timer.c 56.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27
28
29
30
#include <stdint.h>
#include <stdio.h>
#include <string.h>

31
#include STM32_HAL_H
32
33
34
#include "usbd_cdc_msc_hid.h"
#include "usbd_cdc_interface.h"

35
36
37
#include "py/nlr.h"
#include "py/runtime.h"
#include "py/gc.h"
38
39
#include "timer.h"
#include "servo.h"
40
#include "pin.h"
41
#include "irq.h"
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
/// \moduleref pyb
/// \class Timer - periodically call a function
///
/// Timers can be used for a great variety of tasks.  At the moment, only
/// the simplest case is implemented: that of calling a function periodically.
///
/// Each timer consists of a counter that counts up at a certain rate.  The rate
/// at which it counts is the peripheral clock frequency (in Hz) divided by the
/// timer prescaler.  When the counter reaches the timer period it triggers an
/// event, and the counter resets back to zero.  By using the callback method,
/// the timer event can call a Python function.
///
/// Example usage to toggle an LED at a fixed frequency:
///
///     tim = pyb.Timer(4)              # create a timer object using timer 4
///     tim.init(freq=2)                # trigger at 2Hz
///     tim.callback(lambda t:pyb.LED(1).toggle())
///
/// Further examples:
///
///     tim = pyb.Timer(4, freq=100)    # freq in Hz
64
///     tim = pyb.Timer(4, prescaler=0, period=99)
65
66
///     tim.counter()                   # get counter (can also set)
///     tim.prescaler(2)                # set prescaler (can also get)
67
///     tim.period(199)                 # set period (can also get)
68
69
70
///     tim.callback(lambda t: ...)     # set callback for update interrupt (t=tim instance)
///     tim.callback(None)              # clear callback
///
71
/// *Note:* Timer 3 is used for fading the blue LED.  Timer 5 controls
72
73
74
/// the servo driver, and Timer 6 is used for timed ADC/DAC reading/writing.
/// It is recommended to use the other timers in your programs.

75
76
77
78
79
80
81
82
// The timers can be used by multiple drivers, and need a common point for
// the interrupts to be dispatched, so they are all collected here.
//
// TIM3:
//  - LED 4, PWM to set the LED intensity
//
// TIM5:
//  - servo controller, PWM
83
84
85
86
//
// TIM6:
//  - ADC, DAC for read_timed and write_timed

87
88
89
90
91
92
93
94
95
96
typedef enum {
    CHANNEL_MODE_PWM_NORMAL,
    CHANNEL_MODE_PWM_INVERTED,
    CHANNEL_MODE_OC_TIMING,
    CHANNEL_MODE_OC_ACTIVE,
    CHANNEL_MODE_OC_INACTIVE,
    CHANNEL_MODE_OC_TOGGLE,
    CHANNEL_MODE_OC_FORCED_ACTIVE,
    CHANNEL_MODE_OC_FORCED_INACTIVE,
    CHANNEL_MODE_IC,
97
98
99
    CHANNEL_MODE_ENC_A,
    CHANNEL_MODE_ENC_B,
    CHANNEL_MODE_ENC_AB,
100
101
102
103
104
} pyb_channel_mode;

STATIC const struct {
    qstr        name;
    uint32_t    oc_mode;
105
} channel_mode_info[] = {
106
107
108
109
110
111
112
113
114
    { MP_QSTR_PWM,                TIM_OCMODE_PWM1 },
    { MP_QSTR_PWM_INVERTED,       TIM_OCMODE_PWM2 },
    { MP_QSTR_OC_TIMING,          TIM_OCMODE_TIMING },
    { MP_QSTR_OC_ACTIVE,          TIM_OCMODE_ACTIVE },
    { MP_QSTR_OC_INACTIVE,        TIM_OCMODE_INACTIVE },
    { MP_QSTR_OC_TOGGLE,          TIM_OCMODE_TOGGLE },
    { MP_QSTR_OC_FORCED_ACTIVE,   TIM_OCMODE_FORCED_ACTIVE },
    { MP_QSTR_OC_FORCED_INACTIVE, TIM_OCMODE_FORCED_INACTIVE },
    { MP_QSTR_IC,                 0 },
115
116
117
    { MP_QSTR_ENC_A,              TIM_ENCODERMODE_TI1 },
    { MP_QSTR_ENC_B,              TIM_ENCODERMODE_TI2 },
    { MP_QSTR_ENC_AB,             TIM_ENCODERMODE_TI12 },
118
119
120
121
122
123
124
125
126
127
128
};

typedef struct _pyb_timer_channel_obj_t {
    mp_obj_base_t base;
    struct _pyb_timer_obj_t *timer;
    uint8_t channel;
    uint8_t mode;
    mp_obj_t callback;
    struct _pyb_timer_channel_obj_t *next;
} pyb_timer_channel_obj_t;

129
130
typedef struct _pyb_timer_obj_t {
    mp_obj_base_t base;
131
132
    uint8_t tim_id;
    uint8_t is_32bit;
133
134
135
    mp_obj_t callback;
    TIM_HandleTypeDef tim;
    IRQn_Type irqn;
136
    pyb_timer_channel_obj_t *channel;
137
} pyb_timer_obj_t;
138

139
140
141
// The following yields TIM_IT_UPDATE when channel is zero and
// TIM_IT_CC1..TIM_IT_CC4 when channel is 1..4
#define TIMER_IRQ_MASK(channel) (1 << (channel))
142
#define TIMER_CNT_MASK(self)    ((self)->is_32bit ? 0xffffffff : 0xffff)
143
144
#define TIMER_CHANNEL(self)     ((((self)->channel) - 1) << 2)

145
TIM_HandleTypeDef TIM5_Handle;
146
TIM_HandleTypeDef TIM6_Handle;
147

148
#define PYB_TIMER_OBJ_ALL_NUM MP_ARRAY_SIZE(MP_STATE_PORT(pyb_timer_obj_all))
149

150
151
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in);
STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback);
152
STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback);
153

154
155
void timer_init0(void) {
    for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
156
        MP_STATE_PORT(pyb_timer_obj_all)[i] = NULL;
157
158
159
    }
}

160
161
162
// unregister all interrupt sources
void timer_deinit(void) {
    for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
163
        pyb_timer_obj_t *tim = MP_STATE_PORT(pyb_timer_obj_all)[i];
164
165
166
167
168
169
        if (tim != NULL) {
            pyb_timer_deinit(tim);
        }
    }
}

170
// TIM5 is set-up for the servo controller
171
// This function inits but does not start the timer
172
173
174
175
176
void timer_tim5_init(void) {
    // TIM5 clock enable
    __TIM5_CLK_ENABLE();

    // set up and enable interrupt
177
    HAL_NVIC_SetPriority(TIM5_IRQn, IRQ_PRI_TIM5, IRQ_SUBPRI_TIM5);
178
179
180
181
    HAL_NVIC_EnableIRQ(TIM5_IRQn);

    // PWM clock configuration
    TIM5_Handle.Instance = TIM5;
182
    TIM5_Handle.Init.Period = 2000 - 1; // timer cycles at 50Hz
183
    TIM5_Handle.Init.Prescaler = (timer_get_source_freq(5) / 100000) - 1; // timer runs at 100kHz
184
    TIM5_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
185
    TIM5_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
186

187
188
189
    HAL_TIM_PWM_Init(&TIM5_Handle);
}

190
#if defined(TIM6)
191
192
193
// Init TIM6 with a counter-overflow at the given frequency (given in Hz)
// TIM6 is used by the DAC and ADC for auto sampling at a given frequency
// This function inits but does not start the timer
194
TIM_HandleTypeDef *timer_tim6_init(uint freq) {
195
196
197
198
199
    // TIM6 clock enable
    __TIM6_CLK_ENABLE();

    // Timer runs at SystemCoreClock / 2
    // Compute the prescaler value so TIM6 triggers at freq-Hz
200
    uint32_t period = MAX(1, timer_get_source_freq(6) / freq);
201
202
203
204
205
206
207
208
209
210
    uint32_t prescaler = 1;
    while (period > 0xffff) {
        period >>= 1;
        prescaler <<= 1;
    }

    // Time base clock configuration
    TIM6_Handle.Instance = TIM6;
    TIM6_Handle.Init.Period = period - 1;
    TIM6_Handle.Init.Prescaler = prescaler - 1;
211
    TIM6_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // unused for TIM6
212
213
    TIM6_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; // unused for TIM6
    HAL_TIM_Base_Init(&TIM6_Handle);
214
215

    return &TIM6_Handle;
216
}
217
#endif
218

219
220
// Interrupt dispatch
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
221
    if (htim == &TIM5_Handle) {
222
223
224
225
        servo_timer_irq_callback();
    }
}

226
227
228
229
230
// Get the frequency (in Hz) of the source clock for the given timer.
// On STM32F405/407/415/417 there are 2 cases for how the clock freq is set.
// If the APB prescaler is 1, then the timer clock is equal to its respective
// APB clock.  Otherwise (APB prescaler > 1) the timer clock is twice its
// respective APB clock.  See DM00031020 Rev 4, page 115.
231
uint32_t timer_get_source_freq(uint32_t tim_id) {
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
    uint32_t source;
    if (tim_id == 1 || (8 <= tim_id && tim_id <= 11)) {
        // TIM{1,8,9,10,11} are on APB2
        source = HAL_RCC_GetPCLK2Freq();
        if ((uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3) != RCC_HCLK_DIV1) {
            source *= 2;
        }
    } else {
        // TIM{2,3,4,5,6,7,12,13,14} are on APB1
        source = HAL_RCC_GetPCLK1Freq();
        if ((uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1) != RCC_HCLK_DIV1) {
            source *= 2;
        }
    }
    return source;
}

249
250
251
/******************************************************************************/
/* Micro Python bindings                                                      */

252
253
STATIC const mp_obj_type_t pyb_timer_channel_type;

Dave Hylands's avatar
Dave Hylands committed
254
255
256
257
// This is the largest value that we can multiply by 100 and have the result
// fit in a uint32_t.
#define MAX_PERIOD_DIV_100  42949672

258
259
260
261
262
263
264
265
266
267
268
269
// computes prescaler and period so TIM triggers at freq-Hz
STATIC uint32_t compute_prescaler_period_from_freq(pyb_timer_obj_t *self, mp_obj_t freq_in, uint32_t *period_out) {
    uint32_t source_freq = timer_get_source_freq(self->tim_id);
    uint32_t prescaler = 1;
    uint32_t period;
    if (0) {
    #if MICROPY_PY_BUILTINS_FLOAT
    } else if (MP_OBJ_IS_TYPE(freq_in, &mp_type_float)) {
        float freq = mp_obj_get_float(freq_in);
        if (freq <= 0) {
            goto bad_freq;
        }
270
271
272
273
274
        while (freq < 1 && prescaler < 6553) {
            prescaler *= 10;
            freq *= 10;
        }
        period = (float)source_freq / freq;
275
276
277
278
279
280
281
282
    #endif
    } else {
        mp_int_t freq = mp_obj_get_int(freq_in);
        if (freq <= 0) {
            goto bad_freq;
            bad_freq:
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "must have positive freq"));
        }
283
        period = source_freq / freq;
284
    }
285
    period = MAX(1, period);
286
    while (period > TIMER_CNT_MASK(self)) {
287
288
289
290
291
292
293
294
295
296
297
298
        // if we can divide exactly, do that first
        if (period % 5 == 0) {
            prescaler *= 5;
            period /= 5;
        } else if (period % 3 == 0) {
            prescaler *= 3;
            period /= 3;
        } else {
            // may not divide exactly, but loses minimal precision
            prescaler <<= 1;
            period >>= 1;
        }
299
300
301
302
303
    }
    *period_out = (period - 1) & TIMER_CNT_MASK(self);
    return (prescaler - 1) & 0xffff;
}

Dave Hylands's avatar
Dave Hylands committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
// Helper function for determining the period used for calculating percent
STATIC uint32_t compute_period(pyb_timer_obj_t *self) {
    // In center mode,  compare == period corresponds to 100%
    // In edge mode, compare == (period + 1) corresponds to 100%
    uint32_t period = (__HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self));
    if (period != 0xffffffff) {
        if (self->tim.Init.CounterMode == TIM_COUNTERMODE_UP ||
            self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN) {
            // Edge mode
            period++;
        }
    }
    return period;
}

319
// Helper function to compute PWM value from timer period and percent value.
Dave Hylands's avatar
Dave Hylands committed
320
321
322
// 'percent_in' can be an int or a float between 0 and 100 (out of range
// values are clamped).
STATIC uint32_t compute_pwm_value_from_percent(uint32_t period, mp_obj_t percent_in) {
323
324
325
    uint32_t cmp;
    if (0) {
    #if MICROPY_PY_BUILTINS_FLOAT
Dave Hylands's avatar
Dave Hylands committed
326
    } else if (MP_OBJ_IS_TYPE(percent_in, &mp_type_float)) {
327
        mp_float_t percent = mp_obj_get_float(percent_in);
Dave Hylands's avatar
Dave Hylands committed
328
329
330
331
332
        if (percent <= 0.0) {
            cmp = 0;
        } else if (percent >= 100.0) {
            cmp = period;
        } else {
333
            cmp = percent / 100.0 * ((mp_float_t)period);
Dave Hylands's avatar
Dave Hylands committed
334
        }
335
336
337
338
339
    #endif
    } else {
        // For integer arithmetic, if period is large and 100*period will
        // overflow, then divide period before multiplying by cmp.  Otherwise
        // do it the other way round to retain precision.
Dave Hylands's avatar
Dave Hylands committed
340
341
342
343
344
345
346
        mp_int_t percent = mp_obj_get_int(percent_in);
        if (percent <= 0) {
            cmp = 0;
        } else if (percent >= 100) {
            cmp = period;
        } else if (period > MAX_PERIOD_DIV_100) {
            cmp = (uint32_t)percent * (period / 100);
347
        } else {
Dave Hylands's avatar
Dave Hylands committed
348
            cmp = ((uint32_t)percent * period) / 100;
349
350
351
352
353
        }
    }
    return cmp;
}

Dave Hylands's avatar
Dave Hylands committed
354
355
356
// Helper function to compute percentage from timer perion and PWM value.
STATIC mp_obj_t compute_percent_from_pwm_value(uint32_t period, uint32_t cmp) {
    #if MICROPY_PY_BUILTINS_FLOAT
357
    mp_float_t percent;
358
    if (cmp >= period) {
Dave Hylands's avatar
Dave Hylands committed
359
360
        percent = 100.0;
    } else {
361
        percent = (mp_float_t)cmp * 100.0 / ((mp_float_t)period);
Dave Hylands's avatar
Dave Hylands committed
362
363
364
365
    }
    return mp_obj_new_float(percent);
    #else
    mp_int_t percent;
366
    if (cmp >= period) {
Dave Hylands's avatar
Dave Hylands committed
367
        percent = 100;
368
369
    } else if (cmp > MAX_PERIOD_DIV_100) {
        percent = cmp / (period / 100);
Dave Hylands's avatar
Dave Hylands committed
370
371
372
373
374
375
376
    } else {
        percent = cmp * 100 / period;
    }
    return mp_obj_new_int(percent);
    #endif
}

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
// Computes the 8-bit value for the DTG field in the BDTR register.
//
// 1 tick = 1 count of the timer's clock (source_freq) divided by div.
// 0-128 ticks in inrements of 1
// 128-256 ticks in increments of 2
// 256-512 ticks in increments of 8
// 512-1008 ticks in increments of 16
STATIC uint32_t compute_dtg_from_ticks(mp_int_t ticks) {
    if (ticks <= 0) {
        return 0;
    }
    if (ticks < 128) {
        return ticks;
    }
    if (ticks < 256) {
        return 0x80 | ((ticks - 128) / 2);
    }
    if (ticks < 512) {
        return 0xC0 | ((ticks - 256) / 8);
    }
    if (ticks < 1008) {
        return 0xE0 | ((ticks - 512) / 16);
    }
    return 0xFF;
}

// Given the 8-bit value stored in the DTG field of the BDTR register, compute
// the number of ticks.
STATIC mp_int_t compute_ticks_from_dtg(uint32_t dtg) {
    if ((dtg & 0x80) == 0) {
        return dtg & 0x7F;
    }
    if ((dtg & 0xC0) == 0x80) {
        return 128 + ((dtg & 0x3F) * 2);
    }
    if ((dtg & 0xE0) == 0xC0) {
        return 256 + ((dtg & 0x1F) * 8);
    }
    return 512 + ((dtg & 0x1F) * 16);
}

STATIC void config_deadtime(pyb_timer_obj_t *self, mp_int_t ticks) {
    TIM_BreakDeadTimeConfigTypeDef deadTimeConfig;
    deadTimeConfig.OffStateRunMode  = TIM_OSSR_DISABLE;
    deadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
    deadTimeConfig.LockLevel        = TIM_LOCKLEVEL_OFF;
    deadTimeConfig.DeadTime         = compute_dtg_from_ticks(ticks);
    deadTimeConfig.BreakState       = TIM_BREAK_DISABLE;
    deadTimeConfig.BreakPolarity    = TIM_BREAKPOLARITY_LOW;
    deadTimeConfig.AutomaticOutput  = TIM_AUTOMATICOUTPUT_DISABLE;
    HAL_TIMEx_ConfigBreakDeadTime(&self->tim, &deadTimeConfig);
}

430
TIM_HandleTypeDef *pyb_timer_get_handle(mp_obj_t timer) {
431
432
433
    if (mp_obj_get_type(timer) != &pyb_timer_type) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "need a Timer object"));
    }
434
435
436
437
    pyb_timer_obj_t *self = timer;
    return &self->tim;
}

438
STATIC void pyb_timer_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
439
440
441
    pyb_timer_obj_t *self = self_in;

    if (self->tim.State == HAL_TIM_STATE_RESET) {
442
        mp_printf(print, "Timer(%u)", self->tim_id);
443
    } else {
444
445
446
447
        uint32_t prescaler = self->tim.Instance->PSC & 0xffff;
        uint32_t period = __HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self);
        // for efficiency, we compute and print freq as an int (not a float)
        uint32_t freq = timer_get_source_freq(self->tim_id) / ((prescaler + 1) * (period + 1));
448
        mp_printf(print, "Timer(%u, freq=%u, prescaler=%u, period=%u, mode=%s, div=%u",
449
            self->tim_id,
450
451
452
            freq,
            prescaler,
            period,
453
454
455
456
            self->tim.Init.CounterMode == TIM_COUNTERMODE_UP     ? "UP" :
            self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN   ? "DOWN" : "CENTER",
            self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV4 ? 4 :
            self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV2 ? 2 : 1);
457
458
459
460
461
462
463
464
465

        #if defined(IS_TIM_ADVANCED_INSTANCE)
        if (IS_TIM_ADVANCED_INSTANCE(self->tim.Instance))
        #elif defined(IS_TIM_BREAK_INSTANCE)
        if (IS_TIM_BREAK_INSTANCE(self->tim.Instance))
        #else
        if (0)
        #endif
        {
466
467
            mp_printf(print, ", deadtime=%u",
                compute_ticks_from_dtg(self->tim.Instance->BDTR & TIM_BDTR_DTG));
468
        }
469
        mp_print_str(print, ")");
470
471
    }
}
472

473
474
475
476
477
/// \method init(*, freq, prescaler, period)
/// Initialise the timer.  Initialisation must be either by frequency (in Hz)
/// or by prescaler and period:
///
///     tim.init(freq=100)                  # set the timer to trigger at 100Hz
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
///     tim.init(prescaler=83, period=999)  # set the prescaler and period directly
///
/// Keyword arguments:
///
///   - `freq` - specifies the periodic frequency of the timer. You migh also
///              view this as the frequency with which the timer goes through
///              one complete cycle.
///
///   - `prescaler` [0-0xffff] - specifies the value to be loaded into the
///                 timer's Prescaler Register (PSC). The timer clock source is divided by
///     (`prescaler + 1`) to arrive at the timer clock. Timers 2-7 and 12-14
///     have a clock source of 84 MHz (pyb.freq()[2] * 2), and Timers 1, and 8-11
///     have a clock source of 168 MHz (pyb.freq()[3] * 2).
///
///   - `period` [0-0xffff] for timers 1, 3, 4, and 6-15. [0-0x3fffffff] for timers 2 & 5.
///              Specifies the value to be loaded into the timer's AutoReload
///     Register (ARR). This determines the period of the timer (i.e. when the
///     counter cycles). The timer counter will roll-over after `period + 1`
///     timer clock cycles.
///
///   - `mode` can be one of:
///     - `Timer.UP` - configures the timer to count from 0 to ARR (default)
///     - `Timer.DOWN` - configures the timer to count from ARR down to 0.
///     - `Timer.CENTER` - confgures the timer to count from 0 to ARR and
///       then back down to 0.
///
///   - `div` can be one of 1, 2, or 4. Divides the timer clock to determine
///       the sampling clock used by the digital filters.
///
///   - `callback` - as per Timer.callback()
///
509
510
511
512
513
514
515
516
///   - `deadtime` - specifies the amount of "dead" or inactive time between
///       transitions on complimentary channels (both channels will be inactive)
///       for this time). `deadtime` may be an integer between 0 and 1008, with
///       the following restrictions: 0-128 in steps of 1. 128-256 in steps of
///       2, 256-512 in steps of 8, and 512-1008 in steps of 16. `deadime`
///       measures ticks of `source_freq` divided by `div` clock ticks.
///       `deadtime` is only available on timers 1 and 8.
///
517
///  You must either specify freq or both of period and prescaler.
518
519
520
521
522
523
524
525
STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_freq,         MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_prescaler,    MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
        { MP_QSTR_period,       MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
        { MP_QSTR_mode,         MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = TIM_COUNTERMODE_UP} },
        { MP_QSTR_div,          MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
        { MP_QSTR_callback,     MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
526
        { MP_QSTR_deadtime,     MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
527
    };
528

529
    // parse args
530
531
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
532

533
534
    // set the TIM configuration values
    TIM_Base_InitTypeDef *init = &self->tim.Init;
535

536
537
538
539
    if (args[0].u_obj != mp_const_none) {
        // set prescaler and period from desired frequency
        init->Prescaler = compute_prescaler_period_from_freq(self, args[0].u_obj, &init->Period);
    } else if (args[1].u_int != 0xffffffff && args[2].u_int != 0xffffffff) {
540
        // set prescaler and period directly
541
542
        init->Prescaler = args[1].u_int;
        init->Period = args[2].u_int;
543
544
545
546
    } else {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "must specify either freq, or prescaler and period"));
    }

547
548
549
550
    init->CounterMode = args[3].u_int;
    if (!IS_TIM_COUNTER_MODE(init->CounterMode)) {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid mode (%d)", init->CounterMode));
    }
551

552
553
    init->ClockDivision = args[4].u_int == 2 ? TIM_CLOCKDIVISION_DIV2 :
                          args[4].u_int == 4 ? TIM_CLOCKDIVISION_DIV4 :
554
                                               TIM_CLOCKDIVISION_DIV1;
555

556
    init->RepetitionCounter = 0;
557

558
    // enable TIM clock
559
560
561
562
563
564
    switch (self->tim_id) {
        case 1: __TIM1_CLK_ENABLE(); break;
        case 2: __TIM2_CLK_ENABLE(); break;
        case 3: __TIM3_CLK_ENABLE(); break;
        case 4: __TIM4_CLK_ENABLE(); break;
        case 5: __TIM5_CLK_ENABLE(); break;
565
        #if defined(TIM6)
566
        case 6: __TIM6_CLK_ENABLE(); break;
567
568
        #endif
        #if defined(TIM7)
569
        case 7: __TIM7_CLK_ENABLE(); break;
570
571
        #endif
        #if defined(TIM8)
572
        case 8: __TIM8_CLK_ENABLE(); break;
573
        #endif
574
        #if defined(TIM9)
575
        case 9: __TIM9_CLK_ENABLE(); break;
576
577
        #endif
        #if defined(TIM10)
578
        case 10: __TIM10_CLK_ENABLE(); break;
579
580
        #endif
        #if defined(TIM11)
581
        case 11: __TIM11_CLK_ENABLE(); break;
582
        #endif
583
        #if defined(TIM12)
584
        case 12: __TIM12_CLK_ENABLE(); break;
585
586
        #endif
        #if defined(TIM13)
587
        case 13: __TIM13_CLK_ENABLE(); break;
588
589
        #endif
        #if defined(TIM14)
590
        case 14: __TIM14_CLK_ENABLE(); break;
591
        #endif
592
593
594
595
596
597
598
599
600
        #if defined(TIM15)
        case 15: __TIM15_CLK_ENABLE(); break;
        #endif
        #if defined(TIM16)
        case 16: __TIM16_CLK_ENABLE(); break;
        #endif
        #if defined(TIM17)
        case 17: __TIM17_CLK_ENABLE(); break;
        #endif
601
    }
602
603

    // set IRQ priority (if not a special timer)
604
    if (self->tim_id != 5) {
605
        HAL_NVIC_SetPriority(self->irqn, IRQ_PRI_TIMX, IRQ_SUBPRI_TIMX);
606
607
608
609
610
611
612
        if (self->tim_id == 1) {
            HAL_NVIC_SetPriority(TIM1_CC_IRQn, IRQ_PRI_TIMX, IRQ_SUBPRI_TIMX);
        #if defined(TIM8)
        } else if (self->tim_id == 8) {
            HAL_NVIC_SetPriority(TIM8_CC_IRQn, IRQ_PRI_TIMX, IRQ_SUBPRI_TIMX);
        #endif
        }
613
    }
614

615
    // init TIM
616
    HAL_TIM_Base_Init(&self->tim);
617
    #if defined(IS_TIM_ADVANCED_INSTANCE)
618
    if (IS_TIM_ADVANCED_INSTANCE(self->tim.Instance)) {
619
620
621
622
623
    #elif defined(IS_TIM_BREAK_INSTANCE)
    if (IS_TIM_BREAK_INSTANCE(self->tim.Instance)) {
    #else
    if (0) {
    #endif
624
625
        config_deadtime(self, args[6].u_int);
    }
626
    if (args[5].u_obj == mp_const_none) {
627
628
        HAL_TIM_Base_Start(&self->tim);
    } else {
629
        pyb_timer_callback(self, args[5].u_obj);
630
631
    }

632
633
634
    return mp_const_none;
}

635
636
637
638
/// \classmethod \constructor(id, ...)
/// Construct a new timer object of the given id.  If additional
/// arguments are given, then the timer is initialised by `init(...)`.
/// `id` can be 1 to 14, excluding 3.
639
STATIC mp_obj_t pyb_timer_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
640
641
642
643
644
    // check arguments
    mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);

    // create new Timer object
    pyb_timer_obj_t *tim = m_new_obj(pyb_timer_obj_t);
645
646
    memset(tim, 0, sizeof(*tim));

647
648
    tim->base.type = &pyb_timer_type;
    tim->callback = mp_const_none;
649
    tim->channel = NULL;
650
651
652

    // get TIM number
    tim->tim_id = mp_obj_get_int(args[0]);
653
    tim->is_32bit = false;
654
655

    switch (tim->tim_id) {
656
        #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
657
        case 1: tim->tim.Instance = TIM1; tim->irqn = TIM1_UP_TIM10_IRQn; break;
658
659
660
        #elif defined(MCU_SERIES_L4)
        case 1: tim->tim.Instance = TIM1; tim->irqn = TIM1_UP_TIM16_IRQn; break;
        #endif
661
        case 2: tim->tim.Instance = TIM2; tim->irqn = TIM2_IRQn; tim->is_32bit = true; break;
662
        case 3: tim->tim.Instance = TIM3; tim->irqn = TIM3_IRQn; break;
663
        case 4: tim->tim.Instance = TIM4; tim->irqn = TIM4_IRQn; break;
664
        case 5: tim->tim.Instance = TIM5; tim->irqn = TIM5_IRQn; tim->is_32bit = true; break;
665
        #if defined(TIM6)
666
        case 6: tim->tim.Instance = TIM6; tim->irqn = TIM6_DAC_IRQn; break;
667
668
        #endif
        #if defined(TIM7)
669
        case 7: tim->tim.Instance = TIM7; tim->irqn = TIM7_IRQn; break;
670
671
        #endif
        #if defined(TIM8)
672
        #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
673
        case 8: tim->tim.Instance = TIM8; tim->irqn = TIM8_UP_TIM13_IRQn; break;
674
675
676
        #elif defined(MCU_SERIES_L4)
        case 8: tim->tim.Instance = TIM8; tim->irqn = TIM8_UP_IRQn; break;
        #endif
677
        #endif
678
        #if defined(TIM9)
679
        case 9: tim->tim.Instance = TIM9; tim->irqn = TIM1_BRK_TIM9_IRQn; break;
680
681
        #endif
        #if defined(TIM10)
682
        case 10: tim->tim.Instance = TIM10; tim->irqn = TIM1_UP_TIM10_IRQn; break;
683
684
        #endif
        #if defined(TIM11)
685
        case 11: tim->tim.Instance = TIM11; tim->irqn = TIM1_TRG_COM_TIM11_IRQn; break;
686
        #endif
687
        #if defined(TIM12)
688
        case 12: tim->tim.Instance = TIM12; tim->irqn = TIM8_BRK_TIM12_IRQn; break;
689
690
        #endif
        #if defined(TIM13)
691
        case 13: tim->tim.Instance = TIM13; tim->irqn = TIM8_UP_TIM13_IRQn; break;
692
693
        #endif
        #if defined(TIM14)
694
        case 14: tim->tim.Instance = TIM14; tim->irqn = TIM8_TRG_COM_TIM14_IRQn; break;
695
        #endif
696
697
698
699
700
701
702
703
704
        #if defined(TIM15)
        case 15: tim->tim.Instance = TIM15; tim->irqn = TIM1_BRK_TIM15_IRQn; break;
        #endif
        #if defined(TIM16)
        case 16: tim->tim.Instance = TIM16; tim->irqn = TIM1_UP_TIM16_IRQn; break;
        #endif
        #if defined(TIM17)
        case 17: tim->tim.Instance = TIM17; tim->irqn = TIM1_TRG_COM_TIM17_IRQn; break;
        #endif
705
        default: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Timer(%d) doesn't exist", tim->tim_id));
706
707
    }

708
709
710
711
712
    // set the global variable for interrupt callbacks
    if (tim->tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) {
        MP_STATE_PORT(pyb_timer_obj_all)[tim->tim_id - 1] = tim;
    }

713
714
715
716
717
718
719
720
    if (n_args > 1 || n_kw > 0) {
        // start the peripheral
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
        pyb_timer_init_helper(tim, n_args - 1, args + 1, &kw_args);
    }

    return (mp_obj_t)tim;
721
722
}

723
STATIC mp_obj_t pyb_timer_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
724
    return pyb_timer_init_helper(args[0], n_args - 1, args + 1, kw_args);
725
}
726
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_init_obj, 1, pyb_timer_init);
727

728
// timer.deinit()
729
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in) {
730
731
    pyb_timer_obj_t *self = self_in;

732
    // Disable the base interrupt
733
734
    pyb_timer_callback(self_in, mp_const_none);

735
736
737
738
739
740
741
742
743
744
745
    pyb_timer_channel_obj_t *chan = self->channel;
    self->channel = NULL;

    // Disable the channel interrupts
    while (chan != NULL) {
        pyb_timer_channel_callback(chan, mp_const_none);
        pyb_timer_channel_obj_t *prev_chan = chan;
        chan = chan->next;
        prev_chan->next = NULL;
    }

746
    self->tim.State = HAL_TIM_STATE_RESET;
747
748
749
    self->tim.Instance->CCER = 0x0000; // disable all capture/compare outputs
    self->tim.Instance->CR1 = 0x0000; // disable the timer and reset its state

750
751
752
753
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_deinit_obj, pyb_timer_deinit);

754
755
/// \method channel(channel, mode, ...)
///
756
757
/// If only a channel number is passed, then a previously initialized channel
/// object is returned (or `None` if there is no previous channel).
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
///
/// Othwerwise, a TimerChannel object is initialized and returned.
///
/// Each channel can be configured to perform pwm, output compare, or
/// input capture. All channels share the same underlying timer, which means
/// that they share the same timer clock.
///
/// Keyword arguments:
///
///   - `mode` can be one of:
///     - `Timer.PWM` - configure the timer in PWM mode (active high).
///     - `Timer.PWM_INVERTED` - configure the timer in PWM mode (active low).
///     - `Timer.OC_TIMING` - indicates that no pin is driven.
///     - `Timer.OC_ACTIVE` - the pin will be made active when a compare
///        match occurs (active is determined by polarity)
///     - `Timer.OC_INACTIVE` - the pin will be made inactive when a compare
///        match occurs.
///     - `Timer.OC_TOGGLE` - the pin will be toggled when an compare match occurs.
///     - `Timer.OC_FORCED_ACTIVE` - the pin is forced active (compare match is ignored).
///     - `Timer.OC_FORCED_INACTIVE` - the pin is forced inactive (compare match is ignored).
///     - `Timer.IC` - configure the timer in Input Capture mode.
779
780
781
///     - `Timer.ENC_A` --- configure the timer in Encoder mode. The counter only changes when CH1 changes.
///     - `Timer.ENC_B` --- configure the timer in Encoder mode. The counter only changes when CH2 changes.
///     - `Timer.ENC_AB` --- configure the timer in Encoder mode. The counter changes when CH1 or CH2 changes.
782
783
784
785
786
787
788
789
790
791
///
///   - `callback` - as per TimerChannel.callback()
///
///   - `pin` None (the default) or a Pin object. If specified (and not None)
///           this will cause the alternate function of the the indicated pin
///      to be configured for this timer channel. An error will be raised if
///      the pin doesn't support any alternate functions for this timer channel.
///
/// Keyword arguments for Timer.PWM modes:
///
792
///   - `pulse_width` - determines the initial pulse width value to use.
793
///   - `pulse_width_percent` - determines the initial pulse width percentage to use.
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
///
/// Keyword arguments for Timer.OC modes:
///
///   - `compare` - determines the initial value of the compare register.
///
///   - `polarity` can be one of:
///     - `Timer.HIGH` - output is active high
///     - `Timer.LOW` - output is acive low
///
/// Optional keyword arguments for Timer.IC modes:
///
///   - `polarity` can be one of:
///     - `Timer.RISING` - captures on rising edge.
///     - `Timer.FALLING` - captures on falling edge.
///     - `Timer.BOTH` - captures on both edges.
///
810
811
812
///   Note that capture only works on the primary channel, and not on the
///   complimentary channels.
///
813
814
815
816
817
818
819
820
/// Notes for Timer.ENC modes:
///
///   - Requires 2 pins, so one or both pins will need to be configured to use
///     the appropriate timer AF using the Pin API.
///   - Read the encoder value using the timer.counter() method.
///   - Only works on CH1 and CH2 (and not on CH1N or CH2N)
///   - The channel number is ignored when setting the encoder mode.
///
821
822
823
824
825
/// PWM Example:
///
///     timer = pyb.Timer(2, freq=1000)
///     ch2 = timer.channel(2, pyb.Timer.PWM, pin=pyb.Pin.board.X2, pulse_width=210000)
///     ch3 = timer.channel(3, pyb.Timer.PWM, pin=pyb.Pin.board.X3, pulse_width=420000)
826
827
828
829
830
831
832
833
834
835
STATIC mp_obj_t pyb_timer_channel(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_mode,                MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_callback,            MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_pin,                 MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_pulse_width,         MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_pulse_width_percent, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_compare,             MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_polarity,            MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
    };
836

837
838
    pyb_timer_obj_t *self = pos_args[0];
    mp_int_t channel = mp_obj_get_int(pos_args[1]);
839
840

    if (channel < 1 || channel > 4) {
841
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid channel (%d)", channel));
842
843
844
845
846
847
848
849
850
851
852
853
    }

    pyb_timer_channel_obj_t *chan = self->channel;
    pyb_timer_channel_obj_t *prev_chan = NULL;

    while (chan != NULL) {
        if (chan->channel == channel) {
            break;
        }
        prev_chan = chan;
        chan = chan->next;
    }
854
855
856

    // If only the channel number is given return the previously allocated
    // channel (or None if no previous channel).
857
    if (n_args == 2 && kw_args->used == 0) {
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
        if (chan) {
            return chan;
        }
        return mp_const_none;
    }

    // If there was already a channel, then remove it from the list. Note that
    // the order we do things here is important so as to appear atomic to
    // the IRQ handler.
    if (chan) {
        // Turn off any IRQ associated with the channel.
        pyb_timer_channel_callback(chan, mp_const_none);

        // Unlink the channel from the list.
        if (prev_chan) {
            prev_chan->next = chan->next;
        }
        self->channel = chan->next;
        chan->next = NULL;
    }

    // Allocate and initialize a new channel
880
881
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
882
883
884
885
886
887

    chan = m_new_obj(pyb_timer_channel_obj_t);
    memset(chan, 0, sizeof(*chan));
    chan->base.type = &pyb_timer_channel_type;
    chan->timer = self;
    chan->channel = channel;
888
889
    chan->mode = args[0].u_int;
    chan->callback = args[1].u_obj;
890

891
    mp_obj_t pin_obj = args[2].u_obj;
892
893
894
895
896
897
898
    if (pin_obj != mp_const_none) {
        if (!MP_OBJ_IS_TYPE(pin_obj, &pin_type)) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "pin argument needs to be be a Pin type"));
        }
        const pin_obj_t *pin = pin_obj;
        const pin_af_obj_t *af = pin_find_af(pin, AF_FN_TIM, self->tim_id);
        if (af == NULL) {
899
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Pin(%q) doesn't have an af for Timer(%d)", pin->name, self->tim_id));
900
901
        }
        // pin.init(mode=AF_PP, af=idx)
902
        const mp_obj_t args2[6] = {
903
904
905
906
907
            (mp_obj_t)&pin_init_obj,
            pin_obj,
            MP_OBJ_NEW_QSTR(MP_QSTR_mode),  MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_PP),
            MP_OBJ_NEW_QSTR(MP_QSTR_af),    MP_OBJ_NEW_SMALL_INT(af->idx)
        };
908
        mp_call_method_n_kw(0, 2, args2);
909
910
911
912
913
914
915
916
917
918
919
920
921
922
    }

    // Link the channel to the timer before we turn the channel on.
    // Note that this needs to appear atomic to the IRQ handler (the write
    // to self->channel is atomic, so we're good, but I thought I'd mention
    // in case this was ever changed in the future).
    chan->next = self->channel;
    self->channel = chan;

    switch (chan->mode) {

        case CHANNEL_MODE_PWM_NORMAL:
        case CHANNEL_MODE_PWM_INVERTED: {
            TIM_OC_InitTypeDef oc_config;
923
            oc_config.OCMode = channel_mode_info[chan->mode].oc_mode;
924
            if (args[4].u_obj != mp_const_none) {
925
                // pulse width percent given
Dave Hylands's avatar
Dave Hylands committed
926
                uint32_t period = compute_period(self);
927
                oc_config.Pulse = compute_pwm_value_from_percent(period, args[4].u_obj);
928
            } else {
929
                // use absolute pulse width value (defaults to 0 if nothing given)
930
                oc_config.Pulse = args[3].u_int;
931
            }
932
933
934
935
936
937
938
939
940
941
            oc_config.OCPolarity   = TIM_OCPOLARITY_HIGH;
            oc_config.OCNPolarity  = TIM_OCNPOLARITY_HIGH;
            oc_config.OCFastMode   = TIM_OCFAST_DISABLE;
            oc_config.OCIdleState  = TIM_OCIDLESTATE_SET;
            oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;

            HAL_TIM_PWM_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan));
            if (chan->callback == mp_const_none) {
                HAL_TIM_PWM_Start(&self->tim, TIMER_CHANNEL(chan));
            } else {
942
                pyb_timer_channel_callback(chan, chan->callback);
943
            }
944
945
946
947
            // Start the complimentary channel too (if its supported)
            if (IS_TIM_CCXN_INSTANCE(self->tim.Instance, TIMER_CHANNEL(chan))) {
                HAL_TIMEx_PWMN_Start(&self->tim, TIMER_CHANNEL(chan));
            }
948
949
950
951
952
953
954
955
956
957
            break;
        }

        case CHANNEL_MODE_OC_TIMING:
        case CHANNEL_MODE_OC_ACTIVE:
        case CHANNEL_MODE_OC_INACTIVE:
        case CHANNEL_MODE_OC_TOGGLE:
        case CHANNEL_MODE_OC_FORCED_ACTIVE:
        case CHANNEL_MODE_OC_FORCED_INACTIVE: {
            TIM_OC_InitTypeDef oc_config;
958
            oc_config.OCMode       = channel_mode_info[chan->mode].oc_mode;
959
960
            oc_config.Pulse        = args[5].u_int;
            oc_config.OCPolarity   = args[6].u_int;
961
962
963
            if (oc_config.OCPolarity == 0xffffffff) {
                oc_config.OCPolarity = TIM_OCPOLARITY_HIGH;
            }
964
965
966
967
968
            if (oc_config.OCPolarity == TIM_OCPOLARITY_HIGH) {
                oc_config.OCNPolarity  = TIM_OCNPOLARITY_HIGH;
            } else {
                oc_config.OCNPolarity  = TIM_OCNPOLARITY_LOW;
            }
969
970
971
972
973
            oc_config.OCFastMode   = TIM_OCFAST_DISABLE;
            oc_config.OCIdleState  = TIM_OCIDLESTATE_SET;
            oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;

            if (!IS_TIM_OC_POLARITY(oc_config.OCPolarity)) {
974
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", oc_config.OCPolarity));
975
976
977
978
979
            }
            HAL_TIM_OC_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan));
            if (chan->callback == mp_const_none) {
                HAL_TIM_OC_Start(&self->tim, TIMER_CHANNEL(chan));
            } else {
980
                pyb_timer_channel_callback(chan, chan->callback);
981
            }
982
983
984
985
            // Start the complimentary channel too (if its supported)
            if (IS_TIM_CCXN_INSTANCE(self->tim.Instance, TIMER_CHANNEL(chan))) {
                HAL_TIMEx_OCN_Start(&self->tim, TIMER_CHANNEL(chan));
            }
986
987
988
989
990
991
            break;
        }

        case CHANNEL_MODE_IC: {
            TIM_IC_InitTypeDef ic_config;

992
            ic_config.ICPolarity  = args[6].u_int;
993
994
995
996
997
998
999
1000
            if (ic_config.ICPolarity == 0xffffffff) {
                ic_config.ICPolarity = TIM_ICPOLARITY_RISING;
            }
            ic_config.ICSelection = TIM_ICSELECTION_DIRECTTI;
            ic_config.ICPrescaler = TIM_ICPSC_DIV1;
            ic_config.ICFilter    = 0;

            if (!IS_TIM_IC_POLARITY(ic_config.ICPolarity)) {
1001
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", ic_config.ICPolarity));
1002
1003
1004
1005
1006
            }
            HAL_TIM_IC_ConfigChannel(&self->tim, &ic_config, TIMER_CHANNEL(chan));
            if (chan->callback == mp_const_none) {
                HAL_TIM_IC_Start(&self->tim, TIMER_CHANNEL(chan));
            } else {
1007
                pyb_timer_channel_callback(chan, chan->callback);
1008
1009
1010
1011
            }
            break;
        }

1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
        case CHANNEL_MODE_ENC_A:
        case CHANNEL_MODE_ENC_B:
        case CHANNEL_MODE_ENC_AB: {
            TIM_Encoder_InitTypeDef enc_config;

            enc_config.EncoderMode = channel_mode_info[chan->mode].oc_mode;
            enc_config.IC1Polarity  = args[6].u_int;
            if (enc_config.IC1Polarity == 0xffffffff) {
                enc_config.IC1Polarity = TIM_ICPOLARITY_RISING;
            }
            enc_config.IC2Polarity  = enc_config.IC1Polarity;
            enc_config.IC1Selection = TIM_ICSELECTION_DIRECTTI;
            enc_config.IC2Selection = TIM_ICSELECTION_DIRECTTI;
            enc_config.IC1Prescaler = TIM_ICPSC_DIV1;
            enc_config.IC2Prescaler = TIM_ICPSC_DIV1;
            enc_config.IC1Filter    = 0;
            enc_config.IC2Filter    = 0;

            if (!IS_TIM_IC_POLARITY(enc_config.IC1Polarity)) {
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", enc_config.IC1Polarity));
            }
            // Only Timers 1, 2, 3, 4, 5, and 8 support encoder mode
            if (self->tim.Instance != TIM1
            &&  self->tim.Instance != TIM2
            &&  self->tim.Instance != TIM3
            &&  self->tim.Instance != TIM4
            &&  self->tim.Instance != TIM5
1039
1040
1041
1042
            #if defined(TIM8)
            &&  self->tim.Instance != TIM8
            #endif
            ) {
1043
1044
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "encoder not supported on timer %d", self->tim_id));
            }
1045
1046
1047
1048

            // Disable & clear the timer interrupt so that we don't trigger
            // an interrupt by initializing the timer.
            __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
1049
1050
            HAL_TIM_Encoder_Init(&self->tim, &enc_config);
            __HAL_TIM_SetCounter(&self->tim, 0);
1051
1052
1053
1054
1055
            if (self->callback != mp_const_none) {
                __HAL_TIM_CLEAR_FLAG(&self->tim, TIM_IT_UPDATE);
                __HAL_TIM_ENABLE_IT(&self->tim, TIM_IT_UPDATE);
            }
            HAL_TIM_Encoder_Start(&self->tim, TIM_CHANNEL_ALL);
1056
1057
1058
            break;
        }

1059
        default:
1060
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid mode (%d)", chan->mode));
1061
1062
1063
1064
    }

    return chan;
}
1065
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_channel_obj, 2, pyb_timer_channel);
1066

1067
1068
/// \method counter([value])
/// Get or set the timer counter.
1069
STATIC mp_obj_t pyb_timer_counter(mp_uint_t n_args, const mp_obj_t *args) {
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
    pyb_timer_obj_t *self = args[0];
    if (n_args == 1) {
        // get
        return mp_obj_new_int(self->tim.Instance->CNT);
    } else {
        // set
        __HAL_TIM_SetCounter(&self->tim, mp_obj_get_int(args[1]));
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_counter_obj, 1, 2, pyb_timer_counter);

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
/// \method source_freq()
/// Get the frequency of the source of the timer.
STATIC mp_obj_t pyb_timer_source_freq(mp_obj_t self_in) {
    pyb_timer_obj_t *self = self_in;
    uint32_t source_freq = timer_get_source_freq(self->tim_id);
    return mp_obj_new_int(source_freq);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_source_freq_obj, pyb_timer_source_freq);

/// \method freq([value])
/// Get or set the frequency for the timer (changes prescaler and period if set).
STATIC mp_obj_t pyb_timer_freq(mp_uint_t n_args, const mp_obj_t *args) {
    pyb_timer_obj_t *self = args[0];
    if (n_args == 1) {
        // get
        uint32_t prescaler = self->tim.Instance->PSC & 0xffff;
        uint32_t period = __HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self);
        uint32_t source_freq = timer_get_source_freq(self->tim_id);
        uint32_t divide = ((prescaler + 1) * (period + 1));
1101
1102
        #if MICROPY_PY_BUILTINS_FLOAT
        if (source_freq % divide != 0) {
1103
            return mp_obj_new_float((float)source_freq / (float)divide);
1104
1105
1106
1107
        } else
        #endif
        {
            return mp_obj_new_int(source_freq / divide);
1108
1109
1110
1111
1112
1113
1114
        }
    } else {
        // set
        uint32_t period;
        uint32_t prescaler = compute_prescaler_period_from_freq(self, args[1], &period);
        self->tim.Instance->PSC = prescaler;
        __HAL_TIM_SetAutoreload(&self->tim, period);
1115
1116
1117
1118
        // Reset the counter to zero. Otherwise, if counter >= period it will
        // continue counting until it wraps (at either 16 or 32 bits depending
        // on the timer).
        __HAL_TIM_SetCounter(&self->tim, 0);
1119
1120
1121
1122
1123
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_freq_obj, 1, 2, pyb_timer_freq);

1124
1125
/// \method prescaler([value])
/// Get or set the prescaler for the timer.
1126
STATIC mp_obj_t pyb_timer_prescaler(mp_uint_t n_args, const mp_obj_t *args) {
1127
1128
1129
1130
1131
1132
    pyb_timer_obj_t *self = args[0];
    if (n_args == 1) {
        // get
        return mp_obj_new_int(self->tim.Instance->PSC & 0xffff);
    } else {
        // set
1133
        self->tim.Instance->PSC = mp_obj_get_int(args[1]) & 0xffff;
1134
1135
1136
1137
1138
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_prescaler_obj, 1, 2, pyb_timer_prescaler);

1139
1140
/// \method period([value])
/// Get or set the period of the timer.
1141
STATIC mp_obj_t pyb_timer_period(mp_uint_t n_args, const mp_obj_t *args) {
1142
1143
1144
    pyb_timer_obj_t *self = args[0];
    if (n_args == 1) {
        // get
1145
        return mp_obj_new_int(__HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self));
1146
1147
    } else {
        // set
1148
        __HAL_TIM_SetAutoreload(&self->tim, mp_obj_get_int(args[1]) & TIMER_CNT_MASK(self));
1149
1150
1151
1152
        // Reset the counter to zero. Otherwise, if counter >= period it will
        // continue counting until it wraps (at either 16 or 32 bits depending
        // on the timer).
        __HAL_TIM_SetCounter(&self->tim, 0); 
1153
1154
1155
1156
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_period_obj, 1, 2, pyb_timer_period);
1157

1158
1159
1160
1161
/// \method callback(fun)
/// Set the function to be called when the timer triggers.
/// `fun` is passed 1 argument, the timer object.
/// If `fun` is `None` then the callback will be disabled.
1162
1163
1164
1165
1166
1167
1168
STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback) {
    pyb_timer_obj_t *self = self_in;
    if (callback == mp_const_none) {
        // stop interrupt (but not timer)
        __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
        self->callback = mp_const_none;
    } else if (mp_obj_is_callable(callback)) {
1169
        __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
1170
        self->callback = callback;
1171
1172
1173
1174
        // start timer, so that it interrupts on overflow, but clear any
        // pending interrupts which may have been set by initializing it.
        __HAL_TIM_CLEAR_FLAG(&self->tim, TIM_IT_UPDATE);
        HAL_TIM_Base_Start_IT(&self->tim); // This will re-enable the IRQ
1175
        HAL_NVIC_EnableIRQ(self->irqn);
1176
1177
    } else {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "callback must be None or a callable object"));
1178
    }
1179
    return mp_const_none;
1180
}
1181
1182
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_callback_obj, pyb_timer_callback);

1183
STATIC const mp_rom_map_elem_t pyb_timer_locals_dict_table[] = {
1184
    // instance methods
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
    { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_timer_init_obj) },
    { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_timer_deinit_obj) },
    { MP_ROM_QSTR(MP_QSTR_channel), MP_ROM_PTR(&pyb_timer_channel_obj) },
    { MP_ROM_QSTR(MP_QSTR_counter), MP_ROM_PTR(&pyb_timer_counter_obj) },
    { MP_ROM_QSTR(MP_QSTR_source_freq), MP_ROM_PTR(&pyb_timer_source_freq_obj) },
    { MP_ROM_QSTR(MP_QSTR_freq), MP_ROM_PTR(&pyb_timer_freq_obj) },
    { MP_ROM_QSTR(MP_QSTR_prescaler), MP_ROM_PTR(&pyb_timer_prescaler_obj) },
    { MP_ROM_QSTR(MP_QSTR_period), MP_ROM_PTR(&pyb_timer_period_obj) },
    { MP_ROM_QSTR(MP_QSTR_callback), MP_ROM_PTR(&pyb_timer_callback_obj) },
    { MP_ROM_QSTR(MP_QSTR_UP), MP_ROM_INT(TIM_COUNTERMODE_UP) },
    { MP_ROM_QSTR(MP_QSTR_DOWN), MP_ROM_INT(TIM_COUNTERMODE_DOWN) },
    { MP_ROM_QSTR(MP_QSTR_CENTER), MP_ROM_INT(TIM_COUNTERMODE_CENTERALIGNED1) },
    { MP_ROM_QSTR(MP_QSTR_PWM), MP_ROM_INT(CHANNEL_MODE_PWM_NORMAL) },
    { MP_ROM_QSTR(MP_QSTR_PWM_INVERTED), MP_ROM_INT(CHANNEL_MODE_PWM_INVERTED) },
    { MP_ROM_QSTR(MP_QSTR_OC_TIMING), MP_ROM_INT(CHANNEL_MODE_OC_TIMING) },
    { MP_ROM_QSTR(MP_QSTR_OC_ACTIVE), MP_ROM_INT(CHANNEL_MODE_OC_ACTIVE) },
    { MP_ROM_QSTR(MP_QSTR_OC_INACTIVE), MP_ROM_INT(CHANNEL_MODE_OC_INACTIVE) },
    { MP_ROM_QSTR(MP_QSTR_OC_TOGGLE), MP_ROM_INT(CHANNEL_MODE_OC_TOGGLE) },
    { MP_ROM_QSTR(MP_QSTR_OC_FORCED_ACTIVE), MP_ROM_INT(CHANNEL_MODE_OC_FORCED_ACTIVE) },
    { MP_ROM_QSTR(MP_QSTR_OC_FORCED_INACTIVE), MP_ROM_INT(CHANNEL_MODE_OC_FORCED_INACTIVE) },
    { MP_ROM_QSTR(MP_QSTR_IC), MP_ROM_INT(CHANNEL_MODE_IC) },
    { MP_ROM_QSTR(MP_QSTR_ENC_A), MP_ROM_INT(CHANNEL_MODE_ENC_A) },
    { MP_ROM_QSTR(MP_QSTR_ENC_B), MP_ROM_INT(CHANNEL_MODE_ENC_B) },
    { MP_ROM_QSTR(MP_QSTR_ENC_AB), MP_ROM_INT(CHANNEL_MODE_ENC_AB) },
    { MP_ROM_QSTR(MP_QSTR_HIGH), MP_ROM_INT(TIM_OCPOLARITY_HIGH) },
    { MP_ROM_QSTR(MP_QSTR_LOW), MP_ROM_INT(TIM_OCPOLARITY_LOW) },
    { MP_ROM_QSTR(MP_QSTR_RISING), MP_ROM_INT(TIM_ICPOLARITY_RISING) },
    { MP_ROM_QSTR(MP_QSTR_FALLING), MP_ROM_INT(TIM_ICPOLARITY_FALLING) },
    { MP_ROM_QSTR(MP_QSTR_BOTH), MP_ROM_INT(TIM_ICPOLARITY_BOTHEDGE) },
1214
1215
1216
1217
1218
1219
1220
1221
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_locals_dict, pyb_timer_locals_dict_table);

const mp_obj_type_t pyb_timer_type = {
    { &mp_type_type },
    .name = MP_QSTR_Timer,
    .print = pyb_timer_print,
    .make_new = pyb_timer_make_new,
1222
    .locals_dict = (mp_obj_dict_t*)&pyb_timer_locals_dict,
1223
1224
};

1225
1226
1227
1228
1229
1230
/// \moduleref pyb
/// \class TimerChannel - setup a channel for a timer.
///
/// Timer channels are used to generate/capture a signal using a timer.
///
/// TimerChannel objects are created using the Timer.channel() method.