modmath.c 10.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27
#include "py/builtin.h"
28
#include "py/nlr.h"
29

30
#if MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH
31

32
33
#include <math.h>

34
35
36
37
38
/// \module math - mathematical functions
///
/// The `math` module provides some basic mathematical funtions for
/// working with floating-point numbers.

39
40
41
42
STATIC NORETURN void math_error(void) {
    nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "math domain error"));
}

43
#define MATH_FUN_1(py_name, c_name) \
44
    STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj))); } \
45
46
47
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);

#define MATH_FUN_2(py_name, c_name) \
48
    STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj, mp_obj_t y_obj) { return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj), mp_obj_get_float(y_obj))); } \
49
50
    STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_math_## py_name ## _obj, mp_math_ ## py_name);

51
#define MATH_FUN_1_TO_BOOL(py_name, c_name) \
52
    STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_bool(c_name(mp_obj_get_float(x_obj))); } \
53
54
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);

55
#define MATH_FUN_1_TO_INT(py_name, c_name) \
56
    STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { mp_int_t x = MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj)); return mp_obj_new_int(x); } \
57
58
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);

59
60
61
62
63
64
65
66
67
68
#define MATH_FUN_1_ERRCOND(py_name, c_name, error_condition) \
    STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { \
        mp_float_t x = mp_obj_get_float(x_obj); \
        if (error_condition) { \
            math_error(); \
        } \
        return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(x)); \
    } \
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);

69
70
71
72
73
#if MP_NEED_LOG2
// 1.442695040888963407354163704 is 1/_M_LN2
#define log2(x) (log(x) * 1.442695040888963407354163704)
#endif

74
75
/// \function sqrt(x)
/// Returns the square root of `x`.
76
MATH_FUN_1_ERRCOND(sqrt, sqrt, (x < (mp_float_t)0.0))
77
78
/// \function pow(x, y)
/// Returns `x` to the power of `y`.
79
MATH_FUN_2(pow, pow)
80
/// \function exp(x)
81
MATH_FUN_1(exp, exp)
82
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
83
/// \function expm1(x)
Damien George's avatar
Damien George committed
84
MATH_FUN_1(expm1, expm1)
85
/// \function log2(x)
86
MATH_FUN_1_ERRCOND(log2, log2, (x <= (mp_float_t)0.0))
87
/// \function log10(x)
88
MATH_FUN_1_ERRCOND(log10, log10, (x <= (mp_float_t)0.0))
89
/// \function cosh(x)
90
MATH_FUN_1(cosh, cosh)
91
/// \function sinh(x)
92
MATH_FUN_1(sinh, sinh)
93
/// \function tanh(x)
94
MATH_FUN_1(tanh, tanh)
95
/// \function acosh(x)
96
MATH_FUN_1(acosh, acosh)
97
/// \function asinh(x)
98
MATH_FUN_1(asinh, asinh)
99
/// \function atanh(x)
100
MATH_FUN_1(atanh, atanh)
101
#endif
102
/// \function cos(x)
103
MATH_FUN_1(cos, cos)
104
/// \function sin(x)
105
MATH_FUN_1(sin, sin)
106
/// \function tan(x)
107
MATH_FUN_1(tan, tan)
108
/// \function acos(x)
109
MATH_FUN_1(acos, acos)
110
/// \function asin(x)
111
MATH_FUN_1(asin, asin)
112
/// \function atan(x)
113
MATH_FUN_1(atan, atan)
114
/// \function atan2(y, x)
115
MATH_FUN_2(atan2, atan2)
116
/// \function ceil(x)
117
MATH_FUN_1_TO_INT(ceil, ceil)
118
/// \function copysign(x, y)
119
MATH_FUN_2(copysign, copysign)
120
/// \function fabs(x)
121
MATH_FUN_1(fabs, fabs)
122
/// \function floor(x)
123
MATH_FUN_1_TO_INT(floor, floor) //TODO: delegate to x.__floor__() if x is not a float
124
/// \function fmod(x, y)
125
MATH_FUN_2(fmod, fmod)
126
/// \function isfinite(x)
127
MATH_FUN_1_TO_BOOL(isfinite, isfinite)
128
/// \function isinf(x)
129
MATH_FUN_1_TO_BOOL(isinf, isinf)
130
/// \function isnan(x)
131
MATH_FUN_1_TO_BOOL(isnan, isnan)
132
/// \function trunc(x)
133
MATH_FUN_1_TO_INT(trunc, trunc)
134
/// \function ldexp(x, exp)
135
MATH_FUN_2(ldexp, ldexp)
136
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
137
138
/// \function erf(x)
/// Return the error function of `x`.
139
MATH_FUN_1(erf, erf)
140
141
/// \function erfc(x)
/// Return the complementary error function of `x`.
142
MATH_FUN_1(erfc, erfc)
143
144
/// \function gamma(x)
/// Return the gamma function of `x`.
145
MATH_FUN_1(gamma, tgamma)
146
147
/// \function lgamma(x)
/// return the natural logarithm of the gamma function of `x`.
148
MATH_FUN_1(lgamma, lgamma)
149
#endif
150
151
//TODO: factorial, fsum

152
153
154
// Function that takes a variable number of arguments

// log(x[, base])
155
STATIC mp_obj_t mp_math_log(size_t n_args, const mp_obj_t *args) {
156
157
158
159
160
    mp_float_t x = mp_obj_get_float(args[0]);
    if (x <= (mp_float_t)0.0) {
        math_error();
    }
    mp_float_t l = MICROPY_FLOAT_C_FUN(log)(x);
161
162
163
    if (n_args == 1) {
        return mp_obj_new_float(l);
    } else {
164
165
166
167
168
        mp_float_t base = mp_obj_get_float(args[1]);
        if (base <= (mp_float_t)0.0) {
            math_error();
        }
        return mp_obj_new_float(l / MICROPY_FLOAT_C_FUN(log)(base));
169
170
171
172
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_math_log_obj, 1, 2, mp_math_log);

173
// Functions that return a tuple
174
175
176

/// \function frexp(x)
/// Converts a floating-point number to fractional and integral components.
177
STATIC mp_obj_t mp_math_frexp(mp_obj_t x_obj) {
178
179
180
181
182
183
    int int_exponent = 0;
    mp_float_t significand = MICROPY_FLOAT_C_FUN(frexp)(mp_obj_get_float(x_obj), &int_exponent);
    mp_obj_t tuple[2];
    tuple[0] = mp_obj_new_float(significand);
    tuple[1] = mp_obj_new_int(int_exponent);
    return mp_obj_new_tuple(2, tuple);
184
185
186
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_frexp_obj, mp_math_frexp);

187
/// \function modf(x)
188
STATIC mp_obj_t mp_math_modf(mp_obj_t x_obj) {
189
190
191
192
193
194
    mp_float_t int_part = 0.0;
    mp_float_t fractional_part = MICROPY_FLOAT_C_FUN(modf)(mp_obj_get_float(x_obj), &int_part);
    mp_obj_t tuple[2];
    tuple[0] = mp_obj_new_float(fractional_part);
    tuple[1] = mp_obj_new_float(int_part);
    return mp_obj_new_tuple(2, tuple);
195
196
197
198
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_modf_obj, mp_math_modf);

// Angular conversions
199
200

/// \function radians(x)
201
STATIC mp_obj_t mp_math_radians(mp_obj_t x_obj) {
202
    return mp_obj_new_float(mp_obj_get_float(x_obj) * M_PI / 180.0);
203
204
205
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_radians_obj, mp_math_radians);

206
/// \function degrees(x)
207
STATIC mp_obj_t mp_math_degrees(mp_obj_t x_obj) {
208
    return mp_obj_new_float(mp_obj_get_float(x_obj) * 180.0 / M_PI);
209
210
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_degrees_obj, mp_math_degrees);
211

212
213
214
215
216
217
218
STATIC const mp_rom_map_elem_t mp_module_math_globals_table[] = {
    { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_math) },
    { MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e },
    { MP_ROM_QSTR(MP_QSTR_pi), mp_const_float_pi },
    { MP_ROM_QSTR(MP_QSTR_sqrt), MP_ROM_PTR(&mp_math_sqrt_obj) },
    { MP_ROM_QSTR(MP_QSTR_pow), MP_ROM_PTR(&mp_math_pow_obj) },
    { MP_ROM_QSTR(MP_QSTR_exp), MP_ROM_PTR(&mp_math_exp_obj) },
219
    #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
220
    { MP_ROM_QSTR(MP_QSTR_expm1), MP_ROM_PTR(&mp_math_expm1_obj) },
221
    #endif
222
    { MP_ROM_QSTR(MP_QSTR_log), MP_ROM_PTR(&mp_math_log_obj) },
223
    #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
224
225
226
227
228
229
230
231
    { MP_ROM_QSTR(MP_QSTR_log2), MP_ROM_PTR(&mp_math_log2_obj) },
    { MP_ROM_QSTR(MP_QSTR_log10), MP_ROM_PTR(&mp_math_log10_obj) },
    { MP_ROM_QSTR(MP_QSTR_cosh), MP_ROM_PTR(&mp_math_cosh_obj) },
    { MP_ROM_QSTR(MP_QSTR_sinh), MP_ROM_PTR(&mp_math_sinh_obj) },
    { MP_ROM_QSTR(MP_QSTR_tanh), MP_ROM_PTR(&mp_math_tanh_obj) },
    { MP_ROM_QSTR(MP_QSTR_acosh), MP_ROM_PTR(&mp_math_acosh_obj) },
    { MP_ROM_QSTR(MP_QSTR_asinh), MP_ROM_PTR(&mp_math_asinh_obj) },
    { MP_ROM_QSTR(MP_QSTR_atanh), MP_ROM_PTR(&mp_math_atanh_obj) },
232
    #endif
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    { MP_ROM_QSTR(MP_QSTR_cos), MP_ROM_PTR(&mp_math_cos_obj) },
    { MP_ROM_QSTR(MP_QSTR_sin), MP_ROM_PTR(&mp_math_sin_obj) },
    { MP_ROM_QSTR(MP_QSTR_tan), MP_ROM_PTR(&mp_math_tan_obj) },
    { MP_ROM_QSTR(MP_QSTR_acos), MP_ROM_PTR(&mp_math_acos_obj) },
    { MP_ROM_QSTR(MP_QSTR_asin), MP_ROM_PTR(&mp_math_asin_obj) },
    { MP_ROM_QSTR(MP_QSTR_atan), MP_ROM_PTR(&mp_math_atan_obj) },
    { MP_ROM_QSTR(MP_QSTR_atan2), MP_ROM_PTR(&mp_math_atan2_obj) },
    { MP_ROM_QSTR(MP_QSTR_ceil), MP_ROM_PTR(&mp_math_ceil_obj) },
    { MP_ROM_QSTR(MP_QSTR_copysign), MP_ROM_PTR(&mp_math_copysign_obj) },
    { MP_ROM_QSTR(MP_QSTR_fabs), MP_ROM_PTR(&mp_math_fabs_obj) },
    { MP_ROM_QSTR(MP_QSTR_floor), MP_ROM_PTR(&mp_math_floor_obj) },
    { MP_ROM_QSTR(MP_QSTR_fmod), MP_ROM_PTR(&mp_math_fmod_obj) },
    { MP_ROM_QSTR(MP_QSTR_frexp), MP_ROM_PTR(&mp_math_frexp_obj) },
    { MP_ROM_QSTR(MP_QSTR_ldexp), MP_ROM_PTR(&mp_math_ldexp_obj) },
    { MP_ROM_QSTR(MP_QSTR_modf), MP_ROM_PTR(&mp_math_modf_obj) },
    { MP_ROM_QSTR(MP_QSTR_isfinite), MP_ROM_PTR(&mp_math_isfinite_obj) },
    { MP_ROM_QSTR(MP_QSTR_isinf), MP_ROM_PTR(&mp_math_isinf_obj) },
    { MP_ROM_QSTR(MP_QSTR_isnan), MP_ROM_PTR(&mp_math_isnan_obj) },
    { MP_ROM_QSTR(MP_QSTR_trunc), MP_ROM_PTR(&mp_math_trunc_obj) },
    { MP_ROM_QSTR(MP_QSTR_radians), MP_ROM_PTR(&mp_math_radians_obj) },
    { MP_ROM_QSTR(MP_QSTR_degrees), MP_ROM_PTR(&mp_math_degrees_obj) },
254
    #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
255
256
257
258
    { MP_ROM_QSTR(MP_QSTR_erf), MP_ROM_PTR(&mp_math_erf_obj) },
    { MP_ROM_QSTR(MP_QSTR_erfc), MP_ROM_PTR(&mp_math_erfc_obj) },
    { MP_ROM_QSTR(MP_QSTR_gamma), MP_ROM_PTR(&mp_math_gamma_obj) },
    { MP_ROM_QSTR(MP_QSTR_lgamma), MP_ROM_PTR(&mp_math_lgamma_obj) },
259
    #endif
260
261
};

262
STATIC MP_DEFINE_CONST_DICT(mp_module_math_globals, mp_module_math_globals_table);
263
264
265
266

const mp_obj_module_t mp_module_math = {
    .base = { &mp_type_module },
    .name = MP_QSTR_math,
267
    .globals = (mp_obj_dict_t*)&mp_module_math_globals,
268
269
};

270
#endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH