i2c.c 21.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27
28
29
#include <stdio.h>
#include <string.h>

30
#include "mpconfig.h"
31
32
33
34
35
#include "nlr.h"
#include "misc.h"
#include "qstr.h"
#include "obj.h"
#include "runtime.h"
36
37
#include "pin.h"
#include "genhdr/pins.h"
38
#include "bufhelper.h"
39
#include "i2c.h"
40
#include MICROPY_HAL_H
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
/// \moduleref pyb
/// \class I2C - a two-wire serial protocol
///
/// I2C is a two-wire protocol for communicating between devices.  At the physical
/// level it consists of 2 wires: SCL and SDA, the clock and data lines respectively.
///
/// I2C objects are created attached to a specific bus.  They can be initialised
/// when created, or initialised later on:
///
///     from pyb import I2C
///
///     i2c = I2C(1)                         # create on bus 1
///     i2c = I2C(1, I2C.MASTER)             # create and init as a master
///     i2c.init(I2C.MASTER, baudrate=20000) # init as a master
///     i2c.init(I2C.SLAVE, addr=0x42)       # init as a slave with given address
///     i2c.deinit()                         # turn off the peripheral
///
/// Printing the i2c object gives you information about its configuration.
///
/// Basic methods for slave are send and recv:
///
///     i2c.send('abc')      # send 3 bytes
///     i2c.send(0x42)       # send a single byte, given by the number
///     data = i2c.recv(3)   # receive 3 bytes
///
/// To receive inplace, first create a bytearray:
///
///     data = bytearray(3)  # create a buffer
///     i2c.recv(data)       # receive 3 bytes, writing them into data
///
/// You can specify a timeout (in ms):
///
///     i2c.send(b'123', timeout=2000)   # timout after 2 seconds
///
/// A master must specify the recipient's address:
///
///     i2c.init(I2C.MASTER)
///     i2c.send('123', 0x42)        # send 3 bytes to slave with address 0x42
///     i2c.send(b'456', addr=0x42)  # keyword for address
///
/// Master also has other methods:
///
///     i2c.is_ready(0x42)           # check if slave 0x42 is ready
///     i2c.scan()                   # scan for slaves on the bus, returning
///                                  #   a list of valid addresses
///     i2c.mem_read(3, 0x42, 2)     # read 3 bytes from memory of slave 0x42,
///                                  #   starting at address 2 in the slave
///     i2c.mem_write('abc', 0x42, 2, timeout=1000)
90

91
92
93
#define PYB_I2C_MASTER (0)
#define PYB_I2C_SLAVE  (1)

94
#if MICROPY_HW_ENABLE_I2C1
95
I2C_HandleTypeDef I2CHandle1 = {.Instance = NULL};
96
#endif
97
I2C_HandleTypeDef I2CHandle2 = {.Instance = NULL};
98

99
100
void i2c_init0(void) {
    // reset the I2C1 handles
101
#if MICROPY_HW_ENABLE_I2C1
102
103
    memset(&I2CHandle1, 0, sizeof(I2C_HandleTypeDef));
    I2CHandle1.Instance = I2C1;
104
#endif
105
106
    memset(&I2CHandle2, 0, sizeof(I2C_HandleTypeDef));
    I2CHandle2.Instance = I2C2;
107
108
}

109
void i2c_init(I2C_HandleTypeDef *i2c) {
110
    // init the GPIO lines
111
    GPIO_InitTypeDef GPIO_InitStructure;
112
113
114
115
    GPIO_InitStructure.Mode = GPIO_MODE_AF_OD;
    GPIO_InitStructure.Speed = GPIO_SPEED_FAST;
    GPIO_InitStructure.Pull = GPIO_NOPULL; // have external pull-up resistors on both lines

116
    const pin_obj_t *pins[2];
117
    if (0) {
118
#if MICROPY_HW_ENABLE_I2C1
119
    } else if (i2c == &I2CHandle1) {
120
        // X-skin: X9=PB6=SCL, X10=PB7=SDA
121
122
        pins[0] = &pin_B6;
        pins[1] = &pin_B7;
123
124
125
        GPIO_InitStructure.Alternate = GPIO_AF4_I2C1;
        // enable the I2C clock
        __I2C1_CLK_ENABLE();
126
#endif
127
    } else if (i2c == &I2CHandle2) {
128
        // Y-skin: Y9=PB10=SCL, Y10=PB11=SDA
129
130
        pins[0] = &pin_B10;
        pins[1] = &pin_B11;
131
132
133
        GPIO_InitStructure.Alternate = GPIO_AF4_I2C2;
        // enable the I2C clock
        __I2C2_CLK_ENABLE();
134
135
136
    } else {
        // I2C does not exist for this board (shouldn't get here, should be checked by caller)
        return;
137
138
    }

139
140
141
142
143
144
    // init the GPIO lines
    for (uint i = 0; i < 2; i++) {
        GPIO_InitStructure.Pin = pins[i]->pin_mask;
        HAL_GPIO_Init(pins[i]->gpio, &GPIO_InitStructure);
    }

145
    // init the I2C device
146
    if (HAL_I2C_Init(i2c) != HAL_OK) {
147
        // init error
148
149
        // TODO should raise an exception, but this function is not necessarily going to be
        // called via Python, so may not be properly wrapped in an NLR handler
150
        printf("OSError: HAL_I2C_Init failed\n");
151
152
153
154
        return;
    }
}

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
void i2c_deinit(I2C_HandleTypeDef *i2c) {
    HAL_I2C_DeInit(i2c);
    if (0) {
#if MICROPY_HW_ENABLE_I2C1
    } else if (i2c->Instance == I2C1) {
        __I2C1_FORCE_RESET();
        __I2C1_RELEASE_RESET();
        __I2C1_CLK_DISABLE();
#endif
    } else if (i2c->Instance == I2C2) {
        __I2C2_FORCE_RESET();
        __I2C2_RELEASE_RESET();
        __I2C2_CLK_DISABLE();
    }
}

171
172
173
174
175
/******************************************************************************/
/* Micro Python bindings                                                      */

typedef struct _pyb_i2c_obj_t {
    mp_obj_base_t base;
176
    I2C_HandleTypeDef *i2c;
177
178
} pyb_i2c_obj_t;

179
180
STATIC inline bool in_master_mode(pyb_i2c_obj_t *self) { return self->i2c->Init.OwnAddress1 == PYB_I2C_MASTER_ADDRESS; }

181
182
STATIC const pyb_i2c_obj_t pyb_i2c_obj[] = {
#if MICROPY_HW_ENABLE_I2C1
183
    {{&pyb_i2c_type}, &I2CHandle1},
184
185
186
#else
    {{&pyb_i2c_type}, NULL},
#endif
187
188
    {{&pyb_i2c_type}, &I2CHandle2}
};
189

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
STATIC void pyb_i2c_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
    pyb_i2c_obj_t *self = self_in;

    uint i2c_num;
    if (self->i2c->Instance == I2C1) { i2c_num = 1; }
    else { i2c_num = 2; }

    if (self->i2c->State == HAL_I2C_STATE_RESET) {
        print(env, "I2C(%u)", i2c_num);
    } else {
        if (in_master_mode(self)) {
            print(env, "I2C(%u, I2C.MASTER, baudrate=%u)", i2c_num, self->i2c->Init.ClockSpeed);
        } else {
            print(env, "I2C(%u, I2C.SLAVE, addr=0x%02x)", i2c_num, (self->i2c->Instance->OAR1 >> 1) & 0x7f);
        }
    }
}

208
209
210
211
212
213
214
215
/// \method init(mode, *, addr=0x12, baudrate=400000, gencall=False)
///
/// Initialise the I2C bus with the given parameters:
///
///   - `mode` must be either `I2C.MASTER` or `I2C.SLAVE`
///   - `addr` is the 7-bit address (only sensible for a slave)
///   - `baudrate` is the SCL clock rate (only sensible for a master)
///   - `gencall` is whether to support general call mode
216
217
218
219
220
STATIC const mp_arg_t pyb_i2c_init_args[] = {
    { MP_QSTR_mode,     MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
    { MP_QSTR_addr,     MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0x12} },
    { MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 400000} },
    { MP_QSTR_gencall,  MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
221
};
222
#define PYB_I2C_INIT_NUM_ARGS MP_ARRAY_SIZE(pyb_i2c_init_args)
223

224
STATIC mp_obj_t pyb_i2c_init_helper(const pyb_i2c_obj_t *self, mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
225
    // parse args
226
227
    mp_arg_val_t vals[PYB_I2C_INIT_NUM_ARGS];
    mp_arg_parse_all(n_args, args, kw_args, PYB_I2C_INIT_NUM_ARGS, pyb_i2c_init_args, vals);
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

    // set the I2C configuration values
    I2C_InitTypeDef *init = &self->i2c->Init;

    if (vals[0].u_int == PYB_I2C_MASTER) {
        // use a special address to indicate we are a master
        init->OwnAddress1 = PYB_I2C_MASTER_ADDRESS;
    } else {
        init->OwnAddress1 = (vals[1].u_int << 1) & 0xfe;
    }

    init->AddressingMode  = I2C_ADDRESSINGMODE_7BIT;
    init->ClockSpeed      = MIN(vals[2].u_int, 400000);
    init->DualAddressMode = I2C_DUALADDRESS_DISABLED;
    init->DutyCycle       = I2C_DUTYCYCLE_16_9;
    init->GeneralCallMode = vals[3].u_bool ? I2C_GENERALCALL_ENABLED : I2C_GENERALCALL_DISABLED;
    init->NoStretchMode   = I2C_NOSTRETCH_DISABLED;
    init->OwnAddress2     = 0xfe; // unused

    // init the I2C bus
    i2c_init(self->i2c);

    return mp_const_none;
}

253
254
255
256
257
258
259
/// \classmethod \constructor(bus, ...)
///
/// Construct an I2C object on the given bus.  `bus` can be 1 or 2.
/// With no additional parameters, the I2C object is created but not
/// initialised (it has the settings from the last initialisation of
/// the bus, if any).  If extra arguments are given, the bus is initialised.
/// See `init` for parameters of initialisation.
260
261
262
263
264
///
/// The physical pins of the I2C busses are:
///
///   - `I2C(1)` is on the X position: `(SCL, SDA) = (X9, X10) = (PB6, PB7)`
///   - `I2C(2)` is on the Y position: `(SCL, SDA) = (Y9, Y10) = (PB10, PB11)`
265
STATIC mp_obj_t pyb_i2c_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
266
    // check arguments
267
    mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
268
269

    // get i2c number
270
    mp_int_t i2c_id = mp_obj_get_int(args[0]) - 1;
271
272

    // check i2c number
273
    if (!(0 <= i2c_id && i2c_id < MP_ARRAY_SIZE(pyb_i2c_obj) && pyb_i2c_obj[i2c_id].i2c != NULL)) {
274
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "I2C bus %d does not exist", i2c_id + 1));
275
276
    }

277
    // get I2C object
278
    const pyb_i2c_obj_t *i2c_obj = &pyb_i2c_obj[i2c_id];
279

280
281
282
283
284
285
    if (n_args > 1 || n_kw > 0) {
        // start the peripheral
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
        pyb_i2c_init_helper(i2c_obj, n_args - 1, args + 1, &kw_args);
    }
286

287
    return (mp_obj_t)i2c_obj;
288
289
}

290
STATIC mp_obj_t pyb_i2c_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
291
292
293
294
    return pyb_i2c_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_init_obj, 1, pyb_i2c_init);

295
296
/// \method deinit()
/// Turn off the I2C bus.
297
298
299
300
301
302
303
STATIC mp_obj_t pyb_i2c_deinit(mp_obj_t self_in) {
    pyb_i2c_obj_t *self = self_in;
    i2c_deinit(self->i2c);
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_deinit_obj, pyb_i2c_deinit);

304
305
/// \method is_ready(addr)
/// Check if an I2C device responds to the given address.  Only valid when in master mode.
306
307
STATIC mp_obj_t pyb_i2c_is_ready(mp_obj_t self_in, mp_obj_t i2c_addr_o) {
    pyb_i2c_obj_t *self = self_in;
308
309
310
311
312

    if (!in_master_mode(self)) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
    }

313
    mp_uint_t i2c_addr = mp_obj_get_int(i2c_addr_o) << 1;
314
315

    for (int i = 0; i < 10; i++) {
316
        HAL_StatusTypeDef status = HAL_I2C_IsDeviceReady(self->i2c, i2c_addr, 10, 200);
317
318
319
320
321
322
323
324
325
        if (status == HAL_OK) {
            return mp_const_true;
        }
    }

    return mp_const_false;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_i2c_is_ready_obj, pyb_i2c_is_ready);

326
327
328
/// \method scan()
/// Scan all I2C addresses from 0x01 to 0x7f and return a list of those that respond.
/// Only valid when in master mode.
329
330
331
STATIC mp_obj_t pyb_i2c_scan(mp_obj_t self_in) {
    pyb_i2c_obj_t *self = self_in;

332
333
334
335
    if (!in_master_mode(self)) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
    }

336
337
338
339
    mp_obj_t list = mp_obj_new_list(0, NULL);

    for (uint addr = 1; addr <= 127; addr++) {
        for (int i = 0; i < 10; i++) {
340
            HAL_StatusTypeDef status = HAL_I2C_IsDeviceReady(self->i2c, addr << 1, 10, 200);
341
342
343
344
345
346
347
348
349
350
351
            if (status == HAL_OK) {
                mp_obj_list_append(list, mp_obj_new_int(addr));
                break;
            }
        }
    }

    return list;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_scan_obj, pyb_i2c_scan);

352
353
354
355
356
357
358
359
/// \method send(send, addr=0x00, timeout=5000)
/// Send data on the bus:
///
///   - `send` is the data to send (an integer to send, or a buffer object)
///   - `addr` is the address to send to (only required in master mode)
///   - `timeout` is the timeout in milliseconds to wait for the send
///
/// Return value: `None`.
360
361
362
363
STATIC const mp_arg_t pyb_i2c_send_args[] = {
    { MP_QSTR_send,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
    { MP_QSTR_addr,    MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} },
    { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
364
};
365
#define PYB_I2C_SEND_NUM_ARGS MP_ARRAY_SIZE(pyb_i2c_send_args)
366

367
STATIC mp_obj_t pyb_i2c_send(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
368
369
370
    pyb_i2c_obj_t *self = args[0];

    // parse args
371
372
    mp_arg_val_t vals[PYB_I2C_SEND_NUM_ARGS];
    mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_I2C_SEND_NUM_ARGS, pyb_i2c_send_args, vals);
373
374
375
376
377
378
379
380
381
382
383
384

    // get the buffer to send from
    mp_buffer_info_t bufinfo;
    uint8_t data[1];
    pyb_buf_get_for_send(vals[0].u_obj, &bufinfo, data);

    // send the data
    HAL_StatusTypeDef status;
    if (in_master_mode(self)) {
        if (vals[1].u_int == PYB_I2C_MASTER_ADDRESS) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "addr argument required"));
        }
385
        mp_uint_t i2c_addr = vals[1].u_int << 1;
386
387
388
389
        status = HAL_I2C_Master_Transmit(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len, vals[2].u_int);
    } else {
        status = HAL_I2C_Slave_Transmit(self->i2c, bufinfo.buf, bufinfo.len, vals[2].u_int);
    }
390
391

    if (status != HAL_OK) {
392
        mp_hal_raise(status);
393
394
    }

395
    return mp_const_none;
396
}
397
398
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_send_obj, 1, pyb_i2c_send);

399
/// \method recv(recv, addr=0x00, timeout=5000)
400
401
402
403
404
405
406
407
408
409
///
/// Receive data on the bus:
///
///   - `recv` can be an integer, which is the number of bytes to receive,
///     or a mutable buffer, which will be filled with received bytes
///   - `addr` is the address to receive from (only required in master mode)
///   - `timeout` is the timeout in milliseconds to wait for the receive
///
/// Return value: if `recv` is an integer then a new buffer of the bytes received,
/// otherwise the same buffer that was passed in to `recv`.
410
411
412
413
STATIC const mp_arg_t pyb_i2c_recv_args[] = {
    { MP_QSTR_recv,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
    { MP_QSTR_addr,    MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} },
    { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
414
};
415
#define PYB_I2C_RECV_NUM_ARGS MP_ARRAY_SIZE(pyb_i2c_recv_args)
416

417
STATIC mp_obj_t pyb_i2c_recv(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
418
    pyb_i2c_obj_t *self = args[0];
419

420
    // parse args
421
422
    mp_arg_val_t vals[PYB_I2C_RECV_NUM_ARGS];
    mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_I2C_RECV_NUM_ARGS, pyb_i2c_recv_args, vals);
423
424
425
426
427
428

    // get the buffer to receive into
    mp_buffer_info_t bufinfo;
    mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &bufinfo);

    // receive the data
429
    HAL_StatusTypeDef status;
430
431
432
433
    if (in_master_mode(self)) {
        if (vals[1].u_int == PYB_I2C_MASTER_ADDRESS) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "addr argument required"));
        }
434
        mp_uint_t i2c_addr = vals[1].u_int << 1;
435
        status = HAL_I2C_Master_Receive(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len, vals[2].u_int);
436
    } else {
437
        status = HAL_I2C_Slave_Receive(self->i2c, bufinfo.buf, bufinfo.len, vals[2].u_int);
438
439
440
    }

    if (status != HAL_OK) {
441
        mp_hal_raise(status);
442
443
    }

444
445
446
447
448
449
    // return the received data
    if (o_ret == MP_OBJ_NULL) {
        return vals[0].u_obj;
    } else {
        return mp_obj_str_builder_end(o_ret);
    }
450
}
451
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_recv_obj, 1, pyb_i2c_recv);
452

453
/// \method mem_read(data, addr, memaddr, timeout=5000, addr_size=8)
454
455
456
457
458
459
460
///
/// Read from the memory of an I2C device:
///
///   - `data` can be an integer or a buffer to read into
///   - `addr` is the I2C device address
///   - `memaddr` is the memory location within the I2C device
///   - `timeout` is the timeout in milliseconds to wait for the read
461
///   - `addr_size` selects width of memaddr: 8 or 16 bits
462
463
464
///
/// Returns the read data.
/// This is only valid in master mode.
465
466
467
468
469
STATIC const mp_arg_t pyb_i2c_mem_read_args[] = {
    { MP_QSTR_data,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
    { MP_QSTR_addr,    MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
    { MP_QSTR_memaddr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
    { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
470
    { MP_QSTR_addr_size, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
471
};
472
#define PYB_I2C_MEM_READ_NUM_ARGS MP_ARRAY_SIZE(pyb_i2c_mem_read_args)
473

474
STATIC mp_obj_t pyb_i2c_mem_read(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
475
476
    pyb_i2c_obj_t *self = args[0];

477
478
479
480
481
    if (!in_master_mode(self)) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
    }

    // parse args
482
483
    mp_arg_val_t vals[PYB_I2C_MEM_READ_NUM_ARGS];
    mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_I2C_MEM_READ_NUM_ARGS, pyb_i2c_mem_read_args, vals);
484
485
486
487

    // get the buffer to read into
    mp_buffer_info_t bufinfo;
    mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &bufinfo);
488

489
    // get the addresses
490
491
    mp_uint_t i2c_addr = vals[1].u_int << 1;
    mp_uint_t mem_addr = vals[2].u_int;
492
    // determine width of mem_addr; default is 8 bits, entering any other value gives 16 bit width
493
    mp_uint_t mem_addr_size = I2C_MEMADD_SIZE_8BIT;
494
    if (vals[4].u_int != 8) {
495
        mem_addr_size = I2C_MEMADD_SIZE_16BIT;
496
    }
497

498
    HAL_StatusTypeDef status = HAL_I2C_Mem_Read(self->i2c, i2c_addr, mem_addr, mem_addr_size, bufinfo.buf, bufinfo.len, vals[3].u_int);
499
500

    if (status != HAL_OK) {
501
        mp_hal_raise(status);
502
503
    }

504
505
506
507
508
509
    // return the read data
    if (o_ret == MP_OBJ_NULL) {
        return vals[0].u_obj;
    } else {
        return mp_obj_str_builder_end(o_ret);
    }
510
}
511
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_read_obj, 1, pyb_i2c_mem_read);
512

513
/// \method mem_write(data, addr, memaddr, timeout=5000, addr_size=8)
514
515
516
517
518
519
520
///
/// Write to the memory of an I2C device:
///
///   - `data` can be an integer or a buffer to write from
///   - `addr` is the I2C device address
///   - `memaddr` is the memory location within the I2C device
///   - `timeout` is the timeout in milliseconds to wait for the write
521
///   - `addr_size` selects width of memaddr: 8 or 16 bits
522
523
524
///
/// Returns `None`.
/// This is only valid in master mode.
525
STATIC mp_obj_t pyb_i2c_mem_write(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
526
    pyb_i2c_obj_t *self = args[0];
527
528
529

    if (!in_master_mode(self)) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
530
531
    }

532
    // parse args (same as mem_read)
533
534
    mp_arg_val_t vals[PYB_I2C_MEM_READ_NUM_ARGS];
    mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_I2C_MEM_READ_NUM_ARGS, pyb_i2c_mem_read_args, vals);
535
536
537
538
539
540
541

    // get the buffer to write from
    mp_buffer_info_t bufinfo;
    uint8_t data[1];
    pyb_buf_get_for_send(vals[0].u_obj, &bufinfo, data);

    // get the addresses
542
543
    mp_uint_t i2c_addr = vals[1].u_int << 1;
    mp_uint_t mem_addr = vals[2].u_int;
544
    // determine width of mem_addr; default is 8 bits, entering any other value gives 16 bit width
545
    mp_uint_t mem_addr_size = I2C_MEMADD_SIZE_8BIT;
546
    if (vals[4].u_int != 8) {
547
        mem_addr_size = I2C_MEMADD_SIZE_16BIT;
548
    }
549

550
    HAL_StatusTypeDef status = HAL_I2C_Mem_Write(self->i2c, i2c_addr, mem_addr, mem_addr_size, bufinfo.buf, bufinfo.len, vals[3].u_int);
551
552

    if (status != HAL_OK) {
553
        mp_hal_raise(status);
554
555
556
557
    }

    return mp_const_none;
}
558
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_write_obj, 1, pyb_i2c_mem_write);
559

560
STATIC const mp_map_elem_t pyb_i2c_locals_dict_table[] = {
561
562
563
    // instance methods
    { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_i2c_init_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_i2c_deinit_obj },
564
    { MP_OBJ_NEW_QSTR(MP_QSTR_is_ready), (mp_obj_t)&pyb_i2c_is_ready_obj },
565
    { MP_OBJ_NEW_QSTR(MP_QSTR_scan), (mp_obj_t)&pyb_i2c_scan_obj },
566
567
    { MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&pyb_i2c_send_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&pyb_i2c_recv_obj },
568
569
    { MP_OBJ_NEW_QSTR(MP_QSTR_mem_read), (mp_obj_t)&pyb_i2c_mem_read_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_mem_write), (mp_obj_t)&pyb_i2c_mem_write_obj },
570
571

    // class constants
572
573
    /// \constant MASTER - for initialising the bus to master mode
    /// \constant SLAVE - for initialising the bus to slave mode
574
575
    { MP_OBJ_NEW_QSTR(MP_QSTR_MASTER),       MP_OBJ_NEW_SMALL_INT(PYB_I2C_MASTER) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_SLAVE),        MP_OBJ_NEW_SMALL_INT(PYB_I2C_SLAVE) },
576
577
};

578
579
STATIC MP_DEFINE_CONST_DICT(pyb_i2c_locals_dict, pyb_i2c_locals_dict_table);

580
581
582
const mp_obj_type_t pyb_i2c_type = {
    { &mp_type_type },
    .name = MP_QSTR_I2C,
583
    .print = pyb_i2c_print,
584
    .make_new = pyb_i2c_make_new,
585
    .locals_dict = (mp_obj_t)&pyb_i2c_locals_dict,
586
};