modpyb.c 19.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27
28
29
#include <stdint.h>
#include <stdio.h>

30
#include "stm32f4xx_hal.h"
31
32

#include "mpconfig.h"
33
34
#include "misc.h"
#include "nlr.h"
35
36
37
38
#include "qstr.h"
#include "obj.h"
#include "gc.h"
#include "gccollect.h"
Dave Hylands's avatar
Dave Hylands committed
39
#include "irq.h"
40
41
#include "systick.h"
#include "pyexec.h"
42
#include "led.h"
43
#include "pin.h"
44
#include "timer.h"
45
#include "extint.h"
46
#include "usrsw.h"
47
#include "rng.h"
48
#include "rtc.h"
Damien George's avatar
Damien George committed
49
50
#include "i2c.h"
#include "spi.h"
Damien George's avatar
Damien George committed
51
#include "uart.h"
52
#include "can.h"
Dave Hylands's avatar
Dave Hylands committed
53
#include "adc.h"
54
#include "storage.h"
Damien George's avatar
Damien George committed
55
#include "sdcard.h"
56
#include "accel.h"
57
#include "servo.h"
Damien George's avatar
Damien George committed
58
#include "dac.h"
59
#include "lcd.h"
60
#include "usb.h"
61
#include "pybstdio.h"
62
#include "ff.h"
63
#include "portmodules.h"
64

65
66
67
68
/// \module pyb - functions related to the pyboard
///
/// The `pyb` module contains specific functions related to the pyboard.

69
70
/// \function bootloader()
/// Activate the bootloader without BOOT* pins.
71
STATIC NORETURN mp_obj_t pyb_bootloader(void) {
72
    pyb_usb_dev_stop();
73
74
75
76
77
    storage_flush();

    HAL_RCC_DeInit();
    HAL_DeInit();

78
    __HAL_REMAPMEMORY_SYSTEMFLASH();
79
80
81
82
83
84

    // arm-none-eabi-gcc 4.9.0 does not correctly inline this
    // MSP function, so we write it out explicitly here.
    //__set_MSP(*((uint32_t*) 0x00000000));
    __ASM volatile ("movs r3, #0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp");

85
    ((void (*)(void)) *((uint32_t*) 0x00000004))();
86
87
88

    while (1);
}
89
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_bootloader_obj, pyb_bootloader);
90

91
92
/// \function info([dump_alloc_table])
/// Print out lots of information about the board.
93
STATIC mp_obj_t pyb_info(mp_uint_t n_args, const mp_obj_t *args) {
94
95
96
97
98
99
100
101
102
    // get and print unique id; 96 bits
    {
        byte *id = (byte*)0x1fff7a10;
        printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
    }

    // get and print clock speeds
    // SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
    {
103
        printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n",
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
               HAL_RCC_GetSysClockFreq(),
               HAL_RCC_GetHCLKFreq(),
               HAL_RCC_GetPCLK1Freq(),
               HAL_RCC_GetPCLK2Freq());
    }

    // to print info about memory
    {
        printf("_etext=%p\n", &_etext);
        printf("_sidata=%p\n", &_sidata);
        printf("_sdata=%p\n", &_sdata);
        printf("_edata=%p\n", &_edata);
        printf("_sbss=%p\n", &_sbss);
        printf("_ebss=%p\n", &_ebss);
        printf("_estack=%p\n", &_estack);
        printf("_ram_start=%p\n", &_ram_start);
        printf("_heap_start=%p\n", &_heap_start);
        printf("_heap_end=%p\n", &_heap_end);
        printf("_ram_end=%p\n", &_ram_end);
    }

    // qstr info
    {
127
        mp_uint_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
128
        qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
129
        printf("qstr:\n  n_pool=" UINT_FMT "\n  n_qstr=" UINT_FMT "\n  n_str_data_bytes=" UINT_FMT "\n  n_total_bytes=" UINT_FMT "\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
130
131
132
133
134
135
136
    }

    // GC info
    {
        gc_info_t info;
        gc_info(&info);
        printf("GC:\n");
137
138
139
        printf("  " UINT_FMT " total\n", info.total);
        printf("  " UINT_FMT " : " UINT_FMT "\n", info.used, info.free);
        printf("  1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block);
140
141
142
143
144
145
    }

    // free space on flash
    {
        DWORD nclst;
        FATFS *fatfs;
146
        f_getfree("/flash", &nclst, &fatfs);
147
148
149
        printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512));
    }

150
151
152
153
154
    if (n_args == 1) {
        // arg given means dump gc allocation table
        gc_dump_alloc_table();
    }

155
156
    return mp_const_none;
}
157
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_info_obj, 0, 1, pyb_info);
158

159
160
/// \function unique_id()
/// Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU.
161
162
163
164
165
166
STATIC mp_obj_t pyb_unique_id(void) {
    byte *id = (byte*)0x1fff7a10;
    return mp_obj_new_bytes(id, 12);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_unique_id_obj, pyb_unique_id);

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/// \function freq([sys_freq])
///
/// If given no arguments, returns a tuple of clock frequencies:
/// (SYSCLK, HCLK, PCLK1, PCLK2).
///
/// If given an argument, sets the system frequency to that value in Hz.
/// Eg freq(120000000) gives 120MHz.  Note that not all values are
/// supported and the largest supported frequency not greater than
/// the given sys_freq will be selected.
STATIC mp_obj_t pyb_freq(mp_uint_t n_args, const mp_obj_t *args) {
    if (n_args == 0) {
        // get
        mp_obj_t tuple[4] = {
           mp_obj_new_int(HAL_RCC_GetSysClockFreq()),
           mp_obj_new_int(HAL_RCC_GetHCLKFreq()),
           mp_obj_new_int(HAL_RCC_GetPCLK1Freq()),
           mp_obj_new_int(HAL_RCC_GetPCLK2Freq()),
        };
        return mp_obj_new_tuple(4, tuple);
    } else {
        // set
        mp_int_t wanted_sysclk = mp_obj_get_int(args[0]) / 1000000;
        // search for a valid PLL configuration that keeps USB at 48MHz
        for (; wanted_sysclk > 0; wanted_sysclk--) {
            for (mp_uint_t p = 2; p <= 8; p += 2) {
                if (wanted_sysclk * p % 48 != 0) {
                    continue;
                }
                mp_uint_t q = wanted_sysclk * p / 48;
                if (q < 2 || q > 15) {
                    continue;
                }
                if (wanted_sysclk * p % (HSE_VALUE / 1000000) != 0) {
                    continue;
                }
                mp_uint_t n_by_m = wanted_sysclk * p / (HSE_VALUE / 1000000);
                mp_uint_t m = 192 / n_by_m;
                while (m < (HSE_VALUE / 2000000) || n_by_m * m < 192) {
                    m += 1;
                }
                if (m > (HSE_VALUE / 1000000)) {
                    continue;
                }
                mp_uint_t n = n_by_m * m;
                if (n < 192 || n > 432) {
                    continue;
                }

                // found values!

                // let the USB CDC have a chance to process before we change the clock
                HAL_Delay(USBD_CDC_POLLING_INTERVAL + 2);

                // set HSE as system clock source to allow modification of the PLL configuration
                RCC_ClkInitTypeDef RCC_ClkInitStruct;
                RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
                RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;
                if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) {
                    goto fail;
                }

                // re-configure PLL
                RCC_OscInitTypeDef RCC_OscInitStruct;
                RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
                RCC_OscInitStruct.HSEState = RCC_HSE_ON;
                RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
                RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
                RCC_OscInitStruct.PLL.PLLM = m;
                RCC_OscInitStruct.PLL.PLLN = n;
                RCC_OscInitStruct.PLL.PLLP = p;
                RCC_OscInitStruct.PLL.PLLQ = q;
                if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
                    goto fail;
                }

                // set PLL as system clock source
                RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
                RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
                RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
                RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
                RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
                if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) {
                    goto fail;
                }

                // re-init TIM3 for USB CDC rate
                timer_tim3_init();

                return mp_const_none;

                void __fatal_error(const char *msg);
                fail:
                __fatal_error("can't change freq");
            }
        }
        nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "can't make valid freq"));
    }
264
}
265
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_freq_obj, 0, 1, pyb_freq);
266

267
268
/// \function sync()
/// Sync all file systems.
269
270
271
272
273
274
STATIC mp_obj_t pyb_sync(void) {
    storage_flush();
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_sync_obj, pyb_sync);

275
276
/// \function millis()
/// Returns the number of milliseconds since the board was last reset.
277
///
278
279
280
/// The result is always a micropython smallint (31-bit signed number), so
/// after 2^30 milliseconds (about 12.4 days) this will start to return
/// negative numbers.
281
STATIC mp_obj_t pyb_millis(void) {
282
283
284
285
    // We want to "cast" the 32 bit unsigned into a small-int.  This means
    // copying the MSB down 1 bit (extending the sign down), which is
    // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
    return MP_OBJ_NEW_SMALL_INT(HAL_GetTick());
286
287
288
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_millis_obj, pyb_millis);

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
/// \function elapsed_millis(start)
/// Returns the number of milliseconds which have elapsed since `start`.
///
/// This function takes care of counter wrap, and always returns a positive
/// number. This means it can be used to measure periods upto about 12.4 days.
///
/// Example:
///     start = pyb.millis()
///     while pyb.elapsed_millis(start) < 1000:
///         # Perform some operation
STATIC mp_obj_t pyb_elapsed_millis(mp_obj_t start) {
    uint32_t startMillis = mp_obj_get_int(start);
    uint32_t currMillis = HAL_GetTick();
    return MP_OBJ_NEW_SMALL_INT((currMillis - startMillis) & 0x3fffffff);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_millis_obj, pyb_elapsed_millis);

306
307
308
/// \function micros()
/// Returns the number of microseconds since the board was last reset.
///
309
310
311
/// The result is always a micropython smallint (31-bit signed number), so
/// after 2^30 microseconds (about 17.8 minutes) this will start to return
/// negative numbers.
312
STATIC mp_obj_t pyb_micros(void) {
313
314
315
316
    // We want to "cast" the 32 bit unsigned into a small-int.  This means
    // copying the MSB down 1 bit (extending the sign down), which is
    // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
    return MP_OBJ_NEW_SMALL_INT(sys_tick_get_microseconds());
317
318
319
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_micros_obj, pyb_micros);

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
/// \function elapsed_micros(start)
/// Returns the number of microseconds which have elapsed since `start`.
///
/// This function takes care of counter wrap, and always returns a positive
/// number. This means it can be used to measure periods upto about 17.8 minutes.
///
/// Example:
///     start = pyb.micros()
///     while pyb.elapsed_micros(start) < 1000:
///         # Perform some operation
STATIC mp_obj_t pyb_elapsed_micros(mp_obj_t start) {
    uint32_t startMicros = mp_obj_get_int(start);
    uint32_t currMicros = sys_tick_get_microseconds();
    return MP_OBJ_NEW_SMALL_INT((currMicros - startMicros) & 0x3fffffff);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_micros_obj, pyb_elapsed_micros);

337
338
/// \function delay(ms)
/// Delay for the given number of milliseconds.
339
STATIC mp_obj_t pyb_delay(mp_obj_t ms_in) {
340
    mp_int_t ms = mp_obj_get_int(ms_in);
341
342
343
    if (ms >= 0) {
        HAL_Delay(ms);
    }
344
345
346
347
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_delay_obj, pyb_delay);

348
349
/// \function udelay(us)
/// Delay for the given number of microseconds.
350
STATIC mp_obj_t pyb_udelay(mp_obj_t usec_in) {
351
    mp_int_t usec = mp_obj_get_int(usec_in);
352
353
354
355
    if (usec > 0) {
        uint32_t count = 0;
        const uint32_t utime = (168 * usec / 4);
        while (++count <= utime) {
356
357
        }
    }
358
    return mp_const_none;
359
360
361
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_udelay_obj, pyb_udelay);

362
363
364
/// \function stop()
STATIC mp_obj_t pyb_stop(void) {
    HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);
365

366
    // reconfigure the system clock after waking up
367

368
369
370
    // enable HSE
    __HAL_RCC_HSE_CONFIG(RCC_HSE_ON);
    while (!__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY)) {
371
372
    }

373
374
375
    // enable PLL
    __HAL_RCC_PLL_ENABLE();
    while (!__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)) {
376
377
    }

378
379
380
381
    // select PLL as system clock source
    MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK);
    while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) {
    }
382
383
384
385
386

    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_stop_obj, pyb_stop);

387
/// \function standby()
388
STATIC mp_obj_t pyb_standby(void) {
389
    HAL_PWR_EnterSTANDBYMode();
390
391
392
393
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_standby_obj, pyb_standby);

394
395
/// \function have_cdc()
/// Return True if USB is connected as a serial device, False otherwise.
396
397
398
399
400
STATIC mp_obj_t pyb_have_cdc(void ) {
    return MP_BOOL(usb_vcp_is_connected());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_have_cdc_obj, pyb_have_cdc);

401
402
/// \function repl_uart(uart)
/// Get or set the UART object that the REPL is repeated on.
403
STATIC mp_obj_t pyb_repl_uart(mp_uint_t n_args, const mp_obj_t *args) {
404
    if (n_args == 0) {
405
        if (pyb_stdio_uart == NULL) {
406
407
            return mp_const_none;
        } else {
408
            return pyb_stdio_uart;
409
410
411
        }
    } else {
        if (args[0] == mp_const_none) {
412
            pyb_stdio_uart = NULL;
413
        } else if (mp_obj_get_type(args[0]) == &pyb_uart_type) {
414
            pyb_stdio_uart = args[0];
415
416
417
418
419
420
421
422
        } else {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "need a UART object"));
        }
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_repl_uart_obj, 0, 1, pyb_repl_uart);

423
424
425
/// \function hid((buttons, x, y, z))
/// Takes a 4-tuple (or list) and sends it to the USB host (the PC) to
/// signal a HID mouse-motion event.
426
STATIC mp_obj_t pyb_hid_send_report(mp_obj_t arg) {
427
428
    mp_obj_t *items;
    mp_obj_get_array_fixed_n(arg, 4, &items);
429
430
431
432
433
434
435
436
    uint8_t data[4];
    data[0] = mp_obj_get_int(items[0]);
    data[1] = mp_obj_get_int(items[1]);
    data[2] = mp_obj_get_int(items[2]);
    data[3] = mp_obj_get_int(items[3]);
    usb_hid_send_report(data);
    return mp_const_none;
}
437
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_hid_send_report_obj, pyb_hid_send_report);
438
439

MP_DECLARE_CONST_FUN_OBJ(pyb_main_obj); // defined in main.c
440
MP_DECLARE_CONST_FUN_OBJ(pyb_usb_mode_obj); // defined in main.c
441
442
443
444

STATIC const mp_map_elem_t pyb_module_globals_table[] = {
    { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_pyb) },

445
    { MP_OBJ_NEW_QSTR(MP_QSTR_bootloader), (mp_obj_t)&pyb_bootloader_obj },
446
    { MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&pyb_info_obj },
447
448
    { MP_OBJ_NEW_QSTR(MP_QSTR_unique_id), (mp_obj_t)&pyb_unique_id_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_freq_obj },
449
450
    { MP_OBJ_NEW_QSTR(MP_QSTR_repl_info), (mp_obj_t)&pyb_set_repl_info_obj },

451
    { MP_OBJ_NEW_QSTR(MP_QSTR_wfi), (mp_obj_t)&pyb_wfi_obj },
452
453
454
    { MP_OBJ_NEW_QSTR(MP_QSTR_disable_irq), (mp_obj_t)&pyb_disable_irq_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_enable_irq), (mp_obj_t)&pyb_enable_irq_obj },

455
456
457
    { MP_OBJ_NEW_QSTR(MP_QSTR_stop), (mp_obj_t)&pyb_stop_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_standby), (mp_obj_t)&pyb_standby_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_main), (mp_obj_t)&pyb_main_obj },
458
    { MP_OBJ_NEW_QSTR(MP_QSTR_usb_mode), (mp_obj_t)&pyb_usb_mode_obj },
459

460
    { MP_OBJ_NEW_QSTR(MP_QSTR_have_cdc), (mp_obj_t)&pyb_have_cdc_obj },
461
    { MP_OBJ_NEW_QSTR(MP_QSTR_repl_uart), (mp_obj_t)&pyb_repl_uart_obj },
462
    { MP_OBJ_NEW_QSTR(MP_QSTR_hid), (mp_obj_t)&pyb_hid_send_report_obj },
463
    { MP_OBJ_NEW_QSTR(MP_QSTR_USB_VCP), (mp_obj_t)&pyb_usb_vcp_type },
464

465
    { MP_OBJ_NEW_QSTR(MP_QSTR_millis), (mp_obj_t)&pyb_millis_obj },
466
    { MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_millis), (mp_obj_t)&pyb_elapsed_millis_obj },
467
    { MP_OBJ_NEW_QSTR(MP_QSTR_micros), (mp_obj_t)&pyb_micros_obj },
468
    { MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_micros), (mp_obj_t)&pyb_elapsed_micros_obj },
469
470
471
472
    { MP_OBJ_NEW_QSTR(MP_QSTR_delay), (mp_obj_t)&pyb_delay_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_udelay), (mp_obj_t)&pyb_udelay_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_sync), (mp_obj_t)&pyb_sync_obj },

473
474
    { MP_OBJ_NEW_QSTR(MP_QSTR_Timer), (mp_obj_t)&pyb_timer_type },

475
#if MICROPY_HW_ENABLE_RNG
476
    { MP_OBJ_NEW_QSTR(MP_QSTR_rng), (mp_obj_t)&pyb_rng_get_obj },
477
478
479
#endif

#if MICROPY_HW_ENABLE_RTC
480
    { MP_OBJ_NEW_QSTR(MP_QSTR_RTC), (mp_obj_t)&pyb_rtc_type },
481
482
#endif

483
484
485
    { MP_OBJ_NEW_QSTR(MP_QSTR_Pin), (mp_obj_t)&pin_type },
    { MP_OBJ_NEW_QSTR(MP_QSTR_ExtInt), (mp_obj_t)&extint_type },

486
487
488
#if MICROPY_HW_ENABLE_SERVO
    { MP_OBJ_NEW_QSTR(MP_QSTR_pwm), (mp_obj_t)&pyb_pwm_set_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_servo), (mp_obj_t)&pyb_servo_set_obj },
489
    { MP_OBJ_NEW_QSTR(MP_QSTR_Servo), (mp_obj_t)&pyb_servo_type },
490
491
492
#endif

#if MICROPY_HW_HAS_SWITCH
493
    { MP_OBJ_NEW_QSTR(MP_QSTR_Switch), (mp_obj_t)&pyb_switch_type },
494
495
496
497
498
499
#endif

#if MICROPY_HW_HAS_SDCARD
    { MP_OBJ_NEW_QSTR(MP_QSTR_SD), (mp_obj_t)&pyb_sdcard_obj },
#endif

500
    { MP_OBJ_NEW_QSTR(MP_QSTR_LED), (mp_obj_t)&pyb_led_type },
501
    { MP_OBJ_NEW_QSTR(MP_QSTR_I2C), (mp_obj_t)&pyb_i2c_type },
Damien George's avatar
Damien George committed
502
    { MP_OBJ_NEW_QSTR(MP_QSTR_SPI), (mp_obj_t)&pyb_spi_type },
Damien George's avatar
Damien George committed
503
    { MP_OBJ_NEW_QSTR(MP_QSTR_UART), (mp_obj_t)&pyb_uart_type },
504
#if MICROPY_HW_ENABLE_CAN
505
    { MP_OBJ_NEW_QSTR(MP_QSTR_CAN), (mp_obj_t)&pyb_can_type },
506
#endif
507
508

    { MP_OBJ_NEW_QSTR(MP_QSTR_ADC), (mp_obj_t)&pyb_adc_type },
509
    { MP_OBJ_NEW_QSTR(MP_QSTR_ADCAll), (mp_obj_t)&pyb_adc_all_type },
Damien George's avatar
Damien George committed
510
511
512

#if MICROPY_HW_ENABLE_DAC
    { MP_OBJ_NEW_QSTR(MP_QSTR_DAC), (mp_obj_t)&pyb_dac_type },
513
514
#endif

515
516
517
#if MICROPY_HW_HAS_MMA7660
    { MP_OBJ_NEW_QSTR(MP_QSTR_Accel), (mp_obj_t)&pyb_accel_type },
#endif
518
519
520
521

#if MICROPY_HW_HAS_LCD
    { MP_OBJ_NEW_QSTR(MP_QSTR_LCD), (mp_obj_t)&pyb_lcd_type },
#endif
522
523
};

524
525
526
527
528
STATIC const mp_obj_dict_t pyb_module_globals = {
    .base = {&mp_type_dict},
    .map = {
        .all_keys_are_qstrs = 1,
        .table_is_fixed_array = 1,
529
530
        .used = MP_ARRAY_SIZE(pyb_module_globals_table),
        .alloc = MP_ARRAY_SIZE(pyb_module_globals_table),
531
532
        .table = (mp_map_elem_t*)pyb_module_globals_table,
    },
533
534
535
536
537
};

const mp_obj_module_t pyb_module = {
    .base = { &mp_type_module },
    .name = MP_QSTR_pyb,
538
    .globals = (mp_obj_dict_t*)&pyb_module_globals,
539
};