modpyb.c 14.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27
28
29
#include <stdint.h>
#include <stdio.h>

30
#include "stm32f4xx_hal.h"
31
32

#include "mpconfig.h"
33
34
#include "misc.h"
#include "nlr.h"
35
36
37
38
#include "qstr.h"
#include "obj.h"
#include "gc.h"
#include "gccollect.h"
Dave Hylands's avatar
Dave Hylands committed
39
#include "irq.h"
40
41
#include "systick.h"
#include "pyexec.h"
42
#include "led.h"
43
#include "pin.h"
44
#include "timer.h"
45
#include "extint.h"
46
#include "usrsw.h"
47
#include "rng.h"
48
#include "rtc.h"
Damien George's avatar
Damien George committed
49
50
#include "i2c.h"
#include "spi.h"
Damien George's avatar
Damien George committed
51
#include "uart.h"
Dave Hylands's avatar
Dave Hylands committed
52
#include "adc.h"
53
#include "storage.h"
Damien George's avatar
Damien George committed
54
#include "sdcard.h"
55
#include "accel.h"
56
#include "servo.h"
Damien George's avatar
Damien George committed
57
#include "dac.h"
58
#include "lcd.h"
59
#include "usb.h"
60
#include "pybstdio.h"
61
#include "ff.h"
62
#include "portmodules.h"
63

64
65
66
67
/// \module pyb - functions related to the pyboard
///
/// The `pyb` module contains specific functions related to the pyboard.

68
69
/// \function bootloader()
/// Activate the bootloader without BOOT* pins.
70
STATIC NORETURN mp_obj_t pyb_bootloader(void) {
71
    pyb_usb_dev_stop();
72
73
74
75
76
    storage_flush();

    HAL_RCC_DeInit();
    HAL_DeInit();

77
    __HAL_REMAPMEMORY_SYSTEMFLASH();
78
79
80
81
82
83

    // arm-none-eabi-gcc 4.9.0 does not correctly inline this
    // MSP function, so we write it out explicitly here.
    //__set_MSP(*((uint32_t*) 0x00000000));
    __ASM volatile ("movs r3, #0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp");

84
    ((void (*)(void)) *((uint32_t*) 0x00000004))();
85
86
87

    while (1);
}
88
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_bootloader_obj, pyb_bootloader);
89

90
91
/// \function info([dump_alloc_table])
/// Print out lots of information about the board.
92
STATIC mp_obj_t pyb_info(uint n_args, const mp_obj_t *args) {
93
94
95
96
97
98
99
100
101
    // get and print unique id; 96 bits
    {
        byte *id = (byte*)0x1fff7a10;
        printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
    }

    // get and print clock speeds
    // SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
    {
102
        printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n",
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
               HAL_RCC_GetSysClockFreq(),
               HAL_RCC_GetHCLKFreq(),
               HAL_RCC_GetPCLK1Freq(),
               HAL_RCC_GetPCLK2Freq());
    }

    // to print info about memory
    {
        printf("_etext=%p\n", &_etext);
        printf("_sidata=%p\n", &_sidata);
        printf("_sdata=%p\n", &_sdata);
        printf("_edata=%p\n", &_edata);
        printf("_sbss=%p\n", &_sbss);
        printf("_ebss=%p\n", &_ebss);
        printf("_estack=%p\n", &_estack);
        printf("_ram_start=%p\n", &_ram_start);
        printf("_heap_start=%p\n", &_heap_start);
        printf("_heap_end=%p\n", &_heap_end);
        printf("_ram_end=%p\n", &_ram_end);
    }

    // qstr info
    {
        uint n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
        qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
        printf("qstr:\n  n_pool=%u\n  n_qstr=%u\n  n_str_data_bytes=%u\n  n_total_bytes=%u\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
    }

    // GC info
    {
        gc_info_t info;
        gc_info(&info);
        printf("GC:\n");
136
137
138
        printf("  " UINT_FMT " total\n", info.total);
        printf("  " UINT_FMT " : " UINT_FMT "\n", info.used, info.free);
        printf("  1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block);
139
140
141
142
143
144
    }

    // free space on flash
    {
        DWORD nclst;
        FATFS *fatfs;
145
        f_getfree("/flash", &nclst, &fatfs);
146
147
148
        printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512));
    }

149
150
151
152
153
    if (n_args == 1) {
        // arg given means dump gc allocation table
        gc_dump_alloc_table();
    }

154
155
    return mp_const_none;
}
156
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_info_obj, 0, 1, pyb_info);
157

158
159
/// \function unique_id()
/// Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU.
160
161
162
163
164
165
STATIC mp_obj_t pyb_unique_id(void) {
    byte *id = (byte*)0x1fff7a10;
    return mp_obj_new_bytes(id, 12);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_unique_id_obj, pyb_unique_id);

166
167
/// \function freq()
/// Return a tuple of clock frequencies: (SYSCLK, HCLK, PCLK1, PCLK2).
168
169
170
171
172
173
174
175
176
177
178
179
// TODO should also be able to set frequency via this function
STATIC mp_obj_t pyb_freq(void) {
    mp_obj_t tuple[4] = {
       mp_obj_new_int(HAL_RCC_GetSysClockFreq()),
       mp_obj_new_int(HAL_RCC_GetHCLKFreq()),
       mp_obj_new_int(HAL_RCC_GetPCLK1Freq()),
       mp_obj_new_int(HAL_RCC_GetPCLK2Freq()),
    };
    return mp_obj_new_tuple(4, tuple);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_freq_obj, pyb_freq);

180
181
/// \function sync()
/// Sync all file systems.
182
183
184
185
186
187
STATIC mp_obj_t pyb_sync(void) {
    storage_flush();
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_sync_obj, pyb_sync);

188
189
/// \function millis()
/// Returns the number of milliseconds since the board was last reset.
190
191
192
193
194
195
196
197
198
199
///
/// Note that this may return a negative number. This allows you to always
/// do:
///     start = pyb.millis()
///     ...do some operation...
///     elapsed = pyb.millis() - start
///
/// and as long as the time of your operation is less than 24 days, you'll
/// always get the right answer and not have to worry about whether pyb.millis()
/// wraps around.
200
STATIC mp_obj_t pyb_millis(void) {
201
202
203
204
205
    // We want to "cast" the 32 bit unsigned into a small-int. So we shift it
    // left by 1 to throw away the top bit, and then shift it right by one
    // to sign extend.
    mp_int_t val = HAL_GetTick() << 1;
    return mp_obj_new_int(val >> 1);
206
207
208
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_millis_obj, pyb_millis);

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/// \function micros()
/// Returns the number of microseconds since the board was last reset.
///
/// Note that this may return a negative number. This allows you to always
/// do:
///     start = pyb.micros()
///     ...do some operation...
///     elapsed = pyb.micros() - start
///
/// and as long as the time of your operation is less than 35 minutes, you'll
/// always get the right answer and not have to worry about whether pyb.micros()
/// wraps around.
STATIC mp_obj_t pyb_micros(void) {
    // We want to "cast" the 32 bit unsigned into a small-int. So we shift it
    // left by 1 to throw away the top bit, and then shift it right by one
    // to sign extend.
    mp_int_t val = sys_tick_get_microseconds() << 1;
    return mp_obj_new_int(val >> 1);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_micros_obj, pyb_micros);

230
231
/// \function delay(ms)
/// Delay for the given number of milliseconds.
232
STATIC mp_obj_t pyb_delay(mp_obj_t ms_in) {
233
    mp_int_t ms = mp_obj_get_int(ms_in);
234
235
236
    if (ms >= 0) {
        HAL_Delay(ms);
    }
237
238
239
240
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_delay_obj, pyb_delay);

241
242
/// \function udelay(us)
/// Delay for the given number of microseconds.
243
STATIC mp_obj_t pyb_udelay(mp_obj_t usec_in) {
244
    mp_int_t usec = mp_obj_get_int(usec_in);
245
246
247
248
    if (usec > 0) {
        uint32_t count = 0;
        const uint32_t utime = (168 * usec / 4);
        while (++count <= utime) {
249
250
        }
    }
251
    return mp_const_none;
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_udelay_obj, pyb_udelay);

#if 0
STATIC void SYSCLKConfig_STOP(void) {
    /* After wake-up from STOP reconfigure the system clock */
    /* Enable HSE */
    RCC_HSEConfig(RCC_HSE_ON);

    /* Wait till HSE is ready */
    while (RCC_GetFlagStatus(RCC_FLAG_HSERDY) == RESET) {
    }

    /* Enable PLL */
    RCC_PLLCmd(ENABLE);

    /* Wait till PLL is ready */
    while (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) {
    }

    /* Select PLL as system clock source */
    RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);

    /* Wait till PLL is used as system clock source */
    while (RCC_GetSYSCLKSource() != 0x08) {
    }
}
#endif

STATIC mp_obj_t pyb_stop(void) {
#if 0
    PWR_EnterSTANDBYMode();
    //PWR_FlashPowerDownCmd(ENABLE); don't know what the logic is with this

    /* Enter Stop Mode */
    PWR_EnterSTOPMode(PWR_Regulator_LowPower, PWR_STOPEntry_WFI);

289
    /* Configures system clock after wake-up from STOP: enable HSE, PLL and select
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
     *        PLL as system clock source (HSE and PLL are disabled in STOP mode) */
    SYSCLKConfig_STOP();

    //PWR_FlashPowerDownCmd(DISABLE);
#endif
    return mp_const_none;
}

MP_DEFINE_CONST_FUN_OBJ_0(pyb_stop_obj, pyb_stop);

STATIC mp_obj_t pyb_standby(void) {
#if 0
    PWR_EnterSTANDBYMode();
#endif
    return mp_const_none;
}

MP_DEFINE_CONST_FUN_OBJ_0(pyb_standby_obj, pyb_standby);

309
310
/// \function have_cdc()
/// Return True if USB is connected as a serial device, False otherwise.
311
312
313
314
315
STATIC mp_obj_t pyb_have_cdc(void ) {
    return MP_BOOL(usb_vcp_is_connected());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_have_cdc_obj, pyb_have_cdc);

316
317
318
319
/// \function repl_uart(uart)
/// Get or set the UART object that the REPL is repeated on.
STATIC mp_obj_t pyb_repl_uart(uint n_args, const mp_obj_t *args) {
    if (n_args == 0) {
320
        if (pyb_stdio_uart == NULL) {
321
322
            return mp_const_none;
        } else {
323
            return pyb_stdio_uart;
324
325
326
        }
    } else {
        if (args[0] == mp_const_none) {
327
            pyb_stdio_uart = NULL;
328
        } else if (mp_obj_get_type(args[0]) == &pyb_uart_type) {
329
            pyb_stdio_uart = args[0];
330
331
332
333
334
335
336
337
        } else {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "need a UART object"));
        }
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_repl_uart_obj, 0, 1, pyb_repl_uart);

338
339
340
/// \function hid((buttons, x, y, z))
/// Takes a 4-tuple (or list) and sends it to the USB host (the PC) to
/// signal a HID mouse-motion event.
341
STATIC mp_obj_t pyb_hid_send_report(mp_obj_t arg) {
342
343
    mp_obj_t *items;
    mp_obj_get_array_fixed_n(arg, 4, &items);
344
345
346
347
348
349
350
351
    uint8_t data[4];
    data[0] = mp_obj_get_int(items[0]);
    data[1] = mp_obj_get_int(items[1]);
    data[2] = mp_obj_get_int(items[2]);
    data[3] = mp_obj_get_int(items[3]);
    usb_hid_send_report(data);
    return mp_const_none;
}
352
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_hid_send_report_obj, pyb_hid_send_report);
353
354

MP_DECLARE_CONST_FUN_OBJ(pyb_main_obj); // defined in main.c
355
MP_DECLARE_CONST_FUN_OBJ(pyb_usb_mode_obj); // defined in main.c
356
357
358
359

STATIC const mp_map_elem_t pyb_module_globals_table[] = {
    { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_pyb) },

360
    { MP_OBJ_NEW_QSTR(MP_QSTR_bootloader), (mp_obj_t)&pyb_bootloader_obj },
361
    { MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&pyb_info_obj },
362
363
    { MP_OBJ_NEW_QSTR(MP_QSTR_unique_id), (mp_obj_t)&pyb_unique_id_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_freq_obj },
364
365
    { MP_OBJ_NEW_QSTR(MP_QSTR_repl_info), (mp_obj_t)&pyb_set_repl_info_obj },

366
    { MP_OBJ_NEW_QSTR(MP_QSTR_wfi), (mp_obj_t)&pyb_wfi_obj },
367
368
369
    { MP_OBJ_NEW_QSTR(MP_QSTR_disable_irq), (mp_obj_t)&pyb_disable_irq_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_enable_irq), (mp_obj_t)&pyb_enable_irq_obj },

370
371
372
    { MP_OBJ_NEW_QSTR(MP_QSTR_stop), (mp_obj_t)&pyb_stop_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_standby), (mp_obj_t)&pyb_standby_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_main), (mp_obj_t)&pyb_main_obj },
373
    { MP_OBJ_NEW_QSTR(MP_QSTR_usb_mode), (mp_obj_t)&pyb_usb_mode_obj },
374

375
    { MP_OBJ_NEW_QSTR(MP_QSTR_have_cdc), (mp_obj_t)&pyb_have_cdc_obj },
376
    { MP_OBJ_NEW_QSTR(MP_QSTR_repl_uart), (mp_obj_t)&pyb_repl_uart_obj },
377
    { MP_OBJ_NEW_QSTR(MP_QSTR_hid), (mp_obj_t)&pyb_hid_send_report_obj },
378
    { MP_OBJ_NEW_QSTR(MP_QSTR_USB_VCP), (mp_obj_t)&pyb_usb_vcp_type },
379

380
    { MP_OBJ_NEW_QSTR(MP_QSTR_millis), (mp_obj_t)&pyb_millis_obj },
381
    { MP_OBJ_NEW_QSTR(MP_QSTR_micros), (mp_obj_t)&pyb_micros_obj },
382
383
384
385
    { MP_OBJ_NEW_QSTR(MP_QSTR_delay), (mp_obj_t)&pyb_delay_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_udelay), (mp_obj_t)&pyb_udelay_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_sync), (mp_obj_t)&pyb_sync_obj },

386
387
    { MP_OBJ_NEW_QSTR(MP_QSTR_Timer), (mp_obj_t)&pyb_timer_type },

388
#if MICROPY_HW_ENABLE_RNG
389
    { MP_OBJ_NEW_QSTR(MP_QSTR_rng), (mp_obj_t)&pyb_rng_get_obj },
390
391
392
#endif

#if MICROPY_HW_ENABLE_RTC
393
    { MP_OBJ_NEW_QSTR(MP_QSTR_RTC), (mp_obj_t)&pyb_rtc_type },
394
395
#endif

396
397
398
    { MP_OBJ_NEW_QSTR(MP_QSTR_Pin), (mp_obj_t)&pin_type },
    { MP_OBJ_NEW_QSTR(MP_QSTR_ExtInt), (mp_obj_t)&extint_type },

399
400
401
#if MICROPY_HW_ENABLE_SERVO
    { MP_OBJ_NEW_QSTR(MP_QSTR_pwm), (mp_obj_t)&pyb_pwm_set_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_servo), (mp_obj_t)&pyb_servo_set_obj },
402
    { MP_OBJ_NEW_QSTR(MP_QSTR_Servo), (mp_obj_t)&pyb_servo_type },
403
404
405
#endif

#if MICROPY_HW_HAS_SWITCH
406
    { MP_OBJ_NEW_QSTR(MP_QSTR_Switch), (mp_obj_t)&pyb_switch_type },
407
408
409
410
411
412
#endif

#if MICROPY_HW_HAS_SDCARD
    { MP_OBJ_NEW_QSTR(MP_QSTR_SD), (mp_obj_t)&pyb_sdcard_obj },
#endif

413
    { MP_OBJ_NEW_QSTR(MP_QSTR_LED), (mp_obj_t)&pyb_led_type },
414
    { MP_OBJ_NEW_QSTR(MP_QSTR_I2C), (mp_obj_t)&pyb_i2c_type },
Damien George's avatar
Damien George committed
415
    { MP_OBJ_NEW_QSTR(MP_QSTR_SPI), (mp_obj_t)&pyb_spi_type },
Damien George's avatar
Damien George committed
416
    { MP_OBJ_NEW_QSTR(MP_QSTR_UART), (mp_obj_t)&pyb_uart_type },
417
418

    { MP_OBJ_NEW_QSTR(MP_QSTR_ADC), (mp_obj_t)&pyb_adc_type },
419
    { MP_OBJ_NEW_QSTR(MP_QSTR_ADCAll), (mp_obj_t)&pyb_adc_all_type },
Damien George's avatar
Damien George committed
420
421
422

#if MICROPY_HW_ENABLE_DAC
    { MP_OBJ_NEW_QSTR(MP_QSTR_DAC), (mp_obj_t)&pyb_dac_type },
423
424
#endif

425
426
427
#if MICROPY_HW_HAS_MMA7660
    { MP_OBJ_NEW_QSTR(MP_QSTR_Accel), (mp_obj_t)&pyb_accel_type },
#endif
428
429
430
431

#if MICROPY_HW_HAS_LCD
    { MP_OBJ_NEW_QSTR(MP_QSTR_LCD), (mp_obj_t)&pyb_lcd_type },
#endif
432
433
};

434
435
436
437
438
STATIC const mp_obj_dict_t pyb_module_globals = {
    .base = {&mp_type_dict},
    .map = {
        .all_keys_are_qstrs = 1,
        .table_is_fixed_array = 1,
439
440
        .used = MP_ARRAY_SIZE(pyb_module_globals_table),
        .alloc = MP_ARRAY_SIZE(pyb_module_globals_table),
441
442
        .table = (mp_map_elem_t*)pyb_module_globals_table,
    },
443
444
445
446
447
};

const mp_obj_module_t pyb_module = {
    .base = { &mp_type_module },
    .name = MP_QSTR_pyb,
448
    .globals = (mp_obj_dict_t*)&pyb_module_globals,
449
};