timer.c 56.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27 28 29 30 31 32 33
#include <stdint.h>
#include <stdio.h>
#include <string.h>

#include "usbd_cdc_msc_hid.h"
#include "usbd_cdc_interface.h"

34 35
#include "py/runtime.h"
#include "py/gc.h"
36 37
#include "timer.h"
#include "servo.h"
38
#include "pin.h"
39
#include "irq.h"
40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/// \moduleref pyb
/// \class Timer - periodically call a function
///
/// Timers can be used for a great variety of tasks.  At the moment, only
/// the simplest case is implemented: that of calling a function periodically.
///
/// Each timer consists of a counter that counts up at a certain rate.  The rate
/// at which it counts is the peripheral clock frequency (in Hz) divided by the
/// timer prescaler.  When the counter reaches the timer period it triggers an
/// event, and the counter resets back to zero.  By using the callback method,
/// the timer event can call a Python function.
///
/// Example usage to toggle an LED at a fixed frequency:
///
///     tim = pyb.Timer(4)              # create a timer object using timer 4
///     tim.init(freq=2)                # trigger at 2Hz
///     tim.callback(lambda t:pyb.LED(1).toggle())
///
/// Further examples:
///
///     tim = pyb.Timer(4, freq=100)    # freq in Hz
62
///     tim = pyb.Timer(4, prescaler=0, period=99)
63 64
///     tim.counter()                   # get counter (can also set)
///     tim.prescaler(2)                # set prescaler (can also get)
65
///     tim.period(199)                 # set period (can also get)
66 67 68
///     tim.callback(lambda t: ...)     # set callback for update interrupt (t=tim instance)
///     tim.callback(None)              # clear callback
///
69
/// *Note:* Timer 3 is used for fading the blue LED.  Timer 5 controls
70 71 72
/// the servo driver, and Timer 6 is used for timed ADC/DAC reading/writing.
/// It is recommended to use the other timers in your programs.

73 74 75 76 77 78 79 80
// The timers can be used by multiple drivers, and need a common point for
// the interrupts to be dispatched, so they are all collected here.
//
// TIM3:
//  - LED 4, PWM to set the LED intensity
//
// TIM5:
//  - servo controller, PWM
81 82 83 84
//
// TIM6:
//  - ADC, DAC for read_timed and write_timed

85 86 87 88 89 90 91 92 93 94
typedef enum {
    CHANNEL_MODE_PWM_NORMAL,
    CHANNEL_MODE_PWM_INVERTED,
    CHANNEL_MODE_OC_TIMING,
    CHANNEL_MODE_OC_ACTIVE,
    CHANNEL_MODE_OC_INACTIVE,
    CHANNEL_MODE_OC_TOGGLE,
    CHANNEL_MODE_OC_FORCED_ACTIVE,
    CHANNEL_MODE_OC_FORCED_INACTIVE,
    CHANNEL_MODE_IC,
95 96 97
    CHANNEL_MODE_ENC_A,
    CHANNEL_MODE_ENC_B,
    CHANNEL_MODE_ENC_AB,
98 99 100 101 102
} pyb_channel_mode;

STATIC const struct {
    qstr        name;
    uint32_t    oc_mode;
103
} channel_mode_info[] = {
104 105 106 107 108 109 110 111 112
    { MP_QSTR_PWM,                TIM_OCMODE_PWM1 },
    { MP_QSTR_PWM_INVERTED,       TIM_OCMODE_PWM2 },
    { MP_QSTR_OC_TIMING,          TIM_OCMODE_TIMING },
    { MP_QSTR_OC_ACTIVE,          TIM_OCMODE_ACTIVE },
    { MP_QSTR_OC_INACTIVE,        TIM_OCMODE_INACTIVE },
    { MP_QSTR_OC_TOGGLE,          TIM_OCMODE_TOGGLE },
    { MP_QSTR_OC_FORCED_ACTIVE,   TIM_OCMODE_FORCED_ACTIVE },
    { MP_QSTR_OC_FORCED_INACTIVE, TIM_OCMODE_FORCED_INACTIVE },
    { MP_QSTR_IC,                 0 },
113 114 115
    { MP_QSTR_ENC_A,              TIM_ENCODERMODE_TI1 },
    { MP_QSTR_ENC_B,              TIM_ENCODERMODE_TI2 },
    { MP_QSTR_ENC_AB,             TIM_ENCODERMODE_TI12 },
116 117 118 119 120 121 122 123 124 125 126
};

typedef struct _pyb_timer_channel_obj_t {
    mp_obj_base_t base;
    struct _pyb_timer_obj_t *timer;
    uint8_t channel;
    uint8_t mode;
    mp_obj_t callback;
    struct _pyb_timer_channel_obj_t *next;
} pyb_timer_channel_obj_t;

127 128
typedef struct _pyb_timer_obj_t {
    mp_obj_base_t base;
129 130
    uint8_t tim_id;
    uint8_t is_32bit;
131 132 133
    mp_obj_t callback;
    TIM_HandleTypeDef tim;
    IRQn_Type irqn;
134
    pyb_timer_channel_obj_t *channel;
135
} pyb_timer_obj_t;
136

137 138 139
// The following yields TIM_IT_UPDATE when channel is zero and
// TIM_IT_CC1..TIM_IT_CC4 when channel is 1..4
#define TIMER_IRQ_MASK(channel) (1 << (channel))
140
#define TIMER_CNT_MASK(self)    ((self)->is_32bit ? 0xffffffff : 0xffff)
141 142
#define TIMER_CHANNEL(self)     ((((self)->channel) - 1) << 2)

143
TIM_HandleTypeDef TIM5_Handle;
144
TIM_HandleTypeDef TIM6_Handle;
145

146
#define PYB_TIMER_OBJ_ALL_NUM MP_ARRAY_SIZE(MP_STATE_PORT(pyb_timer_obj_all))
147

148 149
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in);
STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback);
150
STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback);
151

152 153
void timer_init0(void) {
    for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
154
        MP_STATE_PORT(pyb_timer_obj_all)[i] = NULL;
155 156 157
    }
}

158 159 160
// unregister all interrupt sources
void timer_deinit(void) {
    for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
161
        pyb_timer_obj_t *tim = MP_STATE_PORT(pyb_timer_obj_all)[i];
162 163 164 165 166 167
        if (tim != NULL) {
            pyb_timer_deinit(tim);
        }
    }
}

168
// TIM5 is set-up for the servo controller
169
// This function inits but does not start the timer
170 171 172 173 174
void timer_tim5_init(void) {
    // TIM5 clock enable
    __TIM5_CLK_ENABLE();

    // set up and enable interrupt
175
    HAL_NVIC_SetPriority(TIM5_IRQn, IRQ_PRI_TIM5, IRQ_SUBPRI_TIM5);
176 177 178 179
    HAL_NVIC_EnableIRQ(TIM5_IRQn);

    // PWM clock configuration
    TIM5_Handle.Instance = TIM5;
180
    TIM5_Handle.Init.Period = 2000 - 1; // timer cycles at 50Hz
181
    TIM5_Handle.Init.Prescaler = (timer_get_source_freq(5) / 100000) - 1; // timer runs at 100kHz
182
    TIM5_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
183
    TIM5_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
184

185 186 187
    HAL_TIM_PWM_Init(&TIM5_Handle);
}

188
#if defined(TIM6)
189 190 191
// Init TIM6 with a counter-overflow at the given frequency (given in Hz)
// TIM6 is used by the DAC and ADC for auto sampling at a given frequency
// This function inits but does not start the timer
192
TIM_HandleTypeDef *timer_tim6_init(uint freq) {
193 194 195 196 197
    // TIM6 clock enable
    __TIM6_CLK_ENABLE();

    // Timer runs at SystemCoreClock / 2
    // Compute the prescaler value so TIM6 triggers at freq-Hz
198
    uint32_t period = MAX(1, timer_get_source_freq(6) / freq);
199 200 201 202 203 204 205 206 207 208
    uint32_t prescaler = 1;
    while (period > 0xffff) {
        period >>= 1;
        prescaler <<= 1;
    }

    // Time base clock configuration
    TIM6_Handle.Instance = TIM6;
    TIM6_Handle.Init.Period = period - 1;
    TIM6_Handle.Init.Prescaler = prescaler - 1;
209
    TIM6_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // unused for TIM6
210 211
    TIM6_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; // unused for TIM6
    HAL_TIM_Base_Init(&TIM6_Handle);
212 213

    return &TIM6_Handle;
214
}
215
#endif
216

217 218
// Interrupt dispatch
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
219
    #if MICROPY_HW_ENABLE_SERVO
220
    if (htim == &TIM5_Handle) {
221 222
        servo_timer_irq_callback();
    }
223
    #endif
224 225
}

226 227 228 229 230
// Get the frequency (in Hz) of the source clock for the given timer.
// On STM32F405/407/415/417 there are 2 cases for how the clock freq is set.
// If the APB prescaler is 1, then the timer clock is equal to its respective
// APB clock.  Otherwise (APB prescaler > 1) the timer clock is twice its
// respective APB clock.  See DM00031020 Rev 4, page 115.
231
uint32_t timer_get_source_freq(uint32_t tim_id) {
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    uint32_t source;
    if (tim_id == 1 || (8 <= tim_id && tim_id <= 11)) {
        // TIM{1,8,9,10,11} are on APB2
        source = HAL_RCC_GetPCLK2Freq();
        if ((uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3) != RCC_HCLK_DIV1) {
            source *= 2;
        }
    } else {
        // TIM{2,3,4,5,6,7,12,13,14} are on APB1
        source = HAL_RCC_GetPCLK1Freq();
        if ((uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1) != RCC_HCLK_DIV1) {
            source *= 2;
        }
    }
    return source;
}

249 250 251
/******************************************************************************/
/* Micro Python bindings                                                      */

252 253
STATIC const mp_obj_type_t pyb_timer_channel_type;

Dave Hylands's avatar
Dave Hylands committed
254 255 256 257
// This is the largest value that we can multiply by 100 and have the result
// fit in a uint32_t.
#define MAX_PERIOD_DIV_100  42949672

258 259 260 261 262 263 264 265 266 267 268 269
// computes prescaler and period so TIM triggers at freq-Hz
STATIC uint32_t compute_prescaler_period_from_freq(pyb_timer_obj_t *self, mp_obj_t freq_in, uint32_t *period_out) {
    uint32_t source_freq = timer_get_source_freq(self->tim_id);
    uint32_t prescaler = 1;
    uint32_t period;
    if (0) {
    #if MICROPY_PY_BUILTINS_FLOAT
    } else if (MP_OBJ_IS_TYPE(freq_in, &mp_type_float)) {
        float freq = mp_obj_get_float(freq_in);
        if (freq <= 0) {
            goto bad_freq;
        }
270 271 272 273 274
        while (freq < 1 && prescaler < 6553) {
            prescaler *= 10;
            freq *= 10;
        }
        period = (float)source_freq / freq;
275 276 277 278 279 280 281 282
    #endif
    } else {
        mp_int_t freq = mp_obj_get_int(freq_in);
        if (freq <= 0) {
            goto bad_freq;
            bad_freq:
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "must have positive freq"));
        }
283
        period = source_freq / freq;
284
    }
285
    period = MAX(1, period);
286
    while (period > TIMER_CNT_MASK(self)) {
287 288 289 290 291 292 293 294 295 296 297 298
        // if we can divide exactly, do that first
        if (period % 5 == 0) {
            prescaler *= 5;
            period /= 5;
        } else if (period % 3 == 0) {
            prescaler *= 3;
            period /= 3;
        } else {
            // may not divide exactly, but loses minimal precision
            prescaler <<= 1;
            period >>= 1;
        }
299 300 301 302 303
    }
    *period_out = (period - 1) & TIMER_CNT_MASK(self);
    return (prescaler - 1) & 0xffff;
}

Dave Hylands's avatar
Dave Hylands committed
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
// Helper function for determining the period used for calculating percent
STATIC uint32_t compute_period(pyb_timer_obj_t *self) {
    // In center mode,  compare == period corresponds to 100%
    // In edge mode, compare == (period + 1) corresponds to 100%
    uint32_t period = (__HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self));
    if (period != 0xffffffff) {
        if (self->tim.Init.CounterMode == TIM_COUNTERMODE_UP ||
            self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN) {
            // Edge mode
            period++;
        }
    }
    return period;
}

319
// Helper function to compute PWM value from timer period and percent value.
Dave Hylands's avatar
Dave Hylands committed
320 321 322
// 'percent_in' can be an int or a float between 0 and 100 (out of range
// values are clamped).
STATIC uint32_t compute_pwm_value_from_percent(uint32_t period, mp_obj_t percent_in) {
323 324 325
    uint32_t cmp;
    if (0) {
    #if MICROPY_PY_BUILTINS_FLOAT
Dave Hylands's avatar
Dave Hylands committed
326
    } else if (MP_OBJ_IS_TYPE(percent_in, &mp_type_float)) {
327
        mp_float_t percent = mp_obj_get_float(percent_in);
Dave Hylands's avatar
Dave Hylands committed
328 329 330 331 332
        if (percent <= 0.0) {
            cmp = 0;
        } else if (percent >= 100.0) {
            cmp = period;
        } else {
333
            cmp = percent / 100.0 * ((mp_float_t)period);
Dave Hylands's avatar
Dave Hylands committed
334
        }
335 336 337 338 339
    #endif
    } else {
        // For integer arithmetic, if period is large and 100*period will
        // overflow, then divide period before multiplying by cmp.  Otherwise
        // do it the other way round to retain precision.
Dave Hylands's avatar
Dave Hylands committed
340 341 342 343 344 345 346
        mp_int_t percent = mp_obj_get_int(percent_in);
        if (percent <= 0) {
            cmp = 0;
        } else if (percent >= 100) {
            cmp = period;
        } else if (period > MAX_PERIOD_DIV_100) {
            cmp = (uint32_t)percent * (period / 100);
347
        } else {
Dave Hylands's avatar
Dave Hylands committed
348
            cmp = ((uint32_t)percent * period) / 100;
349 350 351 352 353
        }
    }
    return cmp;
}

Dave Hylands's avatar
Dave Hylands committed
354 355 356
// Helper function to compute percentage from timer perion and PWM value.
STATIC mp_obj_t compute_percent_from_pwm_value(uint32_t period, uint32_t cmp) {
    #if MICROPY_PY_BUILTINS_FLOAT
357
    mp_float_t percent;
358
    if (cmp >= period) {
Dave Hylands's avatar
Dave Hylands committed
359 360
        percent = 100.0;
    } else {
361
        percent = (mp_float_t)cmp * 100.0 / ((mp_float_t)period);
Dave Hylands's avatar
Dave Hylands committed
362 363 364 365
    }
    return mp_obj_new_float(percent);
    #else
    mp_int_t percent;
366
    if (cmp >= period) {
Dave Hylands's avatar
Dave Hylands committed
367
        percent = 100;
368 369
    } else if (cmp > MAX_PERIOD_DIV_100) {
        percent = cmp / (period / 100);
Dave Hylands's avatar
Dave Hylands committed
370 371 372 373 374 375 376
    } else {
        percent = cmp * 100 / period;
    }
    return mp_obj_new_int(percent);
    #endif
}

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
// Computes the 8-bit value for the DTG field in the BDTR register.
//
// 1 tick = 1 count of the timer's clock (source_freq) divided by div.
// 0-128 ticks in inrements of 1
// 128-256 ticks in increments of 2
// 256-512 ticks in increments of 8
// 512-1008 ticks in increments of 16
STATIC uint32_t compute_dtg_from_ticks(mp_int_t ticks) {
    if (ticks <= 0) {
        return 0;
    }
    if (ticks < 128) {
        return ticks;
    }
    if (ticks < 256) {
        return 0x80 | ((ticks - 128) / 2);
    }
    if (ticks < 512) {
        return 0xC0 | ((ticks - 256) / 8);
    }
    if (ticks < 1008) {
        return 0xE0 | ((ticks - 512) / 16);
    }
    return 0xFF;
}

// Given the 8-bit value stored in the DTG field of the BDTR register, compute
// the number of ticks.
STATIC mp_int_t compute_ticks_from_dtg(uint32_t dtg) {
    if ((dtg & 0x80) == 0) {
        return dtg & 0x7F;
    }
    if ((dtg & 0xC0) == 0x80) {
        return 128 + ((dtg & 0x3F) * 2);
    }
    if ((dtg & 0xE0) == 0xC0) {
        return 256 + ((dtg & 0x1F) * 8);
    }
    return 512 + ((dtg & 0x1F) * 16);
}

STATIC void config_deadtime(pyb_timer_obj_t *self, mp_int_t ticks) {
    TIM_BreakDeadTimeConfigTypeDef deadTimeConfig;
    deadTimeConfig.OffStateRunMode  = TIM_OSSR_DISABLE;
    deadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
    deadTimeConfig.LockLevel        = TIM_LOCKLEVEL_OFF;
    deadTimeConfig.DeadTime         = compute_dtg_from_ticks(ticks);
    deadTimeConfig.BreakState       = TIM_BREAK_DISABLE;
    deadTimeConfig.BreakPolarity    = TIM_BREAKPOLARITY_LOW;
    deadTimeConfig.AutomaticOutput  = TIM_AUTOMATICOUTPUT_DISABLE;
    HAL_TIMEx_ConfigBreakDeadTime(&self->tim, &deadTimeConfig);
}

430
TIM_HandleTypeDef *pyb_timer_get_handle(mp_obj_t timer) {
431 432 433
    if (mp_obj_get_type(timer) != &pyb_timer_type) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "need a Timer object"));
    }
434 435 436 437
    pyb_timer_obj_t *self = timer;
    return &self->tim;
}

438
STATIC void pyb_timer_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
439 440 441
    pyb_timer_obj_t *self = self_in;

    if (self->tim.State == HAL_TIM_STATE_RESET) {
442
        mp_printf(print, "Timer(%u)", self->tim_id);
443
    } else {
444 445 446 447
        uint32_t prescaler = self->tim.Instance->PSC & 0xffff;
        uint32_t period = __HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self);
        // for efficiency, we compute and print freq as an int (not a float)
        uint32_t freq = timer_get_source_freq(self->tim_id) / ((prescaler + 1) * (period + 1));
448
        mp_printf(print, "Timer(%u, freq=%u, prescaler=%u, period=%u, mode=%s, div=%u",
449
            self->tim_id,
450 451 452
            freq,
            prescaler,
            period,
453 454 455 456
            self->tim.Init.CounterMode == TIM_COUNTERMODE_UP     ? "UP" :
            self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN   ? "DOWN" : "CENTER",
            self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV4 ? 4 :
            self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV2 ? 2 : 1);
457 458 459 460 461 462 463 464 465

        #if defined(IS_TIM_ADVANCED_INSTANCE)
        if (IS_TIM_ADVANCED_INSTANCE(self->tim.Instance))
        #elif defined(IS_TIM_BREAK_INSTANCE)
        if (IS_TIM_BREAK_INSTANCE(self->tim.Instance))
        #else
        if (0)
        #endif
        {
466 467
            mp_printf(print, ", deadtime=%u",
                compute_ticks_from_dtg(self->tim.Instance->BDTR & TIM_BDTR_DTG));
468
        }
469
        mp_print_str(print, ")");
470 471
    }
}
472

473 474 475 476 477
/// \method init(*, freq, prescaler, period)
/// Initialise the timer.  Initialisation must be either by frequency (in Hz)
/// or by prescaler and period:
///
///     tim.init(freq=100)                  # set the timer to trigger at 100Hz
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
///     tim.init(prescaler=83, period=999)  # set the prescaler and period directly
///
/// Keyword arguments:
///
///   - `freq` - specifies the periodic frequency of the timer. You migh also
///              view this as the frequency with which the timer goes through
///              one complete cycle.
///
///   - `prescaler` [0-0xffff] - specifies the value to be loaded into the
///                 timer's Prescaler Register (PSC). The timer clock source is divided by
///     (`prescaler + 1`) to arrive at the timer clock. Timers 2-7 and 12-14
///     have a clock source of 84 MHz (pyb.freq()[2] * 2), and Timers 1, and 8-11
///     have a clock source of 168 MHz (pyb.freq()[3] * 2).
///
///   - `period` [0-0xffff] for timers 1, 3, 4, and 6-15. [0-0x3fffffff] for timers 2 & 5.
///              Specifies the value to be loaded into the timer's AutoReload
///     Register (ARR). This determines the period of the timer (i.e. when the
///     counter cycles). The timer counter will roll-over after `period + 1`
///     timer clock cycles.
///
///   - `mode` can be one of:
///     - `Timer.UP` - configures the timer to count from 0 to ARR (default)
///     - `Timer.DOWN` - configures the timer to count from ARR down to 0.
///     - `Timer.CENTER` - confgures the timer to count from 0 to ARR and
///       then back down to 0.
///
///   - `div` can be one of 1, 2, or 4. Divides the timer clock to determine
///       the sampling clock used by the digital filters.
///
///   - `callback` - as per Timer.callback()
///
509 510 511 512 513 514 515 516
///   - `deadtime` - specifies the amount of "dead" or inactive time between
///       transitions on complimentary channels (both channels will be inactive)
///       for this time). `deadtime` may be an integer between 0 and 1008, with
///       the following restrictions: 0-128 in steps of 1. 128-256 in steps of
///       2, 256-512 in steps of 8, and 512-1008 in steps of 16. `deadime`
///       measures ticks of `source_freq` divided by `div` clock ticks.
///       `deadtime` is only available on timers 1 and 8.
///
517
///  You must either specify freq or both of period and prescaler.
518 519 520 521 522 523 524 525
STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_freq,         MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_prescaler,    MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
        { MP_QSTR_period,       MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
        { MP_QSTR_mode,         MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = TIM_COUNTERMODE_UP} },
        { MP_QSTR_div,          MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
        { MP_QSTR_callback,     MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
526
        { MP_QSTR_deadtime,     MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
527
    };
528

529
    // parse args
530 531
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
532

533 534
    // set the TIM configuration values
    TIM_Base_InitTypeDef *init = &self->tim.Init;
535

536 537 538 539
    if (args[0].u_obj != mp_const_none) {
        // set prescaler and period from desired frequency
        init->Prescaler = compute_prescaler_period_from_freq(self, args[0].u_obj, &init->Period);
    } else if (args[1].u_int != 0xffffffff && args[2].u_int != 0xffffffff) {
540
        // set prescaler and period directly
541 542
        init->Prescaler = args[1].u_int;
        init->Period = args[2].u_int;
543 544 545 546
    } else {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "must specify either freq, or prescaler and period"));
    }

547 548 549 550
    init->CounterMode = args[3].u_int;
    if (!IS_TIM_COUNTER_MODE(init->CounterMode)) {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid mode (%d)", init->CounterMode));
    }
551

552 553
    init->ClockDivision = args[4].u_int == 2 ? TIM_CLOCKDIVISION_DIV2 :
                          args[4].u_int == 4 ? TIM_CLOCKDIVISION_DIV4 :
554
                                               TIM_CLOCKDIVISION_DIV1;
555

556
    init->RepetitionCounter = 0;
557

558
    // enable TIM clock
559 560 561 562 563 564
    switch (self->tim_id) {
        case 1: __TIM1_CLK_ENABLE(); break;
        case 2: __TIM2_CLK_ENABLE(); break;
        case 3: __TIM3_CLK_ENABLE(); break;
        case 4: __TIM4_CLK_ENABLE(); break;
        case 5: __TIM5_CLK_ENABLE(); break;
565
        #if defined(TIM6)
566
        case 6: __TIM6_CLK_ENABLE(); break;
567 568
        #endif
        #if defined(TIM7)
569
        case 7: __TIM7_CLK_ENABLE(); break;
570 571
        #endif
        #if defined(TIM8)
572
        case 8: __TIM8_CLK_ENABLE(); break;
573
        #endif
574
        #if defined(TIM9)
575
        case 9: __TIM9_CLK_ENABLE(); break;
576 577
        #endif
        #if defined(TIM10)
578
        case 10: __TIM10_CLK_ENABLE(); break;
579 580
        #endif
        #if defined(TIM11)
581
        case 11: __TIM11_CLK_ENABLE(); break;
582
        #endif
583
        #if defined(TIM12)
584
        case 12: __TIM12_CLK_ENABLE(); break;
585 586
        #endif
        #if defined(TIM13)
587
        case 13: __TIM13_CLK_ENABLE(); break;
588 589
        #endif
        #if defined(TIM14)
590
        case 14: __TIM14_CLK_ENABLE(); break;
591
        #endif
592 593 594 595 596 597 598 599 600
        #if defined(TIM15)
        case 15: __TIM15_CLK_ENABLE(); break;
        #endif
        #if defined(TIM16)
        case 16: __TIM16_CLK_ENABLE(); break;
        #endif
        #if defined(TIM17)
        case 17: __TIM17_CLK_ENABLE(); break;
        #endif
601
    }
602 603

    // set IRQ priority (if not a special timer)
604
    if (self->tim_id != 5) {
605
        HAL_NVIC_SetPriority(self->irqn, IRQ_PRI_TIMX, IRQ_SUBPRI_TIMX);
606 607 608 609 610 611 612
        if (self->tim_id == 1) {
            HAL_NVIC_SetPriority(TIM1_CC_IRQn, IRQ_PRI_TIMX, IRQ_SUBPRI_TIMX);
        #if defined(TIM8)
        } else if (self->tim_id == 8) {
            HAL_NVIC_SetPriority(TIM8_CC_IRQn, IRQ_PRI_TIMX, IRQ_SUBPRI_TIMX);
        #endif
        }
613
    }
614

615
    // init TIM
616
    HAL_TIM_Base_Init(&self->tim);
617
    #if defined(IS_TIM_ADVANCED_INSTANCE)
618
    if (IS_TIM_ADVANCED_INSTANCE(self->tim.Instance)) {
619 620 621 622 623
    #elif defined(IS_TIM_BREAK_INSTANCE)
    if (IS_TIM_BREAK_INSTANCE(self->tim.Instance)) {
    #else
    if (0) {
    #endif
624 625
        config_deadtime(self, args[6].u_int);
    }
626
    if (args[5].u_obj == mp_const_none) {
627 628
        HAL_TIM_Base_Start(&self->tim);
    } else {
629
        pyb_timer_callback(self, args[5].u_obj);
630 631
    }

632 633 634
    return mp_const_none;
}

635 636 637 638
/// \classmethod \constructor(id, ...)
/// Construct a new timer object of the given id.  If additional
/// arguments are given, then the timer is initialised by `init(...)`.
/// `id` can be 1 to 14, excluding 3.
639
STATIC mp_obj_t pyb_timer_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
640 641 642 643 644
    // check arguments
    mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);

    // create new Timer object
    pyb_timer_obj_t *tim = m_new_obj(pyb_timer_obj_t);
645 646
    memset(tim, 0, sizeof(*tim));

647 648
    tim->base.type = &pyb_timer_type;
    tim->callback = mp_const_none;
649
    tim->channel = NULL;
650 651 652

    // get TIM number
    tim->tim_id = mp_obj_get_int(args[0]);
653
    tim->is_32bit = false;
654 655

    switch (tim->tim_id) {
656
        #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
657
        case 1: tim->tim.Instance = TIM1; tim->irqn = TIM1_UP_TIM10_IRQn; break;
658 659 660
        #elif defined(MCU_SERIES_L4)
        case 1: tim->tim.Instance = TIM1; tim->irqn = TIM1_UP_TIM16_IRQn; break;
        #endif
661
        case 2: tim->tim.Instance = TIM2; tim->irqn = TIM2_IRQn; tim->is_32bit = true; break;
662
        case 3: tim->tim.Instance = TIM3; tim->irqn = TIM3_IRQn; break;
663
        case 4: tim->tim.Instance = TIM4; tim->irqn = TIM4_IRQn; break;
664
        case 5: tim->tim.Instance = TIM5; tim->irqn = TIM5_IRQn; tim->is_32bit = true; break;
665
        #if defined(TIM6)
666
        case 6: tim->tim.Instance = TIM6; tim->irqn = TIM6_DAC_IRQn; break;
667 668
        #endif
        #if defined(TIM7)
669
        case 7: tim->tim.Instance = TIM7; tim->irqn = TIM7_IRQn; break;
670 671
        #endif
        #if defined(TIM8)
672
        #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
673
        case 8: tim->tim.Instance = TIM8; tim->irqn = TIM8_UP_TIM13_IRQn; break;
674 675 676
        #elif defined(MCU_SERIES_L4)
        case 8: tim->tim.Instance = TIM8; tim->irqn = TIM8_UP_IRQn; break;
        #endif
677
        #endif
678
        #if defined(TIM9)
679
        case 9: tim->tim.Instance = TIM9; tim->irqn = TIM1_BRK_TIM9_IRQn; break;
680 681
        #endif
        #if defined(TIM10)
682
        case 10: tim->tim.Instance = TIM10; tim->irqn = TIM1_UP_TIM10_IRQn; break;
683 684
        #endif
        #if defined(TIM11)
685
        case 11: tim->tim.Instance = TIM11; tim->irqn = TIM1_TRG_COM_TIM11_IRQn; break;
686
        #endif
687
        #if defined(TIM12)
688
        case 12: tim->tim.Instance = TIM12; tim->irqn = TIM8_BRK_TIM12_IRQn; break;
689 690
        #endif
        #if defined(TIM13)
691
        case 13: tim->tim.Instance = TIM13; tim->irqn = TIM8_UP_TIM13_IRQn; break;
692 693
        #endif
        #if defined(TIM14)
694
        case 14: tim->tim.Instance = TIM14; tim->irqn = TIM8_TRG_COM_TIM14_IRQn; break;
695
        #endif
696 697 698 699 700 701 702 703 704
        #if defined(TIM15)
        case 15: tim->tim.Instance = TIM15; tim->irqn = TIM1_BRK_TIM15_IRQn; break;
        #endif
        #if defined(TIM16)
        case 16: tim->tim.Instance = TIM16; tim->irqn = TIM1_UP_TIM16_IRQn; break;
        #endif
        #if defined(TIM17)
        case 17: tim->tim.Instance = TIM17; tim->irqn = TIM1_TRG_COM_TIM17_IRQn; break;
        #endif
705
        default: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Timer(%d) doesn't exist", tim->tim_id));
706 707
    }

708 709 710 711 712
    // set the global variable for interrupt callbacks
    if (tim->tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) {
        MP_STATE_PORT(pyb_timer_obj_all)[tim->tim_id - 1] = tim;
    }

713 714 715 716 717 718 719 720
    if (n_args > 1 || n_kw > 0) {
        // start the peripheral
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
        pyb_timer_init_helper(tim, n_args - 1, args + 1, &kw_args);
    }

    return (mp_obj_t)tim;
721 722
}

723
STATIC mp_obj_t pyb_timer_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
724
    return pyb_timer_init_helper(args[0], n_args - 1, args + 1, kw_args);
725
}
726
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_init_obj, 1, pyb_timer_init);
727

728
// timer.deinit()
729
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in) {
730 731
    pyb_timer_obj_t *self = self_in;

732
    // Disable the base interrupt
733 734
    pyb_timer_callback(self_in, mp_const_none);

735 736 737 738 739 740 741 742 743 744 745
    pyb_timer_channel_obj_t *chan = self->channel;
    self->channel = NULL;

    // Disable the channel interrupts
    while (chan != NULL) {
        pyb_timer_channel_callback(chan, mp_const_none);
        pyb_timer_channel_obj_t *prev_chan = chan;
        chan = chan->next;
        prev_chan->next = NULL;
    }

746
    self->tim.State = HAL_TIM_STATE_RESET;
747 748 749
    self->tim.Instance->CCER = 0x0000; // disable all capture/compare outputs
    self->tim.Instance->CR1 = 0x0000; // disable the timer and reset its state

750 751 752 753
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_deinit_obj, pyb_timer_deinit);

754 755
/// \method channel(channel, mode, ...)
///
756 757
/// If only a channel number is passed, then a previously initialized channel
/// object is returned (or `None` if there is no previous channel).
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
///
/// Othwerwise, a TimerChannel object is initialized and returned.
///
/// Each channel can be configured to perform pwm, output compare, or
/// input capture. All channels share the same underlying timer, which means
/// that they share the same timer clock.
///
/// Keyword arguments:
///
///   - `mode` can be one of:
///     - `Timer.PWM` - configure the timer in PWM mode (active high).
///     - `Timer.PWM_INVERTED` - configure the timer in PWM mode (active low).
///     - `Timer.OC_TIMING` - indicates that no pin is driven.
///     - `Timer.OC_ACTIVE` - the pin will be made active when a compare
///        match occurs (active is determined by polarity)
///     - `Timer.OC_INACTIVE` - the pin will be made inactive when a compare
///        match occurs.
///     - `Timer.OC_TOGGLE` - the pin will be toggled when an compare match occurs.
///     - `Timer.OC_FORCED_ACTIVE` - the pin is forced active (compare match is ignored).
///     - `Timer.OC_FORCED_INACTIVE` - the pin is forced inactive (compare match is ignored).
///     - `Timer.IC` - configure the timer in Input Capture mode.
779 780 781
///     - `Timer.ENC_A` --- configure the timer in Encoder mode. The counter only changes when CH1 changes.
///     - `Timer.ENC_B` --- configure the timer in Encoder mode. The counter only changes when CH2 changes.
///     - `Timer.ENC_AB` --- configure the timer in Encoder mode. The counter changes when CH1 or CH2 changes.
782 783 784 785 786 787 788 789 790 791
///
///   - `callback` - as per TimerChannel.callback()
///
///   - `pin` None (the default) or a Pin object. If specified (and not None)
///           this will cause the alternate function of the the indicated pin
///      to be configured for this timer channel. An error will be raised if
///      the pin doesn't support any alternate functions for this timer channel.
///
/// Keyword arguments for Timer.PWM modes:
///
792
///   - `pulse_width` - determines the initial pulse width value to use.
793
///   - `pulse_width_percent` - determines the initial pulse width percentage to use.
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
///
/// Keyword arguments for Timer.OC modes:
///
///   - `compare` - determines the initial value of the compare register.
///
///   - `polarity` can be one of:
///     - `Timer.HIGH` - output is active high
///     - `Timer.LOW` - output is acive low
///
/// Optional keyword arguments for Timer.IC modes:
///
///   - `polarity` can be one of:
///     - `Timer.RISING` - captures on rising edge.
///     - `Timer.FALLING` - captures on falling edge.
///     - `Timer.BOTH` - captures on both edges.
///
810 811 812
///   Note that capture only works on the primary channel, and not on the
///   complimentary channels.
///
813 814 815 816 817 818 819 820
/// Notes for Timer.ENC modes:
///
///   - Requires 2 pins, so one or both pins will need to be configured to use
///     the appropriate timer AF using the Pin API.
///   - Read the encoder value using the timer.counter() method.
///   - Only works on CH1 and CH2 (and not on CH1N or CH2N)
///   - The channel number is ignored when setting the encoder mode.
///
821 822 823 824 825
/// PWM Example:
///
///     timer = pyb.Timer(2, freq=1000)
///     ch2 = timer.channel(2, pyb.Timer.PWM, pin=pyb.Pin.board.X2, pulse_width=210000)
///     ch3 = timer.channel(3, pyb.Timer.PWM, pin=pyb.Pin.board.X3, pulse_width=420000)
826 827 828 829 830 831 832 833 834 835
STATIC mp_obj_t pyb_timer_channel(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_mode,                MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_callback,            MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_pin,                 MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_pulse_width,         MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_pulse_width_percent, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_compare,             MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_polarity,            MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
    };
836

837 838
    pyb_timer_obj_t *self = pos_args[0];
    mp_int_t channel = mp_obj_get_int(pos_args[1]);
839 840

    if (channel < 1 || channel > 4) {
841
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid channel (%d)", channel));
842 843 844 845 846 847 848 849 850 851 852 853
    }

    pyb_timer_channel_obj_t *chan = self->channel;
    pyb_timer_channel_obj_t *prev_chan = NULL;

    while (chan != NULL) {
        if (chan->channel == channel) {
            break;
        }
        prev_chan = chan;
        chan = chan->next;
    }
854 855 856

    // If only the channel number is given return the previously allocated
    // channel (or None if no previous channel).
857
    if (n_args == 2 && kw_args->used == 0) {
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
        if (chan) {
            return chan;
        }
        return mp_const_none;
    }

    // If there was already a channel, then remove it from the list. Note that
    // the order we do things here is important so as to appear atomic to
    // the IRQ handler.
    if (chan) {
        // Turn off any IRQ associated with the channel.
        pyb_timer_channel_callback(chan, mp_const_none);

        // Unlink the channel from the list.
        if (prev_chan) {
            prev_chan->next = chan->next;
        }
        self->channel = chan->next;
        chan->next = NULL;
    }

    // Allocate and initialize a new channel
880 881
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
882 883 884 885 886 887

    chan = m_new_obj(pyb_timer_channel_obj_t);
    memset(chan, 0, sizeof(*chan));
    chan->base.type = &pyb_timer_channel_type;
    chan->timer = self;
    chan->channel = channel;
888 889
    chan->mode = args[0].u_int;
    chan->callback = args[1].u_obj;
890

891
    mp_obj_t pin_obj = args[2].u_obj;
892 893 894 895 896 897 898
    if (pin_obj != mp_const_none) {
        if (!MP_OBJ_IS_TYPE(pin_obj, &pin_type)) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "pin argument needs to be be a Pin type"));
        }
        const pin_obj_t *pin = pin_obj;
        const pin_af_obj_t *af = pin_find_af(pin, AF_FN_TIM, self->tim_id);
        if (af == NULL) {
899
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Pin(%q) doesn't have an af for Timer(%d)", pin->name, self->tim_id));
900 901
        }
        // pin.init(mode=AF_PP, af=idx)
902
        const mp_obj_t args2[6] = {
903 904 905 906 907
            (mp_obj_t)&pin_init_obj,
            pin_obj,
            MP_OBJ_NEW_QSTR(MP_QSTR_mode),  MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_PP),
            MP_OBJ_NEW_QSTR(MP_QSTR_af),    MP_OBJ_NEW_SMALL_INT(af->idx)
        };
908
        mp_call_method_n_kw(0, 2, args2);
909 910 911 912 913 914 915 916 917 918 919 920 921 922
    }

    // Link the channel to the timer before we turn the channel on.
    // Note that this needs to appear atomic to the IRQ handler (the write
    // to self->channel is atomic, so we're good, but I thought I'd mention
    // in case this was ever changed in the future).
    chan->next = self->channel;
    self->channel = chan;

    switch (chan->mode) {

        case CHANNEL_MODE_PWM_NORMAL:
        case CHANNEL_MODE_PWM_INVERTED: {
            TIM_OC_InitTypeDef oc_config;
923
            oc_config.OCMode = channel_mode_info[chan->mode].oc_mode;
924
            if (args[4].u_obj != mp_const_none) {
925
                // pulse width percent given
Dave Hylands's avatar
Dave Hylands committed
926
                uint32_t period = compute_period(self);
927
                oc_config.Pulse = compute_pwm_value_from_percent(period, args[4].u_obj);
928
            } else {
929
                // use absolute pulse width value (defaults to 0 if nothing given)
930
                oc_config.Pulse = args[3].u_int;
931
            }
932 933 934 935 936 937 938 939 940 941
            oc_config.OCPolarity   = TIM_OCPOLARITY_HIGH;
            oc_config.OCNPolarity  = TIM_OCNPOLARITY_HIGH;
            oc_config.OCFastMode   = TIM_OCFAST_DISABLE;
            oc_config.OCIdleState  = TIM_OCIDLESTATE_SET;
            oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;

            HAL_TIM_PWM_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan));
            if (chan->callback == mp_const_none) {
                HAL_TIM_PWM_Start(&self->tim, TIMER_CHANNEL(chan));
            } else {
942
                pyb_timer_channel_callback(chan, chan->callback);
943
            }
944 945 946 947
            // Start the complimentary channel too (if its supported)
            if (IS_TIM_CCXN_INSTANCE(self->tim.Instance, TIMER_CHANNEL(chan))) {
                HAL_TIMEx_PWMN_Start(&self->tim, TIMER_CHANNEL(chan));
            }
948 949 950 951 952 953 954 955 956 957
            break;
        }

        case CHANNEL_MODE_OC_TIMING:
        case CHANNEL_MODE_OC_ACTIVE:
        case CHANNEL_MODE_OC_INACTIVE:
        case CHANNEL_MODE_OC_TOGGLE:
        case CHANNEL_MODE_OC_FORCED_ACTIVE:
        case CHANNEL_MODE_OC_FORCED_INACTIVE: {
            TIM_OC_InitTypeDef oc_config;
958
            oc_config.OCMode       = channel_mode_info[chan->mode].oc_mode;
959 960
            oc_config.Pulse        = args[5].u_int;
            oc_config.OCPolarity   = args[6].u_int;
961 962 963
            if (oc_config.OCPolarity == 0xffffffff) {
                oc_config.OCPolarity = TIM_OCPOLARITY_HIGH;
            }
964 965 966 967 968
            if (oc_config.OCPolarity == TIM_OCPOLARITY_HIGH) {
                oc_config.OCNPolarity  = TIM_OCNPOLARITY_HIGH;
            } else {
                oc_config.OCNPolarity  = TIM_OCNPOLARITY_LOW;
            }
969 970 971 972 973
            oc_config.OCFastMode   = TIM_OCFAST_DISABLE;
            oc_config.OCIdleState  = TIM_OCIDLESTATE_SET;
            oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;

            if (!IS_TIM_OC_POLARITY(oc_config.OCPolarity)) {
974
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", oc_config.OCPolarity));
975 976 977 978 979
            }
            HAL_TIM_OC_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan));
            if (chan->callback == mp_const_none) {
                HAL_TIM_OC_Start(&self->tim, TIMER_CHANNEL(chan));
            } else {
980
                pyb_timer_channel_callback(chan, chan->callback);
981
            }
982 983 984 985
            // Start the complimentary channel too (if its supported)
            if (IS_TIM_CCXN_INSTANCE(self->tim.Instance, TIMER_CHANNEL(chan))) {
                HAL_TIMEx_OCN_Start(&self->tim, TIMER_CHANNEL(chan));
            }
986 987 988 989 990 991
            break;
        }

        case CHANNEL_MODE_IC: {
            TIM_IC_InitTypeDef ic_config;

992
            ic_config.ICPolarity  = args[6].u_int;
993 994 995 996 997 998 999 1000
            if (ic_config.ICPolarity == 0xffffffff) {
                ic_config.ICPolarity = TIM_ICPOLARITY_RISING;
            }
            ic_config.ICSelection = TIM_ICSELECTION_DIRECTTI;
            ic_config.ICPrescaler = TIM_ICPSC_DIV1;
            ic_config.ICFilter    = 0;

            if (!IS_TIM_IC_POLARITY(ic_config.ICPolarity)) {
1001
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", ic_config.ICPolarity));
1002 1003 1004 1005 1006
            }
            HAL_TIM_IC_ConfigChannel(&self->tim, &ic_config, TIMER_CHANNEL(chan));
            if (chan->callback == mp_const_none) {
                HAL_TIM_IC_Start(&self->tim, TIMER_CHANNEL(chan));
            } else {
1007
                pyb_timer_channel_callback(chan, chan->callback);
1008 1009 1010 1011
            }
            break;
        }

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
        case CHANNEL_MODE_ENC_A:
        case CHANNEL_MODE_ENC_B:
        case CHANNEL_MODE_ENC_AB: {
            TIM_Encoder_InitTypeDef enc_config;

            enc_config.EncoderMode = channel_mode_info[chan->mode].oc_mode;
            enc_config.IC1Polarity  = args[6].u_int;
            if (enc_config.IC1Polarity == 0xffffffff) {
                enc_config.IC1Polarity = TIM_ICPOLARITY_RISING;
            }
            enc_config.IC2Polarity  = enc_config.IC1Polarity;
            enc_config.IC1Selection = TIM_ICSELECTION_DIRECTTI;
            enc_config.IC2Selection = TIM_ICSELECTION_DIRECTTI;
            enc_config.IC1Prescaler = TIM_ICPSC_DIV1;
            enc_config.IC2Prescaler = TIM_ICPSC_DIV1;
            enc_config.IC1Filter    = 0;
            enc_config.IC2Filter    = 0;

            if (!IS_TIM_IC_POLARITY(enc_config.IC1Polarity)) {
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", enc_config.IC1Polarity));
            }
            // Only Timers 1, 2, 3, 4, 5, and 8 support encoder mode
            if (self->tim.Instance != TIM1
            &&  self->tim.Instance != TIM2
            &&  self->tim.Instance != TIM3
            &&  self->tim.Instance != TIM4
            &&  self->tim.Instance != TIM5