modpyb.c 22.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27
28
29
#include <stdint.h>
#include <stdio.h>

30
#include STM32_HAL_H
31

32
#include "py/mpstate.h"
33
34
35
#include "py/nlr.h"
#include "py/obj.h"
#include "py/gc.h"
36
37
#include "lib/fatfs/ff.h"
#include "lib/fatfs/diskio.h"
38
#include "gccollect.h"
Dave Hylands's avatar
Dave Hylands committed
39
#include "irq.h"
40
41
#include "systick.h"
#include "pyexec.h"
42
#include "led.h"
43
#include "pin.h"
44
#include "timer.h"
45
#include "extint.h"
46
#include "usrsw.h"
47
#include "rng.h"
48
#include "rtc.h"
Damien George's avatar
Damien George committed
49
50
#include "i2c.h"
#include "spi.h"
Damien George's avatar
Damien George committed
51
#include "uart.h"
52
#include "can.h"
Dave Hylands's avatar
Dave Hylands committed
53
#include "adc.h"
54
#include "storage.h"
Damien George's avatar
Damien George committed
55
#include "sdcard.h"
56
#include "accel.h"
57
#include "servo.h"
Damien George's avatar
Damien George committed
58
#include "dac.h"
59
#include "lcd.h"
60
#include "usb.h"
61
#include "fsusermount.h"
62
#include "portmodules.h"
63

64
65
66
67
/// \module pyb - functions related to the pyboard
///
/// The `pyb` module contains specific functions related to the pyboard.

68
69
/// \function bootloader()
/// Activate the bootloader without BOOT* pins.
70
STATIC NORETURN mp_obj_t pyb_bootloader(void) {
71
    pyb_usb_dev_deinit();
72
73
74
75
76
    storage_flush();

    HAL_RCC_DeInit();
    HAL_DeInit();

77
#if defined(MCU_SERIES_F7)
78
79
80
81
82
83
84
    // arm-none-eabi-gcc 4.9.0 does not correctly inline this
    // MSP function, so we write it out explicitly here.
    //__set_MSP(*((uint32_t*) 0x1FF00000));
    __ASM volatile ("movw r3, #0x0000\nmovt r3, #0x1FF0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp");

    ((void (*)(void)) *((uint32_t*) 0x1FF00004))();
#else
85
    __HAL_REMAPMEMORY_SYSTEMFLASH();
86
87
88
89
90
91

    // arm-none-eabi-gcc 4.9.0 does not correctly inline this
    // MSP function, so we write it out explicitly here.
    //__set_MSP(*((uint32_t*) 0x00000000));
    __ASM volatile ("movs r3, #0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp");

92
    ((void (*)(void)) *((uint32_t*) 0x00000004))();
93
#endif
94
95
96

    while (1);
}
97
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_bootloader_obj, pyb_bootloader);
98

99
100
101
102
103
104
105
106
107
/// \function hard_reset()
/// Resets the pyboard in a manner similar to pushing the external RESET
/// button.
STATIC mp_obj_t pyb_hard_reset(void) {
    NVIC_SystemReset();
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_hard_reset_obj, pyb_hard_reset);

108
109
/// \function info([dump_alloc_table])
/// Print out lots of information about the board.
110
STATIC mp_obj_t pyb_info(mp_uint_t n_args, const mp_obj_t *args) {
111
112
113
114
115
116
117
118
119
    // get and print unique id; 96 bits
    {
        byte *id = (byte*)0x1fff7a10;
        printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
    }

    // get and print clock speeds
    // SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
    {
120
        printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n",
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
               HAL_RCC_GetSysClockFreq(),
               HAL_RCC_GetHCLKFreq(),
               HAL_RCC_GetPCLK1Freq(),
               HAL_RCC_GetPCLK2Freq());
    }

    // to print info about memory
    {
        printf("_etext=%p\n", &_etext);
        printf("_sidata=%p\n", &_sidata);
        printf("_sdata=%p\n", &_sdata);
        printf("_edata=%p\n", &_edata);
        printf("_sbss=%p\n", &_sbss);
        printf("_ebss=%p\n", &_ebss);
        printf("_estack=%p\n", &_estack);
        printf("_ram_start=%p\n", &_ram_start);
        printf("_heap_start=%p\n", &_heap_start);
        printf("_heap_end=%p\n", &_heap_end);
        printf("_ram_end=%p\n", &_ram_end);
    }

    // qstr info
    {
144
        mp_uint_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
145
        qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
146
        printf("qstr:\n  n_pool=" UINT_FMT "\n  n_qstr=" UINT_FMT "\n  n_str_data_bytes=" UINT_FMT "\n  n_total_bytes=" UINT_FMT "\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
147
148
149
150
151
152
153
    }

    // GC info
    {
        gc_info_t info;
        gc_info(&info);
        printf("GC:\n");
154
155
156
        printf("  " UINT_FMT " total\n", info.total);
        printf("  " UINT_FMT " : " UINT_FMT "\n", info.used, info.free);
        printf("  1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block);
157
158
159
160
161
162
    }

    // free space on flash
    {
        DWORD nclst;
        FATFS *fatfs;
163
        f_getfree("/flash", &nclst, &fatfs);
164
165
166
        printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512));
    }

167
168
169
170
171
    if (n_args == 1) {
        // arg given means dump gc allocation table
        gc_dump_alloc_table();
    }

172
173
    return mp_const_none;
}
174
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_info_obj, 0, 1, pyb_info);
175

176
177
/// \function unique_id()
/// Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU.
178
179
180
181
182
183
STATIC mp_obj_t pyb_unique_id(void) {
    byte *id = (byte*)0x1fff7a10;
    return mp_obj_new_bytes(id, 12);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_unique_id_obj, pyb_unique_id);

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// get or set the MCU frequencies
STATIC mp_uint_t pyb_freq_calc_ahb_div(mp_uint_t wanted_div) {
    if (wanted_div <= 1) { return RCC_SYSCLK_DIV1; }
    else if (wanted_div <= 2) { return RCC_SYSCLK_DIV2; }
    else if (wanted_div <= 4) { return RCC_SYSCLK_DIV4; }
    else if (wanted_div <= 8) { return RCC_SYSCLK_DIV8; }
    else if (wanted_div <= 16) { return RCC_SYSCLK_DIV16; }
    else if (wanted_div <= 64) { return RCC_SYSCLK_DIV64; }
    else if (wanted_div <= 128) { return RCC_SYSCLK_DIV128; }
    else if (wanted_div <= 256) { return RCC_SYSCLK_DIV256; }
    else { return RCC_SYSCLK_DIV512; }
}
STATIC mp_uint_t pyb_freq_calc_apb_div(mp_uint_t wanted_div) {
    if (wanted_div <= 1) { return RCC_HCLK_DIV1; }
    else if (wanted_div <= 2) { return RCC_HCLK_DIV2; }
    else if (wanted_div <= 4) { return RCC_HCLK_DIV4; }
    else if (wanted_div <= 8) { return RCC_HCLK_DIV8; }
    else { return RCC_SYSCLK_DIV16; }
}
203
204
205
206
207
208
209
210
211
212
213
214
215
216
STATIC mp_obj_t pyb_freq(mp_uint_t n_args, const mp_obj_t *args) {
    if (n_args == 0) {
        // get
        mp_obj_t tuple[4] = {
           mp_obj_new_int(HAL_RCC_GetSysClockFreq()),
           mp_obj_new_int(HAL_RCC_GetHCLKFreq()),
           mp_obj_new_int(HAL_RCC_GetPCLK1Freq()),
           mp_obj_new_int(HAL_RCC_GetPCLK2Freq()),
        };
        return mp_obj_new_tuple(4, tuple);
    } else {
        // set
        mp_int_t wanted_sysclk = mp_obj_get_int(args[0]) / 1000000;

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
        // default PLL parameters that give 48MHz on PLL48CK
        uint32_t m = HSE_VALUE / 1000000, n = 336, p = 2, q = 7;
        uint32_t sysclk_source;

        // the following logic assumes HSE < HSI
        if (HSE_VALUE / 1000000 <= wanted_sysclk && wanted_sysclk < HSI_VALUE / 1000000) {
            // use HSE as SYSCLK
            sysclk_source = RCC_SYSCLKSOURCE_HSE;
        } else if (HSI_VALUE / 1000000 <= wanted_sysclk && wanted_sysclk < 24) {
            // use HSI as SYSCLK
            sysclk_source = RCC_SYSCLKSOURCE_HSI;
        } else {
            // search for a valid PLL configuration that keeps USB at 48MHz
            for (; wanted_sysclk > 0; wanted_sysclk--) {
                for (p = 2; p <= 8; p += 2) {
                    // compute VCO_OUT
                    mp_uint_t vco_out = wanted_sysclk * p;
                    // make sure VCO_OUT is between 192MHz and 432MHz
                    if (vco_out < 192 || vco_out > 432) {
                        continue;
                    }
                    // make sure Q is an integer
                    if (vco_out % 48 != 0) {
                        continue;
                    }
                    // solve for Q to get PLL48CK at 48MHz
                    q = vco_out / 48;
                    // make sure Q is in range
                    if (q < 2 || q > 15) {
                        continue;
                    }
                    // make sure N/M is an integer
                    if (vco_out % (HSE_VALUE / 1000000) != 0) {
                        continue;
                    }
                    // solve for N/M
                    mp_uint_t n_by_m = vco_out / (HSE_VALUE / 1000000);
                    // solve for M, making sure VCO_IN (=HSE/M) is between 1MHz and 2MHz
                    m = 192 / n_by_m;
                    while (m < (HSE_VALUE / 2000000) || n_by_m * m < 192) {
                        m += 1;
                    }
                    if (m > (HSE_VALUE / 1000000)) {
                        continue;
                    }
                    // solve for N
                    n = n_by_m * m;
                    // make sure N is in range
                    if (n < 192 || n > 432) {
                        continue;
                    }

                    // found values!
                    sysclk_source = RCC_SYSCLKSOURCE_PLLCLK;
                    goto set_clk;
272
                }
273
274
275
            }
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "can't make valid freq"));
        }
276

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    set_clk:
        //printf("%lu %lu %lu %lu %lu\n", sysclk_source, m, n, p, q);

        // let the USB CDC have a chance to process before we change the clock
        HAL_Delay(USBD_CDC_POLLING_INTERVAL + 2);

        // desired system clock source is in sysclk_source
        RCC_ClkInitTypeDef RCC_ClkInitStruct;
        RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
        if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) {
            // set HSE as system clock source to allow modification of the PLL configuration
            // we then change to PLL after re-configuring PLL
            RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;
        } else {
            // directly set the system clock source as desired
            RCC_ClkInitStruct.SYSCLKSource = sysclk_source;
        }
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
        wanted_sysclk *= 1000000;
        if (n_args >= 2) {
            // note: AHB freq required to be >= 14.2MHz for USB operation
            RCC_ClkInitStruct.AHBCLKDivider = pyb_freq_calc_ahb_div(wanted_sysclk / mp_obj_get_int(args[1]));
        } else {
            RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
        }
        if (n_args >= 3) {
            RCC_ClkInitStruct.APB1CLKDivider = pyb_freq_calc_apb_div(wanted_sysclk / mp_obj_get_int(args[2]));
        } else {
            RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
        }
        if (n_args >= 4) {
            RCC_ClkInitStruct.APB2CLKDivider = pyb_freq_calc_apb_div(wanted_sysclk / mp_obj_get_int(args[3]));
        } else {
            RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
        }
311
312
313
        if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) {
            goto fail;
        }
314

315
316
317
318
319
320
321
322
323
324
325
326
327
328
        // re-configure PLL
        // even if we don't use the PLL for the system clock, we still need it for USB, RNG and SDIO
        RCC_OscInitTypeDef RCC_OscInitStruct;
        RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
        RCC_OscInitStruct.HSEState = RCC_HSE_ON;
        RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
        RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
        RCC_OscInitStruct.PLL.PLLM = m;
        RCC_OscInitStruct.PLL.PLLN = n;
        RCC_OscInitStruct.PLL.PLLP = p;
        RCC_OscInitStruct.PLL.PLLQ = q;
        if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
            goto fail;
        }
329

330
331
332
333
334
335
        // set PLL as system clock source if wanted
        if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) {
            RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
            RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
            if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) {
                goto fail;
336
337
            }
        }
338
339
340
341
342
343
344
345
346

        // re-init TIM3 for USB CDC rate
        timer_tim3_init();

        return mp_const_none;

    fail:;
        void NORETURN __fatal_error(const char *msg);
        __fatal_error("can't change freq");
347
    }
348
}
349
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_freq_obj, 0, 4, pyb_freq);
350

351
352
/// \function millis()
/// Returns the number of milliseconds since the board was last reset.
353
///
354
355
356
/// The result is always a micropython smallint (31-bit signed number), so
/// after 2^30 milliseconds (about 12.4 days) this will start to return
/// negative numbers.
357
STATIC mp_obj_t pyb_millis(void) {
358
359
360
361
    // We want to "cast" the 32 bit unsigned into a small-int.  This means
    // copying the MSB down 1 bit (extending the sign down), which is
    // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
    return MP_OBJ_NEW_SMALL_INT(HAL_GetTick());
362
363
364
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_millis_obj, pyb_millis);

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
/// \function elapsed_millis(start)
/// Returns the number of milliseconds which have elapsed since `start`.
///
/// This function takes care of counter wrap, and always returns a positive
/// number. This means it can be used to measure periods upto about 12.4 days.
///
/// Example:
///     start = pyb.millis()
///     while pyb.elapsed_millis(start) < 1000:
///         # Perform some operation
STATIC mp_obj_t pyb_elapsed_millis(mp_obj_t start) {
    uint32_t startMillis = mp_obj_get_int(start);
    uint32_t currMillis = HAL_GetTick();
    return MP_OBJ_NEW_SMALL_INT((currMillis - startMillis) & 0x3fffffff);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_millis_obj, pyb_elapsed_millis);

382
383
384
/// \function micros()
/// Returns the number of microseconds since the board was last reset.
///
385
386
387
/// The result is always a micropython smallint (31-bit signed number), so
/// after 2^30 microseconds (about 17.8 minutes) this will start to return
/// negative numbers.
388
STATIC mp_obj_t pyb_micros(void) {
389
390
391
392
    // We want to "cast" the 32 bit unsigned into a small-int.  This means
    // copying the MSB down 1 bit (extending the sign down), which is
    // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
    return MP_OBJ_NEW_SMALL_INT(sys_tick_get_microseconds());
393
394
395
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_micros_obj, pyb_micros);

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
/// \function elapsed_micros(start)
/// Returns the number of microseconds which have elapsed since `start`.
///
/// This function takes care of counter wrap, and always returns a positive
/// number. This means it can be used to measure periods upto about 17.8 minutes.
///
/// Example:
///     start = pyb.micros()
///     while pyb.elapsed_micros(start) < 1000:
///         # Perform some operation
STATIC mp_obj_t pyb_elapsed_micros(mp_obj_t start) {
    uint32_t startMicros = mp_obj_get_int(start);
    uint32_t currMicros = sys_tick_get_microseconds();
    return MP_OBJ_NEW_SMALL_INT((currMicros - startMicros) & 0x3fffffff);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_micros_obj, pyb_elapsed_micros);

413
414
/// \function delay(ms)
/// Delay for the given number of milliseconds.
415
STATIC mp_obj_t pyb_delay(mp_obj_t ms_in) {
416
    mp_int_t ms = mp_obj_get_int(ms_in);
417
418
419
    if (ms >= 0) {
        HAL_Delay(ms);
    }
420
421
422
423
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_delay_obj, pyb_delay);

424
425
/// \function udelay(us)
/// Delay for the given number of microseconds.
426
STATIC mp_obj_t pyb_udelay(mp_obj_t usec_in) {
427
    mp_int_t usec = mp_obj_get_int(usec_in);
428
    if (usec > 0) {
429
        sys_tick_udelay(usec);
430
    }
431
    return mp_const_none;
432
433
434
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_udelay_obj, pyb_udelay);

435
436
/// \function stop()
STATIC mp_obj_t pyb_stop(void) {
437
438
439
    // takes longer to wake but reduces stop current
    HAL_PWREx_EnableFlashPowerDown();

440
    HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);
441

442
    // reconfigure the system clock after waking up
443

444
445
446
    // enable HSE
    __HAL_RCC_HSE_CONFIG(RCC_HSE_ON);
    while (!__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY)) {
447
448
    }

449
450
451
    // enable PLL
    __HAL_RCC_PLL_ENABLE();
    while (!__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)) {
452
453
    }

454
455
456
457
    // select PLL as system clock source
    MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK);
    while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) {
    }
458
459
460
461
462

    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_stop_obj, pyb_stop);

463
/// \function standby()
464
STATIC mp_obj_t pyb_standby(void) {
465
#if defined(MCU_SERIES_F7)
466
467
    printf("pyb.standby not supported yet\n");
#else
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
    // We need to clear the PWR wake-up-flag before entering standby, since
    // the flag may have been set by a previous wake-up event.  Furthermore,
    // we need to disable the wake-up sources while clearing this flag, so
    // that if a source is active it does actually wake the device.
    // See section 5.3.7 of RM0090.

    // Note: we only support RTC ALRA, ALRB, WUT and TS.
    // TODO support TAMP and WKUP (PA0 external pin).
    uint32_t irq_bits = RTC_CR_ALRAIE | RTC_CR_ALRBIE | RTC_CR_WUTIE | RTC_CR_TSIE;

    // save RTC interrupts
    uint32_t save_irq_bits = RTC->CR & irq_bits;

    // disable RTC interrupts
    RTC->CR &= ~irq_bits;

    // clear RTC wake-up flags
    RTC->ISR &= ~(RTC_ISR_ALRAF | RTC_ISR_ALRBF | RTC_ISR_WUTF | RTC_ISR_TSF);

    // clear global wake-up flag
    PWR->CR |= PWR_CR_CWUF;

    // enable previously-enabled RTC interrupts
    RTC->CR |= save_irq_bits;

    // enter standby mode
494
    HAL_PWR_EnterSTANDBYMode();
495
    // we never return; MCU is reset on exit from standby
496
#endif
497
498
499
500
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_standby_obj, pyb_standby);

501
502
/// \function repl_uart(uart)
/// Get or set the UART object that the REPL is repeated on.
503
STATIC mp_obj_t pyb_repl_uart(mp_uint_t n_args, const mp_obj_t *args) {
504
    if (n_args == 0) {
505
        if (MP_STATE_PORT(pyb_stdio_uart) == NULL) {
506
507
            return mp_const_none;
        } else {
508
            return MP_STATE_PORT(pyb_stdio_uart);
509
510
511
        }
    } else {
        if (args[0] == mp_const_none) {
512
            MP_STATE_PORT(pyb_stdio_uart) = NULL;
513
        } else if (mp_obj_get_type(args[0]) == &pyb_uart_type) {
514
            MP_STATE_PORT(pyb_stdio_uart) = args[0];
515
516
517
518
519
520
521
522
        } else {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "need a UART object"));
        }
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_repl_uart_obj, 0, 1, pyb_repl_uart);

523
524
525
526
527
MP_DECLARE_CONST_FUN_OBJ(pyb_main_obj); // defined in main.c

STATIC const mp_map_elem_t pyb_module_globals_table[] = {
    { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_pyb) },

528
    { MP_OBJ_NEW_QSTR(MP_QSTR_bootloader), (mp_obj_t)&pyb_bootloader_obj },
529
    { MP_OBJ_NEW_QSTR(MP_QSTR_hard_reset), (mp_obj_t)&pyb_hard_reset_obj },
530
    { MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&pyb_info_obj },
531
532
    { MP_OBJ_NEW_QSTR(MP_QSTR_unique_id), (mp_obj_t)&pyb_unique_id_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_freq_obj },
533
534
    { MP_OBJ_NEW_QSTR(MP_QSTR_repl_info), (mp_obj_t)&pyb_set_repl_info_obj },

535
    { MP_OBJ_NEW_QSTR(MP_QSTR_wfi), (mp_obj_t)&pyb_wfi_obj },
536
537
538
    { MP_OBJ_NEW_QSTR(MP_QSTR_disable_irq), (mp_obj_t)&pyb_disable_irq_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_enable_irq), (mp_obj_t)&pyb_enable_irq_obj },

539
540
541
    { MP_OBJ_NEW_QSTR(MP_QSTR_stop), (mp_obj_t)&pyb_stop_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_standby), (mp_obj_t)&pyb_standby_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_main), (mp_obj_t)&pyb_main_obj },
542
    { MP_OBJ_NEW_QSTR(MP_QSTR_repl_uart), (mp_obj_t)&pyb_repl_uart_obj },
543

544
545
546
547
548
549
    { MP_OBJ_NEW_QSTR(MP_QSTR_usb_mode), (mp_obj_t)&pyb_usb_mode_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_hid_mouse), (mp_obj_t)&pyb_usb_hid_mouse_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_hid_keyboard), (mp_obj_t)&pyb_usb_hid_keyboard_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_USB_VCP), (mp_obj_t)&pyb_usb_vcp_type },
    { MP_OBJ_NEW_QSTR(MP_QSTR_USB_HID), (mp_obj_t)&pyb_usb_hid_type },
    // these 2 are deprecated; use USB_VCP.isconnected and USB_HID.send instead
550
551
552
    { MP_OBJ_NEW_QSTR(MP_QSTR_have_cdc), (mp_obj_t)&pyb_have_cdc_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_hid), (mp_obj_t)&pyb_hid_send_report_obj },

553
    { MP_OBJ_NEW_QSTR(MP_QSTR_millis), (mp_obj_t)&pyb_millis_obj },
554
    { MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_millis), (mp_obj_t)&pyb_elapsed_millis_obj },
555
    { MP_OBJ_NEW_QSTR(MP_QSTR_micros), (mp_obj_t)&pyb_micros_obj },
556
    { MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_micros), (mp_obj_t)&pyb_elapsed_micros_obj },
557
558
    { MP_OBJ_NEW_QSTR(MP_QSTR_delay), (mp_obj_t)&pyb_delay_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_udelay), (mp_obj_t)&pyb_udelay_obj },
559
    { MP_OBJ_NEW_QSTR(MP_QSTR_sync), (mp_obj_t)&mod_os_sync_obj },
560
    { MP_OBJ_NEW_QSTR(MP_QSTR_mount), (mp_obj_t)&pyb_mount_obj },
561

562
563
    { MP_OBJ_NEW_QSTR(MP_QSTR_Timer), (mp_obj_t)&pyb_timer_type },

564
#if MICROPY_HW_ENABLE_RNG
565
    { MP_OBJ_NEW_QSTR(MP_QSTR_rng), (mp_obj_t)&pyb_rng_get_obj },
566
567
568
#endif

#if MICROPY_HW_ENABLE_RTC
569
    { MP_OBJ_NEW_QSTR(MP_QSTR_RTC), (mp_obj_t)&pyb_rtc_type },
570
571
#endif

572
573
574
    { MP_OBJ_NEW_QSTR(MP_QSTR_Pin), (mp_obj_t)&pin_type },
    { MP_OBJ_NEW_QSTR(MP_QSTR_ExtInt), (mp_obj_t)&extint_type },

575
576
577
#if MICROPY_HW_ENABLE_SERVO
    { MP_OBJ_NEW_QSTR(MP_QSTR_pwm), (mp_obj_t)&pyb_pwm_set_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_servo), (mp_obj_t)&pyb_servo_set_obj },
578
    { MP_OBJ_NEW_QSTR(MP_QSTR_Servo), (mp_obj_t)&pyb_servo_type },
579
580
581
#endif

#if MICROPY_HW_HAS_SWITCH
582
    { MP_OBJ_NEW_QSTR(MP_QSTR_Switch), (mp_obj_t)&pyb_switch_type },
583
584
585
586
587
588
#endif

#if MICROPY_HW_HAS_SDCARD
    { MP_OBJ_NEW_QSTR(MP_QSTR_SD), (mp_obj_t)&pyb_sdcard_obj },
#endif

589
#if defined(MICROPY_HW_LED1)
590
    { MP_OBJ_NEW_QSTR(MP_QSTR_LED), (mp_obj_t)&pyb_led_type },
591
#endif
592
    { MP_OBJ_NEW_QSTR(MP_QSTR_I2C), (mp_obj_t)&pyb_i2c_type },
Damien George's avatar
Damien George committed
593
    { MP_OBJ_NEW_QSTR(MP_QSTR_SPI), (mp_obj_t)&pyb_spi_type },
Damien George's avatar
Damien George committed
594
    { MP_OBJ_NEW_QSTR(MP_QSTR_UART), (mp_obj_t)&pyb_uart_type },
595
#if MICROPY_HW_ENABLE_CAN
596
    { MP_OBJ_NEW_QSTR(MP_QSTR_CAN), (mp_obj_t)&pyb_can_type },
597
#endif
598
599

    { MP_OBJ_NEW_QSTR(MP_QSTR_ADC), (mp_obj_t)&pyb_adc_type },
600
    { MP_OBJ_NEW_QSTR(MP_QSTR_ADCAll), (mp_obj_t)&pyb_adc_all_type },
Damien George's avatar
Damien George committed
601
602
603

#if MICROPY_HW_ENABLE_DAC
    { MP_OBJ_NEW_QSTR(MP_QSTR_DAC), (mp_obj_t)&pyb_dac_type },
604
605
#endif

606
607
608
#if MICROPY_HW_HAS_MMA7660
    { MP_OBJ_NEW_QSTR(MP_QSTR_Accel), (mp_obj_t)&pyb_accel_type },
#endif
609
610
611
612

#if MICROPY_HW_HAS_LCD
    { MP_OBJ_NEW_QSTR(MP_QSTR_LCD), (mp_obj_t)&pyb_lcd_type },
#endif
613
614
};

615
STATIC MP_DEFINE_CONST_DICT(pyb_module_globals, pyb_module_globals_table);
616
617
618
619

const mp_obj_module_t pyb_module = {
    .base = { &mp_type_module },
    .name = MP_QSTR_pyb,
620
    .globals = (mp_obj_dict_t*)&pyb_module_globals,
621
};