i2c.c 35.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27
28
29
#include <stdio.h>
#include <string.h>

30
31
#include "py/nlr.h"
#include "py/runtime.h"
32
#include "py/mphal.h"
33
#include "irq.h"
34
35
#include "pin.h"
#include "genhdr/pins.h"
36
#include "bufhelper.h"
37
#include "dma.h"
38
39
#include "i2c.h"

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
/// \moduleref pyb
/// \class I2C - a two-wire serial protocol
///
/// I2C is a two-wire protocol for communicating between devices.  At the physical
/// level it consists of 2 wires: SCL and SDA, the clock and data lines respectively.
///
/// I2C objects are created attached to a specific bus.  They can be initialised
/// when created, or initialised later on:
///
///     from pyb import I2C
///
///     i2c = I2C(1)                         # create on bus 1
///     i2c = I2C(1, I2C.MASTER)             # create and init as a master
///     i2c.init(I2C.MASTER, baudrate=20000) # init as a master
///     i2c.init(I2C.SLAVE, addr=0x42)       # init as a slave with given address
///     i2c.deinit()                         # turn off the peripheral
///
/// Printing the i2c object gives you information about its configuration.
///
/// Basic methods for slave are send and recv:
///
///     i2c.send('abc')      # send 3 bytes
///     i2c.send(0x42)       # send a single byte, given by the number
///     data = i2c.recv(3)   # receive 3 bytes
///
/// To receive inplace, first create a bytearray:
///
///     data = bytearray(3)  # create a buffer
///     i2c.recv(data)       # receive 3 bytes, writing them into data
///
/// You can specify a timeout (in ms):
///
///     i2c.send(b'123', timeout=2000)   # timout after 2 seconds
///
/// A master must specify the recipient's address:
///
///     i2c.init(I2C.MASTER)
///     i2c.send('123', 0x42)        # send 3 bytes to slave with address 0x42
///     i2c.send(b'456', addr=0x42)  # keyword for address
///
/// Master also has other methods:
///
///     i2c.is_ready(0x42)           # check if slave 0x42 is ready
///     i2c.scan()                   # scan for slaves on the bus, returning
///                                  #   a list of valid addresses
///     i2c.mem_read(3, 0x42, 2)     # read 3 bytes from memory of slave 0x42,
///                                  #   starting at address 2 in the slave
///     i2c.mem_write('abc', 0x42, 2, timeout=1000)
88
89
90
#define PYB_I2C_MASTER (0)
#define PYB_I2C_SLAVE  (1)

91
#if defined(MICROPY_HW_I2C1_SCL)
92
I2C_HandleTypeDef I2CHandle1 = {.Instance = NULL};
93
#endif
94
#if defined(MICROPY_HW_I2C2_SCL)
95
I2C_HandleTypeDef I2CHandle2 = {.Instance = NULL};
96
97
98
99
#endif
#if defined(MICROPY_HW_I2C3_SCL)
I2C_HandleTypeDef I2CHandle3 = {.Instance = NULL};
#endif
100
101
102
#if defined(MICROPY_HW_I2C4_SCL)
I2C_HandleTypeDef I2CHandle4 = {.Instance = NULL};
#endif
103

104
STATIC bool pyb_i2c_use_dma[4];
105

106
const pyb_i2c_obj_t pyb_i2c_obj[] = {
107
    #if defined(MICROPY_HW_I2C1_SCL)
108
    {{&pyb_i2c_type}, &I2CHandle1, &dma_I2C_1_TX, &dma_I2C_1_RX, &pyb_i2c_use_dma[0]},
109
    #else
110
    {{&pyb_i2c_type}, NULL, NULL, NULL, NULL},
111
112
    #endif
    #if defined(MICROPY_HW_I2C2_SCL)
113
    {{&pyb_i2c_type}, &I2CHandle2, &dma_I2C_2_TX, &dma_I2C_2_RX, &pyb_i2c_use_dma[1]},
114
    #else
115
    {{&pyb_i2c_type}, NULL, NULL, NULL, NULL},
116
117
    #endif
    #if defined(MICROPY_HW_I2C3_SCL)
118
    {{&pyb_i2c_type}, &I2CHandle3, &dma_I2C_3_TX, &dma_I2C_3_RX, &pyb_i2c_use_dma[2]},
119
    #else
120
    {{&pyb_i2c_type}, NULL, NULL, NULL, NULL},
121
    #endif
122
123
124
125
126
    #if defined(MICROPY_HW_I2C4_SCL)
    {{&pyb_i2c_type}, &I2CHandle4, &dma_I2C_4_TX, &dma_I2C_4_RX, &pyb_i2c_use_dma[3]},
    #else
    {{&pyb_i2c_type}, NULL, NULL, NULL, NULL},
    #endif
127
128
};

129
130
#if defined(MCU_SERIES_F7) || defined(MCU_SERIES_L4)

131
// The STM32F0, F3, F7 and L4 use a TIMINGR register rather than ClockSpeed and
132
133
// DutyCycle.

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#if defined(STM32F746xx)

// The value 0x40912732 was obtained from the DISCOVERY_I2Cx_TIMING constant
// defined in the STM32F7Cube file Drivers/BSP/STM32F746G-Discovery/stm32f7456g_discovery.h
#define MICROPY_HW_I2C_BAUDRATE_TIMING {{100000, 0x40912732}}
#define MICROPY_HW_I2C_BAUDRATE_DEFAULT (100000)
#define MICROPY_HW_I2C_BAUDRATE_MAX (100000)

#elif defined(STM32F767xx) || defined(STM32F769xx)

// These timing values are for f_I2CCLK=54MHz and are only approximate
#define MICROPY_HW_I2C_BAUDRATE_TIMING { \
        {100000, 0xb0420f13}, \
        {400000, 0x70330309}, \
        {1000000, 0x50100103}, \
    }
#define MICROPY_HW_I2C_BAUDRATE_DEFAULT (400000)
#define MICROPY_HW_I2C_BAUDRATE_MAX (1000000)

#elif defined(MCU_SERIES_L4)

// The value 0x90112626 was obtained from the DISCOVERY_I2C1_TIMING constant
// defined in the STM32L4Cube file Drivers/BSP/STM32L476G-Discovery/stm32l476g_discovery.h
#define MICROPY_HW_I2C_BAUDRATE_TIMING {{100000, 0x90112626}}
#define MICROPY_HW_I2C_BAUDRATE_DEFAULT (100000)
#define MICROPY_HW_I2C_BAUDRATE_MAX (100000)

#else
#error "no I2C timings for this MCU"
#endif

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
STATIC const struct {
    uint32_t    baudrate;
    uint32_t    timing;
} pyb_i2c_baudrate_timing[] = MICROPY_HW_I2C_BAUDRATE_TIMING;

#define NUM_BAUDRATE_TIMINGS MP_ARRAY_SIZE(pyb_i2c_baudrate_timing)

STATIC void i2c_set_baudrate(I2C_InitTypeDef *init, uint32_t baudrate) {
    for (int i = 0; i < NUM_BAUDRATE_TIMINGS; i++) {
        if (pyb_i2c_baudrate_timing[i].baudrate == baudrate) {
            init->Timing = pyb_i2c_baudrate_timing[i].timing;
            return;
        }
    }
    nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
                                            "Unsupported I2C baudrate: %lu", baudrate));
}

183
uint32_t i2c_get_baudrate(I2C_InitTypeDef *init) {
184
185
186
187
188
189
190
191
192
193
    for (int i = 0; i < NUM_BAUDRATE_TIMINGS; i++) {
        if (pyb_i2c_baudrate_timing[i].timing == init->Timing) {
            return pyb_i2c_baudrate_timing[i].baudrate;
        }
    }
    return 0;
}

#else

194
195
196
#define MICROPY_HW_I2C_BAUDRATE_DEFAULT (400000)
#define MICROPY_HW_I2C_BAUDRATE_MAX (400000)

197
198
199
200
201
STATIC void i2c_set_baudrate(I2C_InitTypeDef *init, uint32_t baudrate) {
    init->ClockSpeed = baudrate;
    init->DutyCycle = I2C_DUTYCYCLE_16_9;
}

202
uint32_t i2c_get_baudrate(I2C_InitTypeDef *init) {
203
204
205
    return init->ClockSpeed;
}

206
#endif
207

208
209
void i2c_init0(void) {
    // reset the I2C1 handles
210
    #if defined(MICROPY_HW_I2C1_SCL)
211
212
    memset(&I2CHandle1, 0, sizeof(I2C_HandleTypeDef));
    I2CHandle1.Instance = I2C1;
213
214
    #endif
    #if defined(MICROPY_HW_I2C2_SCL)
215
216
    memset(&I2CHandle2, 0, sizeof(I2C_HandleTypeDef));
    I2CHandle2.Instance = I2C2;
217
218
219
220
221
    #endif
    #if defined(MICROPY_HW_I2C3_SCL)
    memset(&I2CHandle3, 0, sizeof(I2C_HandleTypeDef));
    I2CHandle3.Instance = I2C3;
    #endif
222
223
224
225
    #if defined(MICROPY_HW_I2C4_SCL)
    memset(&I2CHandle4, 0, sizeof(I2C_HandleTypeDef));
    I2CHandle3.Instance = I2C4;
    #endif
226
227
}

228
void i2c_init(I2C_HandleTypeDef *i2c) {
229
230
231
    int i2c_unit;
    const pin_obj_t *scl_pin;
    const pin_obj_t *sda_pin;
232

233
    if (0) {
234
    #if defined(MICROPY_HW_I2C1_SCL)
235
    } else if (i2c == &I2CHandle1) {
236
237
238
        i2c_unit = 1;
        scl_pin = &MICROPY_HW_I2C1_SCL;
        sda_pin = &MICROPY_HW_I2C1_SDA;
239
        __I2C1_CLK_ENABLE();
240
241
    #endif
    #if defined(MICROPY_HW_I2C2_SCL)
242
    } else if (i2c == &I2CHandle2) {
243
244
245
        i2c_unit = 2;
        scl_pin = &MICROPY_HW_I2C2_SCL;
        sda_pin = &MICROPY_HW_I2C2_SDA;
246
        __I2C2_CLK_ENABLE();
247
248
249
    #endif
    #if defined(MICROPY_HW_I2C3_SCL)
    } else if (i2c == &I2CHandle3) {
250
251
252
        i2c_unit = 3;
        scl_pin = &MICROPY_HW_I2C3_SCL;
        sda_pin = &MICROPY_HW_I2C3_SDA;
253
254
        __I2C3_CLK_ENABLE();
    #endif
255
256
257
258
259
260
261
    #if defined(MICROPY_HW_I2C4_SCL)
    } else if (i2c == &I2CHandle4) {
        i2c_unit = 4;
        scl_pin = &MICROPY_HW_I2C4_SCL;
        sda_pin = &MICROPY_HW_I2C4_SDA;
        __I2C3_CLK_ENABLE();
    #endif
262
263
264
    } else {
        // I2C does not exist for this board (shouldn't get here, should be checked by caller)
        return;
265
266
    }

267
    // init the GPIO lines
268
269
270
271
    uint32_t mode = MP_HAL_PIN_MODE_ALT_OPEN_DRAIN;
    uint32_t pull = MP_HAL_PIN_PULL_NONE; // have external pull-up resistors on both lines
    mp_hal_pin_config_alt(scl_pin, mode, pull, AF_FN_I2C, i2c_unit);
    mp_hal_pin_config_alt(sda_pin, mode, pull, AF_FN_I2C, i2c_unit);
272

273
    // init the I2C device
274
    if (HAL_I2C_Init(i2c) != HAL_OK) {
275
        // init error
276
277
        // TODO should raise an exception, but this function is not necessarily going to be
        // called via Python, so may not be properly wrapped in an NLR handler
278
        printf("OSError: HAL_I2C_Init failed\n");
279
280
        return;
    }
281
282

    // invalidate the DMA channels so they are initialised on first use
283
    const pyb_i2c_obj_t *self = &pyb_i2c_obj[i2c_unit - 1];
284
285
    dma_invalidate_channel(self->tx_dma_descr);
    dma_invalidate_channel(self->rx_dma_descr);
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    
    if (0) {
    #if defined(MICROPY_HW_I2C1_SCL)
    } else if (i2c->Instance == I2C1) {
        HAL_NVIC_EnableIRQ(I2C1_EV_IRQn);
        HAL_NVIC_EnableIRQ(I2C1_ER_IRQn);
    #endif
    #if defined(MICROPY_HW_I2C2_SCL)
    } else if (i2c->Instance == I2C2) {
        HAL_NVIC_EnableIRQ(I2C2_EV_IRQn);
        HAL_NVIC_EnableIRQ(I2C2_ER_IRQn);
    #endif
    #if defined(MICROPY_HW_I2C3_SCL)
    } else if (i2c->Instance == I2C3) {
        HAL_NVIC_EnableIRQ(I2C3_EV_IRQn);
        HAL_NVIC_EnableIRQ(I2C3_ER_IRQn);
    #endif
303
304
305
306
307
    #if defined(MICROPY_HW_I2C4_SCL)
    } else if (i2c->Instance == I2C4) {
        HAL_NVIC_EnableIRQ(I2C4_EV_IRQn);
        HAL_NVIC_EnableIRQ(I2C4_ER_IRQn);
    #endif
308
    }
309
310
}

311
312
313
void i2c_deinit(I2C_HandleTypeDef *i2c) {
    HAL_I2C_DeInit(i2c);
    if (0) {
314
    #if defined(MICROPY_HW_I2C1_SCL)
315
316
317
318
    } else if (i2c->Instance == I2C1) {
        __I2C1_FORCE_RESET();
        __I2C1_RELEASE_RESET();
        __I2C1_CLK_DISABLE();
319
320
        HAL_NVIC_DisableIRQ(I2C1_EV_IRQn);
        HAL_NVIC_DisableIRQ(I2C1_ER_IRQn);
321
322
    #endif
    #if defined(MICROPY_HW_I2C2_SCL)
323
324
325
326
    } else if (i2c->Instance == I2C2) {
        __I2C2_FORCE_RESET();
        __I2C2_RELEASE_RESET();
        __I2C2_CLK_DISABLE();
327
328
        HAL_NVIC_DisableIRQ(I2C2_EV_IRQn);
        HAL_NVIC_DisableIRQ(I2C2_ER_IRQn);
329
330
331
332
333
334
    #endif
    #if defined(MICROPY_HW_I2C3_SCL)
    } else if (i2c->Instance == I2C3) {
        __I2C3_FORCE_RESET();
        __I2C3_RELEASE_RESET();
        __I2C3_CLK_DISABLE();
335
336
        HAL_NVIC_DisableIRQ(I2C3_EV_IRQn);
        HAL_NVIC_DisableIRQ(I2C3_ER_IRQn);
337
    #endif
338
339
340
341
342
343
344
345
    #if defined(MICROPY_HW_I2C4_SCL)
    } else if (i2c->Instance == I2C4) {
        __HAL_RCC_I2C4_FORCE_RESET();
        __HAL_RCC_I2C4_RELEASE_RESET();
        __HAL_RCC_I2C4_CLK_DISABLE();
        HAL_NVIC_DisableIRQ(I2C4_EV_IRQn);
        HAL_NVIC_DisableIRQ(I2C4_ER_IRQn);
    #endif
346
347
348
    }
}

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
void i2c_init_freq(const pyb_i2c_obj_t *self, mp_int_t freq) {
    I2C_InitTypeDef *init = &self->i2c->Init;

    init->AddressingMode    = I2C_ADDRESSINGMODE_7BIT;
    init->DualAddressMode   = I2C_DUALADDRESS_DISABLED;
    init->GeneralCallMode   = I2C_GENERALCALL_DISABLED;
    init->NoStretchMode     = I2C_NOSTRETCH_DISABLE;
    init->OwnAddress1       = PYB_I2C_MASTER_ADDRESS;
    init->OwnAddress2       = 0; // unused
    if (freq != -1) {
        i2c_set_baudrate(init, MIN(freq, MICROPY_HW_I2C_BAUDRATE_MAX));
    }

    *self->use_dma = false;

    // init the I2C bus
    i2c_deinit(self->i2c);
    i2c_init(self->i2c);
}

369
370
371
372
373
374
375
STATIC void i2c_reset_after_error(I2C_HandleTypeDef *i2c) {
    // wait for bus-busy flag to be cleared, with a timeout
    for (int timeout = 50; timeout > 0; --timeout) {
        if (!__HAL_I2C_GET_FLAG(i2c, I2C_FLAG_BUSY)) {
            // stop bit was generated and bus is back to normal
            return;
        }
376
        mp_hal_delay_ms(1);
377
378
379
380
381
382
    }
    // bus was/is busy, need to reset the peripheral to get it to work again
    i2c_deinit(i2c);
    i2c_init(i2c);
}

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
void i2c_ev_irq_handler(mp_uint_t i2c_id) {
    I2C_HandleTypeDef *hi2c;

    switch (i2c_id) {
        #if defined(MICROPY_HW_I2C1_SCL)
        case 1:
            hi2c = &I2CHandle1;
            break;
        #endif
        #if defined(MICROPY_HW_I2C2_SCL)
        case 2:
            hi2c = &I2CHandle2;
            break;
        #endif
        #if defined(MICROPY_HW_I2C3_SCL)
        case 3:
            hi2c = &I2CHandle3;
            break;
        #endif
402
403
404
405
406
        #if defined(MICROPY_HW_I2C4_SCL)
        case 4:
            hi2c = &I2CHandle4;
            break;
        #endif
407
408
409
410
        default:
            return;
    }

411
412
    #if defined(MCU_SERIES_F4)

413
414
415
416
417
418
419
420
421
422
423
424
425
    if (hi2c->Instance->SR1 & I2C_FLAG_BTF && hi2c->State == HAL_I2C_STATE_BUSY_TX) {
        if (hi2c->XferCount != 0U) {
            hi2c->Instance->DR = *hi2c->pBuffPtr++;
            hi2c->XferCount--;
        } else {
            __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
            if (hi2c->XferOptions != I2C_FIRST_FRAME) {
                hi2c->Instance->CR1 |= I2C_CR1_STOP;
            }
            hi2c->Mode = HAL_I2C_MODE_NONE;
            hi2c->State = HAL_I2C_STATE_READY;
        }
    }
426
427
428
429
430
431
432

    #else

    // if not an F4 MCU, use the HAL's IRQ handler
    HAL_I2C_EV_IRQHandler(hi2c);

    #endif
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
}

void i2c_er_irq_handler(mp_uint_t i2c_id) {
    I2C_HandleTypeDef *hi2c;

    switch (i2c_id) {
        #if defined(MICROPY_HW_I2C1_SCL)
        case 1:
            hi2c = &I2CHandle1;
            break;
        #endif
        #if defined(MICROPY_HW_I2C2_SCL)
        case 2:
            hi2c = &I2CHandle2;
            break;
        #endif
        #if defined(MICROPY_HW_I2C3_SCL)
        case 3:
            hi2c = &I2CHandle3;
            break;
        #endif
454
455
456
457
458
        #if defined(MICROPY_HW_I2C4_SCL)
        case 4:
            hi2c = &I2CHandle4;
            break;
        #endif
459
460
461
462
        default:
            return;
    }

463
464
    #if defined(MCU_SERIES_F4)

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
    uint32_t sr1 = hi2c->Instance->SR1;

    // I2C Bus error
    if (sr1 & I2C_FLAG_BERR) {
        hi2c->ErrorCode |= HAL_I2C_ERROR_BERR;
        __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_BERR);
    }

    // I2C Arbitration Loss error
    if (sr1 & I2C_FLAG_ARLO) {
        hi2c->ErrorCode |= HAL_I2C_ERROR_ARLO;
        __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ARLO);
    }

    // I2C Acknowledge failure
    if (sr1 & I2C_FLAG_AF) {
        hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
        SET_BIT(hi2c->Instance->CR1,I2C_CR1_STOP);
        __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
    }

    // I2C Over-Run/Under-Run
    if (sr1 & I2C_FLAG_OVR) {
        hi2c->ErrorCode |= HAL_I2C_ERROR_OVR;
        __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_OVR);
    }
491
492
493
494
495
496
497

    #else

    // if not an F4 MCU, use the HAL's IRQ handler
    HAL_I2C_ER_IRQHandler(hi2c);

    #endif
498
499
}

500
501
502
503
504
505
506
507
508
509
510
511
512
STATIC HAL_StatusTypeDef i2c_wait_dma_finished(I2C_HandleTypeDef *i2c, uint32_t timeout) {
    // Note: we can't use WFI to idle in this loop because the DMA completion
    // interrupt may occur before the WFI.  Hence we miss it and have to wait
    // until the next sys-tick (up to 1ms).
    uint32_t start = HAL_GetTick();
    while (HAL_I2C_GetState(i2c) != HAL_I2C_STATE_READY) {
        if (HAL_GetTick() - start >= timeout) {
            return HAL_TIMEOUT;
        }
    }
    return HAL_OK;
}

513
514
515
/******************************************************************************/
/* Micro Python bindings                                                      */

516
517
STATIC inline bool in_master_mode(pyb_i2c_obj_t *self) { return self->i2c->Init.OwnAddress1 == PYB_I2C_MASTER_ADDRESS; }

518
STATIC void pyb_i2c_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
519
520
    pyb_i2c_obj_t *self = self_in;

521
522
523
524
525
526
527
528
529
530
531
    uint i2c_num = 0;
    if (0) { }
    #if defined(MICROPY_HW_I2C1_SCL)
    else if (self->i2c->Instance == I2C1) { i2c_num = 1; }
    #endif
    #if defined(MICROPY_HW_I2C2_SCL)
    else if (self->i2c->Instance == I2C2) { i2c_num = 2; }
    #endif
    #if defined(MICROPY_HW_I2C3_SCL)
    else if (self->i2c->Instance == I2C3) { i2c_num = 3; }
    #endif
532
533
534
    #if defined(MICROPY_HW_I2C4_SCL)
    else if (self->i2c->Instance == I2C4) { i2c_num = 4; }
    #endif
535
536

    if (self->i2c->State == HAL_I2C_STATE_RESET) {
537
        mp_printf(print, "I2C(%u)", i2c_num);
538
539
    } else {
        if (in_master_mode(self)) {
540
            mp_printf(print, "I2C(%u, I2C.MASTER, baudrate=%u)", i2c_num, i2c_get_baudrate(&self->i2c->Init));
541
        } else {
542
            mp_printf(print, "I2C(%u, I2C.SLAVE, addr=0x%02x)", i2c_num, (self->i2c->Instance->OAR1 >> 1) & 0x7f);
543
544
545
546
        }
    }
}

547
548
549
550
551
552
553
554
/// \method init(mode, *, addr=0x12, baudrate=400000, gencall=False)
///
/// Initialise the I2C bus with the given parameters:
///
///   - `mode` must be either `I2C.MASTER` or `I2C.SLAVE`
///   - `addr` is the 7-bit address (only sensible for a slave)
///   - `baudrate` is the SCL clock rate (only sensible for a master)
///   - `gencall` is whether to support general call mode
555
556
STATIC mp_obj_t pyb_i2c_init_helper(const pyb_i2c_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
557
        { MP_QSTR_mode,     MP_ARG_INT, {.u_int = PYB_I2C_MASTER} },
558
        { MP_QSTR_addr,     MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0x12} },
559
        { MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = MICROPY_HW_I2C_BAUDRATE_DEFAULT} },
560
        { MP_QSTR_gencall,  MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
561
        { MP_QSTR_dma,      MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
562
    };
563
564

    // parse args
565
566
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
567
568
569
570

    // set the I2C configuration values
    I2C_InitTypeDef *init = &self->i2c->Init;

571
    if (args[0].u_int == PYB_I2C_MASTER) {
572
573
574
        // use a special address to indicate we are a master
        init->OwnAddress1 = PYB_I2C_MASTER_ADDRESS;
    } else {
575
        init->OwnAddress1 = (args[1].u_int << 1) & 0xfe;
576
577
    }

578
    i2c_set_baudrate(init, MIN(args[2].u_int, MICROPY_HW_I2C_BAUDRATE_MAX));
579
580
    init->AddressingMode  = I2C_ADDRESSINGMODE_7BIT;
    init->DualAddressMode = I2C_DUALADDRESS_DISABLED;
581
    init->GeneralCallMode = args[3].u_bool ? I2C_GENERALCALL_ENABLED : I2C_GENERALCALL_DISABLED;
582
583
    init->OwnAddress2     = 0; // unused
    init->NoStretchMode   = I2C_NOSTRETCH_DISABLE;
584

585
586
    *self->use_dma = args[4].u_bool;

587
    // init the I2C bus
588
    i2c_deinit(self->i2c);
589
590
591
592
593
    i2c_init(self->i2c);

    return mp_const_none;
}

594
595
596
597
598
599
600
/// \classmethod \constructor(bus, ...)
///
/// Construct an I2C object on the given bus.  `bus` can be 1 or 2.
/// With no additional parameters, the I2C object is created but not
/// initialised (it has the settings from the last initialisation of
/// the bus, if any).  If extra arguments are given, the bus is initialised.
/// See `init` for parameters of initialisation.
601
602
603
604
605
///
/// The physical pins of the I2C busses are:
///
///   - `I2C(1)` is on the X position: `(SCL, SDA) = (X9, X10) = (PB6, PB7)`
///   - `I2C(2)` is on the Y position: `(SCL, SDA) = (Y9, Y10) = (PB10, PB11)`
606
STATIC mp_obj_t pyb_i2c_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
607
    // check arguments
608
    mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
609

610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
    // work out i2c bus
    int i2c_id = 0;
    if (MP_OBJ_IS_STR(args[0])) {
        const char *port = mp_obj_str_get_str(args[0]);
        if (0) {
        #ifdef MICROPY_HW_I2C1_NAME
        } else if (strcmp(port, MICROPY_HW_I2C1_NAME) == 0) {
            i2c_id = 1;
        #endif
        #ifdef MICROPY_HW_I2C2_NAME
        } else if (strcmp(port, MICROPY_HW_I2C2_NAME) == 0) {
            i2c_id = 2;
        #endif
        #ifdef MICROPY_HW_I2C3_NAME
        } else if (strcmp(port, MICROPY_HW_I2C3_NAME) == 0) {
            i2c_id = 3;
        #endif
        } else {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
629
                "I2C(%s) doesn't exist", port));
630
631
632
633
        }
    } else {
        i2c_id = mp_obj_get_int(args[0]);
        if (i2c_id < 1 || i2c_id > MP_ARRAY_SIZE(pyb_i2c_obj)
634
            || pyb_i2c_obj[i2c_id - 1].i2c == NULL) {
635
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
636
                "I2C(%d) doesn't exist", i2c_id));
637
        }
638
639
    }

640
    // get I2C object
641
    const pyb_i2c_obj_t *i2c_obj = &pyb_i2c_obj[i2c_id - 1];
642

643
644
645
646
647
648
    if (n_args > 1 || n_kw > 0) {
        // start the peripheral
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
        pyb_i2c_init_helper(i2c_obj, n_args - 1, args + 1, &kw_args);
    }
649

650
    return (mp_obj_t)i2c_obj;
651
652
}

653
STATIC mp_obj_t pyb_i2c_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
654
655
656
657
    return pyb_i2c_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_init_obj, 1, pyb_i2c_init);

658
659
/// \method deinit()
/// Turn off the I2C bus.
660
661
662
663
664
665
666
STATIC mp_obj_t pyb_i2c_deinit(mp_obj_t self_in) {
    pyb_i2c_obj_t *self = self_in;
    i2c_deinit(self->i2c);
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_deinit_obj, pyb_i2c_deinit);

667
668
/// \method is_ready(addr)
/// Check if an I2C device responds to the given address.  Only valid when in master mode.
669
670
STATIC mp_obj_t pyb_i2c_is_ready(mp_obj_t self_in, mp_obj_t i2c_addr_o) {
    pyb_i2c_obj_t *self = self_in;
671
672
673
674
675

    if (!in_master_mode(self)) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
    }

676
    mp_uint_t i2c_addr = mp_obj_get_int(i2c_addr_o) << 1;
677
678

    for (int i = 0; i < 10; i++) {
679
        HAL_StatusTypeDef status = HAL_I2C_IsDeviceReady(self->i2c, i2c_addr, 10, 200);
680
681
682
683
684
685
686
687
688
        if (status == HAL_OK) {
            return mp_const_true;
        }
    }

    return mp_const_false;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_i2c_is_ready_obj, pyb_i2c_is_ready);

689
/// \method scan()
690
/// Scan all I2C addresses from 0x08 to 0x77 and return a list of those that respond.
691
/// Only valid when in master mode.
692
693
694
STATIC mp_obj_t pyb_i2c_scan(mp_obj_t self_in) {
    pyb_i2c_obj_t *self = self_in;

695
696
697
698
    if (!in_master_mode(self)) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
    }

699
700
    mp_obj_t list = mp_obj_new_list(0, NULL);

701
    for (uint addr = 0x08; addr <= 0x77; addr++) {
702
        for (int i = 0; i < 10; i++) {
703
            HAL_StatusTypeDef status = HAL_I2C_IsDeviceReady(self->i2c, addr << 1, 10, 200);
704
705
706
707
708
709
710
711
712
713
714
            if (status == HAL_OK) {
                mp_obj_list_append(list, mp_obj_new_int(addr));
                break;
            }
        }
    }

    return list;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_scan_obj, pyb_i2c_scan);

715
716
717
718
719
720
721
722
/// \method send(send, addr=0x00, timeout=5000)
/// Send data on the bus:
///
///   - `send` is the data to send (an integer to send, or a buffer object)
///   - `addr` is the address to send to (only required in master mode)
///   - `timeout` is the timeout in milliseconds to wait for the send
///
/// Return value: `None`.
723
724
725
726
727
728
STATIC mp_obj_t pyb_i2c_send(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_send,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        { MP_QSTR_addr,    MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} },
        { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
    };
729
730

    // parse args
731
732
733
    pyb_i2c_obj_t *self = pos_args[0];
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
734
735
736
737

    // get the buffer to send from
    mp_buffer_info_t bufinfo;
    uint8_t data[1];
738
    pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data);
739

740
741
742
    // if option is set and IRQs are enabled then we can use DMA
    bool use_dma = *self->use_dma && query_irq() == IRQ_STATE_ENABLED;

743
    DMA_HandleTypeDef tx_dma;
744
    if (use_dma) {
745
        dma_init(&tx_dma, self->tx_dma_descr, self->i2c);
746
747
748
749
        self->i2c->hdmatx = &tx_dma;
        self->i2c->hdmarx = NULL;
    }

750
751
752
    // send the data
    HAL_StatusTypeDef status;
    if (in_master_mode(self)) {
753
        if (args[1].u_int == PYB_I2C_MASTER_ADDRESS) {
754
            if (use_dma) {
755
                dma_deinit(self->tx_dma_descr);
756
            }
757
758
            nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "addr argument required"));
        }
759
        mp_uint_t i2c_addr = args[1].u_int << 1;
760
        if (!use_dma) {
761
            status = HAL_I2C_Master_Transmit(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len, args[2].u_int);
762
        } else {
763
            MP_HAL_CLEAN_DCACHE(bufinfo.buf, bufinfo.len);
764
765
            status = HAL_I2C_Master_Transmit_DMA(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len);
        }
766
    } else {
767
        if (!use_dma) {
768
            status = HAL_I2C_Slave_Transmit(self->i2c, bufinfo.buf, bufinfo.len, args[2].u_int);
769
        } else {
770
            MP_HAL_CLEAN_DCACHE(bufinfo.buf, bufinfo.len);
771
772
773
774
775
            status = HAL_I2C_Slave_Transmit_DMA(self->i2c, bufinfo.buf, bufinfo.len);
        }
    }

    // if we used DMA, wait for it to finish
776
    if (use_dma) {
777
        if (status == HAL_OK) {
778
            status = i2c_wait_dma_finished(self->i2c, args[2].u_int);
779
        }
780
        dma_deinit(self->tx_dma_descr);
781
    }
782
783

    if (status != HAL_OK) {
784
        i2c_reset_after_error(self->i2c);
785
        mp_hal_raise(status);
786
787
    }

788
    return mp_const_none;
789
}
790
791
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_send_obj, 1, pyb_i2c_send);

792
/// \method recv(recv, addr=0x00, timeout=5000)
793
794
795
796
797
798
799
800
801
802
///
/// Receive data on the bus:
///
///   - `recv` can be an integer, which is the number of bytes to receive,
///     or a mutable buffer, which will be filled with received bytes
///   - `addr` is the address to receive from (only required in master mode)
///   - `timeout` is the timeout in milliseconds to wait for the receive
///
/// Return value: if `recv` is an integer then a new buffer of the bytes received,
/// otherwise the same buffer that was passed in to `recv`.
803
804
805
806
807
808
STATIC mp_obj_t pyb_i2c_recv(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_recv,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        { MP_QSTR_addr,    MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} },
        { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
    };
809

810
    // parse args
811
812
813
    pyb_i2c_obj_t *self = pos_args[0];
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
814
815

    // get the buffer to receive into
816
    vstr_t vstr;
817
    mp_obj_t o_ret = pyb_buf_get_for_recv(args[0].u_obj, &vstr);
818

819
820
821
    // if option is set and IRQs are enabled then we can use DMA
    bool use_dma = *self->use_dma && query_irq() == IRQ_STATE_ENABLED;

822
    DMA_HandleTypeDef rx_dma;
823
    if (use_dma) {
824
        dma_init(&rx_dma, self->rx_dma_descr, self->i2c);
825
826
827
828
        self->i2c->hdmatx = NULL;
        self->i2c->hdmarx = &rx_dma;
    }

829
    // receive the data
830
    HAL_StatusTypeDef status;
831
    if (in_master_mode(self)) {
832
        if (args[1].u_int == PYB_I2C_MASTER_ADDRESS) {
833
834
            nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "addr argument required"));
        }
835
        mp_uint_t i2c_addr = args[1].u_int << 1;
836
        if (!use_dma) {
837
            status = HAL_I2C_Master_Receive(self->i2c, i2c_addr, (uint8_t*)vstr.buf, vstr.len, args[2].u_int);
838
        } else {
839
            MP_HAL_CLEANINVALIDATE_DCACHE(vstr.buf, vstr.len);
840
841
            status = HAL_I2C_Master_Receive_DMA(self->i2c, i2c_addr, (uint8_t*)vstr.buf, vstr.len);
        }
842
    } else {
843
        if (!use_dma) {
844
            status = HAL_I2C_Slave_Receive(self->i2c, (uint8_t*)vstr.buf, vstr.len, args[2].u_int);
845
        } else {
846
            MP_HAL_CLEANINVALIDATE_DCACHE(vstr.buf, vstr.len);
847
848
849
850
851
            status = HAL_I2C_Slave_Receive_DMA(self->i2c, (uint8_t*)vstr.buf, vstr.len);
        }
    }

    // if we used DMA, wait for it to finish
852
    if (use_dma) {
853
        if (status == HAL_OK) {
854
            status = i2c_wait_dma_finished(self->i2c, args[2].u_int);
855
        }
856
        dma_deinit(self->rx_dma_descr);
857
858
859
    }

    if (status != HAL_OK) {
860
        i2c_reset_after_error(self->i2c);
861
        mp_hal_raise(status);
862
863
    }

864
    // return the received data
865
866
    if (o_ret != MP_OBJ_NULL) {
        return o_ret;
867
    } else {
868
        return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
869
    }
870
}
871
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_recv_obj, 1, pyb_i2c_recv);
872

873
/// \method mem_read(data, addr, memaddr, timeout=5000, addr_size=8)
874
875
876
877
878
879
880
///
/// Read from the memory of an I2C device:
///
///   - `data` can be an integer or a buffer to read into
///   - `addr` is the I2C device address
///   - `memaddr` is the memory location within the I2C device
///   - `timeout` is the timeout in milliseconds to wait for the read
881
///   - `addr_size` selects width of memaddr: 8 or 16 bits
882
883
884
///
/// Returns the read data.
/// This is only valid in master mode.
885
STATIC const mp_arg_t pyb_i2c_mem_read_allowed_args[] = {
886
887
888
889
    { MP_QSTR_data,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
    { MP_QSTR_addr,    MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
    { MP_QSTR_memaddr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
    { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
890
    { MP_QSTR_addr_size, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
891
};
892

893
894
895
896
897
STATIC mp_obj_t pyb_i2c_mem_read(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    // parse args
    pyb_i2c_obj_t *self = pos_args[0];
    mp_arg_val_t args[MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args), pyb_i2c_mem_read_allowed_args, args);
898

899
900
901
902
903
    if (!in_master_mode(self)) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
    }

    // get the buffer to read into
904
    vstr_t vstr;
905
    mp_obj_t o_ret = pyb_buf_get_for_recv(args[0].u_obj, &vstr);
906

907
    // get the addresses
908
909
    mp_uint_t i2c_addr = args[1].u_int << 1;
    mp_uint_t mem_addr = args[2].u_int;
910
    // determine width of mem_addr; default is 8 bits, entering any other value gives 16 bit width
911
    mp_uint_t mem_addr_size = I2C_MEMADD_SIZE_8BIT;
912
    if (args[4].u_int != 8) {
913
        mem_addr_size = I2C_MEMADD_SIZE_16BIT;
914
    }
915

916
917
918
    // if option is set and IRQs are enabled then we can use DMA
    bool use_dma = *self->use_dma && query_irq() == IRQ_STATE_ENABLED;

919
    HAL_StatusTypeDef status;
920
    if (!use_dma) {
921
        status = HAL_I2C_Mem_Read(self->i2c, i2c_addr, mem_addr, mem_addr_size, (uint8_t*)vstr.buf, vstr.len, args[3].u_int);
922
923
    } else {
        DMA_HandleTypeDef rx_dma;
924
        dma_init(&rx_dma, self->rx_dma_descr, self->i2c);
925
926
        self->i2c->hdmatx = NULL;
        self->i2c->hdmarx = &rx_dma;
927
        MP_HAL_CLEANINVALIDATE_DCACHE(vstr.buf, vstr.len);
928
929
        status = HAL_I2C_Mem_Read_DMA(self->i2c, i2c_addr, mem_addr, mem_addr_size, (uint8_t*)vstr.buf, vstr.len);
        if (status == HAL_OK) {
930
            status = i2c_wait_dma_finished(self->i2c, args[3].u_int);
931
        }
932
        dma_deinit(self->rx_dma_descr);
933
    }
934
935

    if (status != HAL_OK) {
936
        i2c_reset_after_error(self->i2c);
937
        mp_hal_raise(status);
938
939
    }

940
    // return the read data
941
942
    if (o_ret != MP_OBJ_NULL) {
        return o_ret;
943
    } else {
944
        return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
945
    }
946
}
947
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_read_obj, 1, pyb_i2c_mem_read);
948

949
/// \method mem_write(data, addr, memaddr, timeout=5000, addr_size=8)
950
951
952
953
954
955
956
///
/// Write to the memory of an I2C device:
///
///   - `data` can be an integer or a buffer to write from
///   - `addr` is the I2C device address
///   - `memaddr` is the memory location within the I2C device
///   - `timeout` is the timeout in milliseconds to wait for the write
957
///   - `addr_size` selects width of memaddr: 8 or 16 bits
958
959
960
///
/// Returns `None`.
/// This is only valid in master mode.
961
962
963
964
965
STATIC mp_obj_t pyb_i2c_mem_write(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    // parse args (same as mem_read)
    pyb_i2c_obj_t *self = pos_args[0];
    mp_arg_val_t args[MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args), pyb_i2c_mem_read_allowed_args, args);
966
967
968

    if (!in_master_mode(self)) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
969
970
    }

971
972
973
    // get the buffer to write from
    mp_buffer_info_t bufinfo;
    uint8_t data[1];
974
    pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data);
975
976

    // get the addresses
977
978
    mp_uint_t i2c_addr = args[1].u_int << 1;
    mp_uint_t mem_addr = args[2].u_int;
979
    // determine width of mem_addr; default is 8 bits, entering any other value gives 16 bit width
980
    mp_uint_t mem_addr_size = I2C_MEMADD_SIZE_8BIT;
981
    if (args[4].u_int != 8) {
982
        mem_addr_size = I2C_MEMADD_SIZE_16BIT;
983
    }
984

985
986
987
    // if option is set and IRQs are enabled then we can use DMA
    bool use_dma = *self->use_dma && query_irq() == IRQ_STATE_ENABLED;

988
    HAL_StatusTypeDef status;
989
    if (!use_dma) {
990
        status = HAL_I2C_Mem_Write(self->i2c, i2c_addr, mem_addr, mem_addr_size, bufinfo.buf, bufinfo.len, args[3].u_int);
991
992
    } else {
        DMA_HandleTypeDef tx_dma;
993
        dma_init(&tx_dma, self->tx_dma_descr, self->i2c);
994
995
        self->i2c->hdmatx = &tx_dma;
        self->i2c->hdmarx = NULL;
996
        MP_HAL_CLEAN_DCACHE(bufinfo.buf, bufinfo.len);
997
998
        status = HAL_I2C_Mem_Write_DMA(self->i2c, i2c_addr, mem_addr, mem_addr_size, bufinfo.buf, bufinfo.len);
        if (status == HAL_OK) {
999
            status = i2c_wait_dma_finished(self->i2c, args[3].u_int);
1000
        }
1001
        dma_deinit(self->tx_dma_descr);
1002
    }
1003
1004

    if (status != HAL_OK) {
1005
        i2c_reset_after_error(self->i2c);
1006
        mp_hal_raise(status);
1007
1008
1009
1010
    }

    return mp_const_none;
}
1011
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_write_obj, 1, pyb_i2c_mem_write);
1012

1013
STATIC const mp_rom_map_elem_t pyb_i2c_locals_dict_table[] = {
1014
    // instance methods
1015
1016
1017
1018
1019
1020
1021
1022
    { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_i2c_init_obj) },
    { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_i2c_deinit_obj) },
    { MP_ROM_QSTR(MP_QSTR_is_ready), MP_ROM_PTR(&pyb_i2c_is_ready_obj) },
    { MP_ROM_QSTR(MP_QSTR_scan), MP_ROM_PTR(&pyb_i2c_scan_obj) },
    { MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&pyb_i2c_send_obj) },
    { MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&pyb_i2c_recv_obj) },
    { MP_ROM_QSTR(MP_QSTR_mem_read), MP_ROM_PTR(&pyb_i2c_mem_read_obj) },
    { MP_ROM_QSTR(MP_QSTR_mem_write), MP_ROM_PTR(&pyb_i2c_mem_write_obj) },
1023
1024

    // class constants
1025
1026
    /// \constant MASTER - for initialising the bus to master mode
    /// \constant SLAVE - for initialising the bus to slave mode
1027
1028
    { MP_ROM_QSTR(MP_QSTR_MASTER), MP_ROM_INT(PYB_I2C_MASTER) },
    { MP_ROM_QSTR(MP_QSTR_SLAVE), MP_ROM_INT(PYB_I2C_SLAVE) },
1029
1030
};

1031
1032
STATIC MP_DEFINE_CONST_DICT(pyb_i2c_locals_dict, pyb_i2c_locals_dict_table);

1033
1034
1035
const mp_obj_type_t pyb_i2c_type = {
    { &mp_type_type },
    .name = MP_QSTR_I2C,
1036
    .print = pyb_i2c_print,
1037
    .make_new = pyb_i2c_make_new,
1038
    .locals_dict = (mp_obj_dict_t*)&pyb_i2c_locals_dict,
1039
};