_max = redraw_min;
    int did_new_line = 0;
    for (; len > 0; len--, str++) {
        // move to next line if needed
        if (lcd_next_line) {
            if (lcd_line + 1 < LCD_BUF_H) {
                lcd_line += 1;
            } else {
                lcd_line = LCD_BUF_H - 1;
                for (int i = 0; i < LCD_BUF_W * (LCD_BUF_H - 1); i++) {
                    lcd_buffer[i] = lcd_buffer[i + LCD_BUF_W];
                }
                for (int i = 0; i < LCD_BUF_W; i++) {
                    lcd_buffer[LCD_BUF_W * (LCD_BUF_H - 1) + i] = ' ';
                }
                redraw_min = 0;
                redraw_max = LCD_BUF_W * LCD_BUF_H;
            }
            lcd_next_line = 0;
            lcd_column = 0;
            did_new_line = 1;
        }
        if (*str == '\n') {
            lcd_next_line = 1;
        } else if (lcd_column >= LCD_BUF_W) {
            lcd_next_line = 1;
            str -= 1;
            len += 1;
        } else {
            lcd_buffer[lcd_line * LCD_BUF_W + lcd_column] = *str;
            lcd_column += 1;
            int max = lcd_line * LCD_BUF_W + lcd_column;
            if (max > redraw_max) {
                redraw_max = max;
            }
        }
    }

    int last_page = -1;
    for (int i = redraw_min; i < redraw_max; i++) {
        int page = i / LCD_BUF_W;
        if (page != last_page) {
            int offset = 8 * (i - (page * LCD_BUF_W));
            lcd_comm_out(0xb0 | page); // page address set
            lcd_comm_out(0x10 | ((offset >> 4) & 0x0f)); // column address set upper
            lcd_comm_out(0x00 | (offset & 0x0f)); // column address set lower
            last_page = page;
        }
        int chr = lcd_buffer[i];
        if (chr < 32 || chr > 126) {
            chr = 127;
        }
        const uint8_t *chr_data = &font_petme128_8x8[(chr - 32) * 8];
        for (int i = 0; i < 8; i++) {
            lcd_data_out(chr_data[i]);
        }
    }

    if (did_new_line) {
        delay_ms(200);
    }
}

static void lcd_init() {
    // set the outputs high
    PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_CS1_PIN;
    PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_RST_PIN;
    PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_A0_PIN;
    PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SCL_PIN;
    PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_SI_PIN;
    // make them push/pull outputs
    gpio_pin_init(PYB_LCD_PORT, PYB_LCD_CS1_PIN, 1, 0, 0, 0);
    gpio_pin_init(PYB_LCD_PORT, PYB_LCD_RST_PIN, 1, 0, 0, 0);
    gpio_pin_init(PYB_LCD_PORT, PYB_LCD_A0_PIN, 1, 0, 0, 0);
    gpio_pin_init(PYB_LCD_PORT, PYB_LCD_SCL_PIN, 1, 0, 0, 0);
    gpio_pin_init(PYB_LCD_PORT, PYB_LCD_SI_PIN, 1, 0, 0, 0);

    // init the LCD
    delay_ms(1); // wait a bit
    PYB_LCD_PORT->BSRRH = 1 << PYB_LCD_RST_PIN; // RST=0; reset
    delay_ms(1); // wait for reset; 2us min
    PYB_LCD_PORT->BSRRL = 1 << PYB_LCD_RST_PIN; // RST=1; enable
    delay_ms(1); // wait for reset; 2us min
    lcd_comm_out(0xa0); // ADC select, normal
    lcd_comm_out(0xc8); // common output mode select, reverse
    lcd_comm_out(0xa2); // LCD bias set, 1/9 bias
    lcd_comm_out(0x2f); // power control set, 0b111=(booster on, vreg on, vfollow on)
    lcd_comm_out(0x21); // v0 voltage regulator internal resistor ratio set, 0b001=small
    lcd_comm_out(0x81); // electronic volume mode set
    lcd_comm_out(0x34); // electronic volume register set, 0b110100
    lcd_comm_out(0x40); // display start line set, 0
    lcd_comm_out(0xaf); // LCD display, on

    // clear display
    for (int page = 0; page < 4; page++) {
        lcd_comm_out(0xb0 | page); // page address set
        lcd_comm_out(0x10); // column address set upper
        lcd_comm_out(0x00); // column address set lower
        for (int i = 0; i < 128; i++) {
            lcd_data_out(0x00);
        }
    }

    for (int i = 0; i < LCD_BUF_H * LCD_BUF_W; i++) {
        lcd_buffer[i] = ' ';
    }
    lcd_line = 0;
    lcd_column = 0;
    lcd_next_line = 0;
}

void __fatal_error(const char *msg) {
    lcd_print_strn("\nFATAL ERROR:\n", 14);
    lcd_print_strn(msg, strlen(msg));

    for (;;) {
        led_state(PYB_LEDR1_PORT_NUM, 1);
        led_state(PYB_LEDR2_PORT_NUM, 0);
        delay_ms(150);
        led_state(PYB_LEDR1_PORT_NUM, 0);
        led_state(PYB_LEDR2_PORT_NUM, 1);
        delay_ms(150);
    }
}

#include "misc.h"
#include "lexer.h"
#include "mpyconfig.h"
#include "parse.h"
#include "compile.h"
#include "runtime.h"

py_obj_t pyb_delay(py_obj_t count) {
    delay_ms(rt_get_int(count));
    return py_const_none;
}

py_obj_t pyb_led(py_obj_t state) {
    led_state(PYB_LEDG1_PORT_NUM, rt_is_true(state));
    return state;
}

py_obj_t pyb_sw() {
    if (sw_get()) {
        return py_const_true;
    } else {
        return py_const_false;
    }
}

#include "ff.h"
FATFS fatfs0;

442
#include "nlr.h"
443
444

/*
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
void g(uint i) {
    printf("g:%d\n", i);
    if (i & 1) {
        nlr_jump((void*)(42 + i));
    }
}
void f() {
    nlr_buf_t nlr;
    int i;
    for (i = 0; i < 4; i++) {
        printf("f:loop:%d:%p\n", i, &nlr);
        if (nlr_push(&nlr) == 0) {
            // normal
            //printf("a:%p:%p %p %p %u\n", &nlr, nlr.ip, nlr.sp, nlr.prev, nlr.ret_val);
            g(i);
            printf("f:lp:%d:nrm\n", i);
            nlr_pop();
        } else {
            // nlr
            //printf("b:%p:%p %p %p %u\n", &nlr, nlr.ip, nlr.sp, nlr.prev, nlr.ret_val);
            printf("f:lp:%d:nlr:%d\n", i, (int)nlr.ret_val);
        }
    }
}
void nlr_test() {
    f(1);
}
472
473
474
*/

int dummy_bss;
475

Damien's avatar
Damien committed
476
int main() {
477
478
    int dummy;

Damien's avatar
Damien committed
479
480
    // should disable JTAG

481
482
    qstr_init();
    rt_init();
Damien's avatar
Damien committed
483
484
485
486
487
488
489
490
491
492
493
494
495

    gpio_init();
    led_init();
    sw_init();
    lcd_init();

    // print a message
    printf(" micro py board\n");

    // flash to indicate we are alive!
    for (int i = 0; i < 2; i++) {
        led_state(PYB_LEDR1_PORT_NUM, 1);
        led_state(PYB_LEDR2_PORT_NUM, 0);
496
        delay_ms(100);
Damien's avatar
Damien committed
497
498
        led_state(PYB_LEDR1_PORT_NUM, 0);
        led_state(PYB_LEDR2_PORT_NUM, 1);
499
        delay_ms(100);
Damien's avatar
Damien committed
500
501
    }

502
    // turn LEDs off
Damien's avatar
Damien committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
    led_state(PYB_LEDR1_PORT_NUM, 0);
    led_state(PYB_LEDR2_PORT_NUM, 0);
    led_state(PYB_LEDG1_PORT_NUM, 0);
    led_state(PYB_LEDG2_PORT_NUM, 0);

    // get and print clock speeds
    // SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
    /*
    {
        RCC_ClocksTypeDef rcc_clocks;
        RCC_GetClocksFreq(&rcc_clocks);
        printf("S=%lu H=%lu P1=%lu P2=%lu\n", rcc_clocks.SYSCLK_Frequency, rcc_clocks.HCLK_Frequency, rcc_clocks.PCLK1_Frequency, rcc_clocks.PCLK2_Frequency);
        delay_ms(1000);
    }
    */

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
    // USB
    if (1) {
        void usb_init();
        usb_init();
    }

    for (;;) {
        led_state(PYB_LEDG1_PORT_NUM, 1);
        delay_ms(100);
        led_state(PYB_LEDG1_PORT_NUM, 0);
        extern void *_sidata;
        extern void *_sdata;
        extern void *_edata;
        extern void *_sbss;
        extern void *_ebss;
        extern void *_estack;
        extern void *_etext;
        extern void *_heap_start;
        if (sw_get()) {
            printf("_sidata=%p\n", &_sidata);
            printf("_sdata=%p\n", &_sdata);
            printf("_edata=%p\n", &_edata);
            printf("_sbss=%p\n", &_sbss);
            printf("_ebss=%p\n", &_ebss);
            printf("_estack=%p\n", &_estack);
            printf("_etext=%p\n", &_etext);
            printf("_heap_start=%p\n", &_heap_start);
            printf("&dummy=%p\n", &dummy);
            printf("&dummy_bss=%p\n", &dummy_bss);
            printf("dummy_bss=%x\n", dummy_bss);
            //printf("sizeof(int)=%d\n", sizeof(int)); // 4
            delay_ms(1000);
        }
        delay_ms(500);
    }
Damien's avatar
Damien committed
554
555
556
557

    //printf("init;al=%u\n", m_get_total_bytes_allocated()); // 1600, due to qstr_init
    //delay_ms(1000);

558
    #if 1
Damien's avatar
Damien committed
559
    // Python!
560
    if (0) {
Damien's avatar
Damien committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
        //const char *pysrc = "def f():\n  x=x+1\nprint(42)\n";
        const char *pysrc =
            // impl01.py
            /*
            "x = 0\n"
            "while x < 400:\n"
            "    y = 0\n"
            "    while y < 400:\n"
            "        z = 0\n"
            "        while z < 400:\n"
            "            z = z + 1\n"
            "        y = y + 1\n"
            "    x = x + 1\n";
            */
            // impl02.py
576
            /*
Damien's avatar
Damien committed
577
578
579
580
581
582
583
584
585
586
587
588
            "#@micropython.native\n"
            "def f():\n"
            "    x = 0\n"
            "    while x < 400:\n"
            "        y = 0\n"
            "        while y < 400:\n"
            "            z = 0\n"
            "            while z < 400:\n"
            "                z = z + 1\n"
            "            y = y + 1\n"
            "        x = x + 1\n"
            "f()\n";
589
            */
Damien's avatar
Damien committed
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
            /*
            "print('in python!')\n"
            "x = 0\n"
            "while x < 4:\n"
            "    pyb_led(True)\n"
            "    pyb_delay(201)\n"
            "    pyb_led(False)\n"
            "    pyb_delay(201)\n"
            "    x = x + 1\n"
            "print('press me!')\n"
            "while True:\n"
            "    pyb_led(pyb_sw())\n";
            */
            /*
            // impl16.py
            "@micropython.asm_thumb\n"
            "def delay(r0):\n"
            "    b(loop_entry)\n"
            "    label(loop1)\n"
            "    movw(r1, 55999)\n"
            "    label(loop2)\n"
            "    subs(r1, r1, 1)\n"
            "    cmp(r1, 0)\n"
            "    bgt(loop2)\n"
            "    subs(r0, r0, 1)\n"
            "    label(loop_entry)\n"
            "    cmp(r0, 0)\n"
            "    bgt(loop1)\n"
            "print('in python!')\n"
            "@micropython.native\n"
            "def flash(n):\n"
            "    x = 0\n"
            "    while x < n:\n"
            "        pyb_led(True)\n"
            "        delay(249)\n"
            "        pyb_led(False)\n"
            "        delay(249)\n"
            "        x = x + 1\n"
            "flash(20)\n";
            */
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
            // impl18.py
            /*
            "# basic exceptions\n"
            "x = 1\n"
            "try:\n"
            "    x.a()\n"
            "except:\n"
            "    print(x)\n";
            */
            // impl19.py
            "# for loop\n"
            "def f():\n"
            "    for x in range(400):\n"
            "        for y in range(400):\n"
            "            for z in range(400):\n"
            "                pass\n"
            "f()\n";
Damien's avatar
Damien committed
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678

        py_lexer_t *lex = py_lexer_from_str_len("<>", pysrc, strlen(pysrc), false);

        if (0) {
            while (!py_lexer_is_kind(lex, PY_TOKEN_END)) {
                py_token_show(py_lexer_cur(lex));
                py_lexer_to_next(lex);
                delay_ms(1000);
            }
        } else {
            // nalloc=1740;6340;6836 -> 140;4600;496 bytes for lexer, parser, compiler
            printf("lex; al=%u\n", m_get_total_bytes_allocated());
            delay_ms(1000);
            py_parse_node_t pn = py_parse(lex, 0);
            //printf("----------------\n");
            printf("pars;al=%u\n", m_get_total_bytes_allocated());
            delay_ms(1000);
            //parse_node_show(pn, 0);
            py_compile(pn);
            printf("comp;al=%u\n", m_get_total_bytes_allocated());
            delay_ms(1000);

            if (1) {
                // execute it!

                // add some functions to the python namespace
                rt_store_name(qstr_from_str_static("pyb_delay"), rt_make_function_1(pyb_delay));
                rt_store_name(qstr_from_str_static("pyb_led"), rt_make_function_1(pyb_led));
                rt_store_name(qstr_from_str_static("pyb_sw"), rt_make_function_0(pyb_sw));

                py_obj_t module_fun = rt_make_function_from_id(1);

679
                // flash once
Damien's avatar
Damien committed
680
681
682
                led_state(PYB_LEDG1_PORT_NUM, 1);
                delay_ms(100);
                led_state(PYB_LEDG1_PORT_NUM, 0);
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698

                nlr_buf_t nlr;
                if (nlr_push(&nlr) == 0) {
                    py_obj_t ret = rt_call_function_0(module_fun);
                    printf("done! got: ");
                    py_obj_print(ret);
                    printf("\n");
                    nlr_pop();
                } else {
                    // uncaught exception
                    printf("exception: ");
                    py_obj_print((py_obj_t)nlr.ret_val);
                    printf("\n");
                }

                // flash once
Damien's avatar
Damien committed
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
                led_state(PYB_LEDG1_PORT_NUM, 1);
                delay_ms(100);
                led_state(PYB_LEDG1_PORT_NUM, 0);

                delay_ms(1000);
                printf("nalloc=%u\n", m_get_total_bytes_allocated());
                delay_ms(1000);
            }
        }
    }
    #endif

    // benchmark C version of impl02.py
    if (0) {
        led_state(PYB_LEDG1_PORT_NUM, 1);
        delay_ms(100);
        led_state(PYB_LEDG1_PORT_NUM, 0);
        impl02_c_version();
        led_state(PYB_LEDG1_PORT_NUM, 1);
        delay_ms(100);
        led_state(PYB_LEDG1_PORT_NUM, 0);
    }

    // MMA testing
    if (0) {
        printf("1");
        mma_init();
        printf("2");
        mma_start(0x4c, 1);
        printf("3");
        mma_send_byte(0);
        printf("4");
        mma_stop();
        printf("5");
        mma_start(0x4c, 1);
        printf("6");
        mma_send_byte(0);
        printf("7");
        mma_restart(0x4c, 0);
        for (int i = 0; i <= 0xa; i++) {
            int data;
            if (i == 0xa) {
                data = mma_read_nack();
            } else {
                data = mma_read_ack();
            }
            printf(" %02x", data);
        }
        printf("\n");

        mma_start(0x4c, 1);
        mma_send_byte(7); // mode
        mma_send_byte(1); // active mode
        mma_stop();

        for (;;) {
            delay_ms(500);

            mma_start(0x4c, 1);
            mma_send_byte(0);
            mma_restart(0x4c, 0);
            for (int i = 0; i <= 3; i++) {
                int data;
                if (i == 3) {
                    data = mma_read_nack();
                    printf(" %02x\n", data);
                } else {
                    data = mma_read_ack() & 0x3f;
                    if (data & 0x20) {
                        data |= 0xc0;
                    }
                    printf(" % 2d", data);
                }
            }
        }
    }

    // fatfs testing
777
    if (0) {
Damien's avatar
Damien committed
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
        FRESULT res = f_mount(&fatfs0, "0:", 1);
        if (res == FR_OK) {
            printf("mount success\n");
        } else if (res == FR_NO_FILESYSTEM) {
            res = f_mkfs("0:", 0, 0);
            if (res == FR_OK) {
                printf("mkfs success\n");
            } else {
                printf("mkfs fail %d\n", res);
            }
        } else {
            printf("mount fail %d\n", res);
        }

        // write a file
        if (0) {
            FIL fp;
            f_open(&fp, "0:/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
            UINT n;
            f_write(&fp, "# this is boot.py\n", 18, &n);
            printf("wrote %d\n", n);
            f_close(&fp);
        }

        // read a file
803
        if (0) {
Damien's avatar
Damien committed
804
805
806
807
808
809
810
811
812
813
814
815
816
            FIL fp;
            f_open(&fp, "0:/boot.py", FA_READ);
            UINT n;
            char buf[20];
            f_read(&fp, buf, 18, &n);
            buf[n + 1] = 0;
            printf("read %d\n%s", n, buf);
            f_close(&fp);
        }

        DWORD nclst;
        FATFS *fatfs;
        f_getfree("0:", &nclst, &fatfs);
817
        printf("free=%u\n", (uint)(nclst * fatfs->csize * 512));
Damien's avatar
Damien committed
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855

    }

    // SD card testing
    if (0) {
        //sdio_init();
    }

    // USB VCP testing
    if (0) {
        //usb_vcp_init();
    }

    int i = 0;
    int n = 0;

    for (;;) {
        delay_ms(10);
        if (sw_get()) {
            led_state(PYB_LEDR1_PORT_NUM, 1);
            led_state(PYB_LEDG1_PORT_NUM, 0);
            i = 1 - i;
            if (i) {
                printf(" angel %05x.\n", n);
                //usb_vcp_send("hello!\r\n", 8);
            } else {
                printf(" mishka %4u.\n", n);
                //usb_vcp_send("angel!\r\n", 8);
            }
            n += 1;
        } else {
            led_state(PYB_LEDR1_PORT_NUM, 0);
            led_state(PYB_LEDG1_PORT_NUM, 1);
        }
    }

    return 0;
}