can.c 16 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include <errno.h>

#include "mpconfig.h"
#include "nlr.h"
#include "misc.h"
#include "qstr.h"
#include "obj.h"
#include "objtuple.h"
#include "runtime.h"
#include "bufhelper.h"
#include "can.h"
#include "pybioctl.h"
42
#include MICROPY_HAL_H
43

44
45
#if MICROPY_HW_ENABLE_CAN

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
/// \moduleref pyb
/// \class CAN - controller area network communication bus
///
/// CAN implements the standard CAN communications protocol.  At
/// the physical level it consists of 2 lines: RX and TX.  Note that
/// to connect the pyboard to a CAN bus you must use a CAN transceiver
/// to convert the CAN logic signals from the pyboard to the correct
/// voltage levels on the bus.
///
/// Note that this driver does not yet support filter configuration
/// (it defaults to a single filter that lets through all messages),
/// or bus timing configuration (except for setting the prescaler).
///
/// Example usage (works without anything connected):
///
///     from pyb import CAN
///     can = pyb.CAN(1, pyb.CAN.LOOPBACK)
63
///     can.send('message!', 123)   # send message with id 123
64
65
66
67
68
69
///     can.recv(0)                 # receive message on FIFO 0

typedef struct _pyb_can_obj_t {
    mp_obj_base_t base;
    mp_uint_t can_id : 8;
    bool is_enabled : 1;
70
    bool extframe : 1;
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    CAN_HandleTypeDef can;
} pyb_can_obj_t;

// assumes Init parameters have been set up correctly
STATIC bool can_init(pyb_can_obj_t *can_obj) {
    CAN_TypeDef *CANx = NULL;

    uint32_t GPIO_Pin = 0;
    uint8_t  GPIO_AF_CANx = 0;
    GPIO_TypeDef* GPIO_Port = NULL;

    switch (can_obj->can_id) {
        // CAN1 is on RX,TX = Y3,Y4 = PB9,PB9
        case PYB_CAN_1:
            CANx = CAN1;
            GPIO_AF_CANx = GPIO_AF9_CAN1;
            GPIO_Port = GPIOB;
            GPIO_Pin = GPIO_PIN_8 | GPIO_PIN_9;
            __CAN1_CLK_ENABLE();
            break;

        // CAN2 is on RX,TX = Y5,Y6 = PB12,PB13
        case PYB_CAN_2:
            CANx = CAN2;
            GPIO_AF_CANx = GPIO_AF9_CAN2;
            GPIO_Port = GPIOB;
            GPIO_Pin = GPIO_PIN_12 | GPIO_PIN_13;
            __CAN1_CLK_ENABLE(); // CAN2 is a "slave" and needs CAN1 enabled as well
            __CAN2_CLK_ENABLE();
            break;

        default:
            return false;
    }

    // init GPIO
    GPIO_InitTypeDef GPIO_InitStructure;
    GPIO_InitStructure.Pin = GPIO_Pin;
    GPIO_InitStructure.Speed = GPIO_SPEED_HIGH;
    GPIO_InitStructure.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStructure.Pull = GPIO_PULLUP;
    GPIO_InitStructure.Alternate = GPIO_AF_CANx;
    HAL_GPIO_Init(GPIO_Port, &GPIO_InitStructure);

    // init CANx
    can_obj->can.Instance = CANx;
    HAL_CAN_Init(&can_obj->can);

    can_obj->is_enabled = true;

    return true;
}

STATIC void can_deinit(pyb_can_obj_t *can_obj) {
    can_obj->is_enabled = false;
    CAN_HandleTypeDef *can = &can_obj->can;
    HAL_CAN_DeInit(can);
    if (can->Instance == CAN1) {
        __CAN1_FORCE_RESET();
        __CAN1_RELEASE_RESET();
        __CAN1_CLK_DISABLE();
    } else if (can->Instance == CAN2) {
        __CAN2_FORCE_RESET();
        __CAN2_RELEASE_RESET();
        __CAN2_CLK_DISABLE();
    }
}

/******************************************************************************/
// Micro Python bindings

STATIC void pyb_can_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
    pyb_can_obj_t *self = self_in;
    if (!self->is_enabled) {
        print(env, "CAN(%u)", self->can_id);
    } else {
147
        print(env, "CAN(%u, CAN.", self->can_id);
148
149
150
151
152
153
154
        qstr mode;
        switch (self->can.Init.Mode) {
            case CAN_MODE_NORMAL: mode = MP_QSTR_NORMAL; break;
            case CAN_MODE_LOOPBACK: mode = MP_QSTR_LOOPBACK; break;
            case CAN_MODE_SILENT: mode = MP_QSTR_SILENT; break;
            case CAN_MODE_SILENT_LOOPBACK: default: mode = MP_QSTR_SILENT_LOOPBACK; break;
        }
155
        print(env, "%s, extframe=", qstr_str(mode));
156
157
158
159
160
        if (self->extframe) {
            mode = MP_QSTR_True;
        } else {
            mode = MP_QSTR_False;
        }
161
162
163
164
        print(env, "%s)", qstr_str(mode));
    }
}

165
// init(mode, extframe=False, prescaler=100, *, sjw=1, bs1=6, bs2=8)
166
167
STATIC mp_obj_t pyb_can_init_helper(pyb_can_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
168
169
170
        { MP_QSTR_mode,         MP_ARG_REQUIRED | MP_ARG_INT,   {.u_int  = CAN_MODE_NORMAL} },
        { MP_QSTR_extframe,     MP_ARG_BOOL,                    {.u_bool = false} },
        { MP_QSTR_prescaler,    MP_ARG_INT,                     {.u_int  = 100} },
171
172
173
174
175
176
177
178
179
        { MP_QSTR_sjw,          MP_ARG_KW_ONLY | MP_ARG_INT,    {.u_int = 1} },
        { MP_QSTR_bs1,          MP_ARG_KW_ONLY | MP_ARG_INT,    {.u_int = 6} },
        { MP_QSTR_bs2,          MP_ARG_KW_ONLY | MP_ARG_INT,    {.u_int = 8} },
    };

    // parse args
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

180
    self->extframe = args[1].u_bool;
181

182
183
184
185
    // set the CAN configuration values
    memset(&self->can, 0, sizeof(self->can));
    CAN_InitTypeDef *init = &self->can.Init;
    init->Mode = args[0].u_int << 4; // shift-left so modes fit in a small-int
186
    init->Prescaler = args[2].u_int;
187
188
189
    init->SJW = ((args[3].u_int - 1) & 3) << 24;
    init->BS1 = ((args[4].u_int - 1) & 0xf) << 16;
    init->BS2 = ((args[5].u_int - 1) & 7) << 20;
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    init->TTCM = DISABLE;
    init->ABOM = DISABLE;
    init->AWUM = DISABLE;
    init->NART = DISABLE;
    init->RFLM = DISABLE;
    init->TXFP = DISABLE;

    // init CAN (if it fails, it's because the port doesn't exist)
    if (!can_init(self)) {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "CAN port %d does not exist", self->can_id));
    }

    // set CAN filter to accept everything
    CAN_FilterConfTypeDef filter;
    filter.FilterIdHigh = 0;
    filter.FilterIdLow = 0;
    filter.FilterMaskIdHigh = 0;
    filter.FilterMaskIdLow = 0;
    filter.FilterFIFOAssignment = CAN_FILTER_FIFO0;
    filter.FilterNumber = 0; // 0-27
    filter.FilterMode = CAN_FILTERMODE_IDMASK;
    filter.FilterScale = CAN_FILTERSCALE_32BIT;
    filter.FilterActivation = ENABLE;
    filter.BankNumber = 0; // what's this for?
    HAL_CAN_ConfigFilter(&self->can, &filter);

    return mp_const_none;
}

/// \classmethod \constructor(bus, ...)
///
/// Construct a CAN object on the given bus.  `bus` can be 1-2, or 'YA' or 'YB'.
/// With no additional parameters, the CAN object is created but not
/// initialised (it has the settings from the last initialisation of
/// the bus, if any).  If extra arguments are given, the bus is initialised.
/// See `init` for parameters of initialisation.
///
/// The physical pins of the CAN busses are:
///
///   - `CAN(1)` is on `YA`: `(RX, TX) = (Y3, Y4) = (PB8, PB9)`
///   - `CAN(2)` is on `YB`: `(RX, TX) = (Y5, Y6) = (PB12, PB13)`
STATIC mp_obj_t pyb_can_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
    // check arguments
    mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);

    // create object
    pyb_can_obj_t *o = m_new_obj(pyb_can_obj_t);
    o->base.type = &pyb_can_type;
    o->is_enabled = false;

    // work out port
    o->can_id = 0;
    if (MP_OBJ_IS_STR(args[0])) {
        const char *port = mp_obj_str_get_str(args[0]);
        if (0) {
        #if defined(PYBV10)
        } else if (strcmp(port, "YA") == 0) {
            o->can_id = PYB_CAN_YA;
        } else if (strcmp(port, "YB") == 0) {
            o->can_id = PYB_CAN_YB;
        #endif
        } else {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "CAN port %s does not exist", port));
        }
    } else {
        o->can_id = mp_obj_get_int(args[0]);
    }

    if (n_args > 1 || n_kw > 0) {
        // start the peripheral
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
        pyb_can_init_helper(o, n_args - 1, args + 1, &kw_args);
    }

    return o;
}

STATIC mp_obj_t pyb_can_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
    return pyb_can_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_init_obj, 1, pyb_can_init);

/// \method deinit()
/// Turn off the CAN bus.
STATIC mp_obj_t pyb_can_deinit(mp_obj_t self_in) {
    pyb_can_obj_t *self = self_in;
    can_deinit(self);
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_can_deinit_obj, pyb_can_deinit);

/// \method any(fifo)
/// Return `True` if any message waiting on the FIFO, else `False`.
STATIC mp_obj_t pyb_can_any(mp_obj_t self_in, mp_obj_t fifo_in) {
    pyb_can_obj_t *self = self_in;
    mp_int_t fifo = mp_obj_get_int(fifo_in);
    if (fifo == 0) {
        if (__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO0) != 0) {
            return mp_const_true;
        }
    } else {
        if (__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO1) != 0) {
            return mp_const_true;
        }
    }
    return mp_const_false;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_can_any_obj, pyb_can_any);

/// \method send(send, addr, *, timeout=5000)
/// Send a message on the bus:
///
///   - `send` is the data to send (an integer to send, or a buffer object).
///   - `addr` is the address to send to
///   - `timeout` is the timeout in milliseconds to wait for the send.
///
/// Return value: `None`.
STATIC mp_obj_t pyb_can_send(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_send,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        { MP_QSTR_addr,    MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
    };

    // parse args
    pyb_can_obj_t *self = pos_args[0];
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // get the buffer to send from
    mp_buffer_info_t bufinfo;
    uint8_t data[1];
    pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data);
324
325
326
327

    if (bufinfo.len > 8) {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "CAN data field too long"));
    }
328
329
330

    // send the data
    CanTxMsgTypeDef tx_msg;
331
332
333
334
335
336
337
    if (self->extframe){
        tx_msg.ExtId = args[1].u_int & 0x1FFFFFFF;
        tx_msg.IDE = CAN_ID_EXT;
    } else {
        tx_msg.StdId = args[1].u_int & 0x7FF;
        tx_msg.IDE = CAN_ID_STD;
    }
338
339
340
341
342
343
344
345
346
    tx_msg.RTR = CAN_RTR_DATA;
    tx_msg.DLC = bufinfo.len;
    for (mp_uint_t i = 0; i < bufinfo.len; i++) {
        tx_msg.Data[i] = ((byte*)bufinfo.buf)[i]; // Data is uint32_t but holds only 1 byte
    }
    self->can.pTxMsg = &tx_msg;
    HAL_StatusTypeDef status = HAL_CAN_Transmit(&self->can, args[2].u_int);

    if (status != HAL_OK) {
347
        mp_hal_raise(status);
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
    }

    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_send_obj, 1, pyb_can_send);

/// \method recv(fifo, *, timeout=5000)
///
/// Receive data on the bus:
///
///   - `fifo` is an integer, which is the FIFO to receive on
///   - `timeout` is the timeout in milliseconds to wait for the receive.
///
/// Return value: buffer of data bytes.
STATIC mp_obj_t pyb_can_recv(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_fifo,    MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
    };

    // parse args
    pyb_can_obj_t *self = pos_args[0];
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // receive the data
    CanRxMsgTypeDef rx_msg;
    self->can.pRxMsg = &rx_msg;
    HAL_StatusTypeDef status = HAL_CAN_Receive(&self->can, args[0].u_int, args[1].u_int);

    if (status != HAL_OK) {
379
        mp_hal_raise(status);
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
    }

    // return the received data
    // TODO use a namedtuple (when namedtuple types can be stored in ROM)
    mp_obj_tuple_t *tuple = mp_obj_new_tuple(4, NULL);
    if (rx_msg.IDE == CAN_ID_STD) {
        tuple->items[0] = MP_OBJ_NEW_SMALL_INT(rx_msg.StdId);
    } else {
        tuple->items[0] = MP_OBJ_NEW_SMALL_INT(rx_msg.ExtId);
    }
    tuple->items[1] = MP_OBJ_NEW_SMALL_INT(rx_msg.RTR);
    tuple->items[2] = MP_OBJ_NEW_SMALL_INT(rx_msg.FMI);
    byte *data;
    tuple->items[3] = mp_obj_str_builder_start(&mp_type_bytes, rx_msg.DLC, &data);
    for (mp_uint_t i = 0; i < rx_msg.DLC; i++) {
        data[i] = rx_msg.Data[i]; // Data is uint32_t but holds only 1 byte
    }
    tuple->items[3] = mp_obj_str_builder_end(tuple->items[3]);
    return tuple;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_recv_obj, 1, pyb_can_recv);

STATIC const mp_map_elem_t pyb_can_locals_dict_table[] = {
    // instance methods
    { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_can_init_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_can_deinit_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_any), (mp_obj_t)&pyb_can_any_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&pyb_can_send_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&pyb_can_recv_obj },

    // class constants
    // Note: we use the ST constants >> 4 so they fit in a small-int.  The
    // right-shift is undone when the constants are used in the init function.
    { MP_OBJ_NEW_QSTR(MP_QSTR_NORMAL), MP_OBJ_NEW_SMALL_INT(CAN_MODE_NORMAL >> 4) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_LOOPBACK), MP_OBJ_NEW_SMALL_INT(CAN_MODE_LOOPBACK >> 4) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_SILENT), MP_OBJ_NEW_SMALL_INT(CAN_MODE_SILENT >> 4) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_SILENT_LOOPBACK), MP_OBJ_NEW_SMALL_INT(CAN_MODE_SILENT_LOOPBACK >> 4) },
};

STATIC MP_DEFINE_CONST_DICT(pyb_can_locals_dict, pyb_can_locals_dict_table);

421
mp_uint_t can_ioctl(mp_obj_t self_in, mp_uint_t request, mp_uint_t arg, int *errcode) {
422
423
424
    pyb_can_obj_t *self = self_in;
    mp_uint_t ret;
    if (request == MP_IOCTL_POLL) {
425
        mp_uint_t flags = arg;
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
        ret = 0;
        if ((flags & MP_IOCTL_POLL_RD)
            && ((__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO0) != 0)
                || (__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO1) != 0))) {
            ret |= MP_IOCTL_POLL_RD;
        }
        if ((flags & MP_IOCTL_POLL_WR) && (self->can.Instance->TSR & CAN_TSR_TME)) {
            ret |= MP_IOCTL_POLL_WR;
        }
    } else {
        *errcode = EINVAL;
        ret = -1;
    }
    return ret;
}

STATIC const mp_stream_p_t can_stream_p = {
    //.read = can_read, // is read sensible for CAN?
    //.write = can_write, // is write sensible for CAN?
    .ioctl = can_ioctl,
    .is_text = false,
};

const mp_obj_type_t pyb_can_type = {
    { &mp_type_type },
    .name = MP_QSTR_CAN,
    .print = pyb_can_print,
    .make_new = pyb_can_make_new,
    .stream_p = &can_stream_p,
    .locals_dict = (mp_obj_t)&pyb_can_locals_dict,
};
457
458

#endif // MICROPY_HW_ENABLE_CAN