modpyb.c 14 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27
28
29
#include <stdint.h>
#include <stdio.h>

30
#include "stm32f4xx_hal.h"
31
32

#include "mpconfig.h"
33
34
#include "misc.h"
#include "nlr.h"
35
36
37
38
39
#include "qstr.h"
#include "obj.h"
#include "gc.h"
#include "gccollect.h"
#include "systick.h"
40
#include "pybstdio.h"
41
#include "pyexec.h"
42
#include "led.h"
43
#include "pin.h"
44
#include "timer.h"
45
#include "extint.h"
46
#include "usrsw.h"
47
#include "rng.h"
48
#include "rtc.h"
Damien George's avatar
Damien George committed
49
50
#include "i2c.h"
#include "spi.h"
Damien George's avatar
Damien George committed
51
#include "uart.h"
Dave Hylands's avatar
Dave Hylands committed
52
#include "adc.h"
53
#include "storage.h"
Damien George's avatar
Damien George committed
54
#include "sdcard.h"
55
#include "accel.h"
56
#include "servo.h"
Damien George's avatar
Damien George committed
57
#include "dac.h"
58
#include "lcd.h"
59
#include "usb.h"
60
#include "ff.h"
61
#include "portmodules.h"
62

63
64
65
66
/// \module pyb - functions related to the pyboard
///
/// The `pyb` module contains specific functions related to the pyboard.

67
68
/// \function bootloader()
/// Activate the bootloader without BOOT* pins.
69
STATIC NORETURN mp_obj_t pyb_bootloader(void) {
70
    pyb_usb_dev_stop();
71
72
73
74
75
    storage_flush();

    HAL_RCC_DeInit();
    HAL_DeInit();

76
    __HAL_REMAPMEMORY_SYSTEMFLASH();
77
78
79
80
81
82

    // arm-none-eabi-gcc 4.9.0 does not correctly inline this
    // MSP function, so we write it out explicitly here.
    //__set_MSP(*((uint32_t*) 0x00000000));
    __ASM volatile ("movs r3, #0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp");

83
    ((void (*)(void)) *((uint32_t*) 0x00000004))();
84
85
86

    while (1);
}
87
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_bootloader_obj, pyb_bootloader);
88

89
90
/// \function info([dump_alloc_table])
/// Print out lots of information about the board.
91
STATIC mp_obj_t pyb_info(uint n_args, const mp_obj_t *args) {
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    // get and print unique id; 96 bits
    {
        byte *id = (byte*)0x1fff7a10;
        printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
    }

    // get and print clock speeds
    // SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
    {
        printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n", 
               HAL_RCC_GetSysClockFreq(),
               HAL_RCC_GetHCLKFreq(),
               HAL_RCC_GetPCLK1Freq(),
               HAL_RCC_GetPCLK2Freq());
    }

    // to print info about memory
    {
        printf("_etext=%p\n", &_etext);
        printf("_sidata=%p\n", &_sidata);
        printf("_sdata=%p\n", &_sdata);
        printf("_edata=%p\n", &_edata);
        printf("_sbss=%p\n", &_sbss);
        printf("_ebss=%p\n", &_ebss);
        printf("_estack=%p\n", &_estack);
        printf("_ram_start=%p\n", &_ram_start);
        printf("_heap_start=%p\n", &_heap_start);
        printf("_heap_end=%p\n", &_heap_end);
        printf("_ram_end=%p\n", &_ram_end);
    }

    // qstr info
    {
        uint n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
        qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
        printf("qstr:\n  n_pool=%u\n  n_qstr=%u\n  n_str_data_bytes=%u\n  n_total_bytes=%u\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
    }

    // GC info
    {
        gc_info_t info;
        gc_info(&info);
        printf("GC:\n");
135
136
137
        printf("  " UINT_FMT " total\n", info.total);
        printf("  " UINT_FMT " : " UINT_FMT "\n", info.used, info.free);
        printf("  1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block);
138
139
140
141
142
143
144
145
146
147
    }

    // free space on flash
    {
        DWORD nclst;
        FATFS *fatfs;
        f_getfree("0:", &nclst, &fatfs);
        printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512));
    }

148
149
150
151
152
    if (n_args == 1) {
        // arg given means dump gc allocation table
        gc_dump_alloc_table();
    }

153
154
    return mp_const_none;
}
155
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_info_obj, 0, 1, pyb_info);
156

157
158
/// \function unique_id()
/// Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU.
159
160
161
162
163
164
STATIC mp_obj_t pyb_unique_id(void) {
    byte *id = (byte*)0x1fff7a10;
    return mp_obj_new_bytes(id, 12);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_unique_id_obj, pyb_unique_id);

165
166
/// \function freq()
/// Return a tuple of clock frequencies: (SYSCLK, HCLK, PCLK1, PCLK2).
167
168
169
170
171
172
173
174
175
176
177
178
// TODO should also be able to set frequency via this function
STATIC mp_obj_t pyb_freq(void) {
    mp_obj_t tuple[4] = {
       mp_obj_new_int(HAL_RCC_GetSysClockFreq()),
       mp_obj_new_int(HAL_RCC_GetHCLKFreq()),
       mp_obj_new_int(HAL_RCC_GetPCLK1Freq()),
       mp_obj_new_int(HAL_RCC_GetPCLK2Freq()),
    };
    return mp_obj_new_tuple(4, tuple);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_freq_obj, pyb_freq);

179
180
/// \function sync()
/// Sync all file systems.
181
182
183
184
185
186
STATIC mp_obj_t pyb_sync(void) {
    storage_flush();
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_sync_obj, pyb_sync);

187
188
/// \function millis()
/// Returns the number of milliseconds since the board was last reset.
189
190
191
192
193
STATIC mp_obj_t pyb_millis(void) {
    return mp_obj_new_int(HAL_GetTick());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_millis_obj, pyb_millis);

194
195
/// \function delay(ms)
/// Delay for the given number of milliseconds.
196
STATIC mp_obj_t pyb_delay(mp_obj_t ms_in) {
197
    mp_int_t ms = mp_obj_get_int(ms_in);
198
199
200
    if (ms >= 0) {
        HAL_Delay(ms);
    }
201
202
203
204
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_delay_obj, pyb_delay);

205
206
/// \function udelay(us)
/// Delay for the given number of microseconds.
207
STATIC mp_obj_t pyb_udelay(mp_obj_t usec_in) {
208
    mp_int_t usec = mp_obj_get_int(usec_in);
209
210
211
212
    if (usec > 0) {
        uint32_t count = 0;
        const uint32_t utime = (168 * usec / 4);
        while (++count <= utime) {
213
214
        }
    }
215
    return mp_const_none;
216
217
218
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_udelay_obj, pyb_udelay);

219
220
221
222
/// \function wfi()
/// Wait for an interrupt.
/// This executies a `wfi` instruction which reduces power consumption
/// of the MCU until an interrupt occurs, at which point execution continues.
223
224
225
226
227
228
STATIC mp_obj_t pyb_wfi(void) {
    __WFI();
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_wfi_obj, pyb_wfi);

229
230
/// \function disable_irq()
/// Disable interrupt requests.
231
232
233
234
235
236
STATIC mp_obj_t pyb_disable_irq(void) {
    __disable_irq();
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_disable_irq_obj, pyb_disable_irq);

237
238
/// \function enable_irq()
/// Enable interrupt requests.
239
240
241
242
243
244
STATIC mp_obj_t pyb_enable_irq(void) {
    __enable_irq();
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_enable_irq_obj, pyb_enable_irq);

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#if 0
STATIC void SYSCLKConfig_STOP(void) {
    /* After wake-up from STOP reconfigure the system clock */
    /* Enable HSE */
    RCC_HSEConfig(RCC_HSE_ON);

    /* Wait till HSE is ready */
    while (RCC_GetFlagStatus(RCC_FLAG_HSERDY) == RESET) {
    }

    /* Enable PLL */
    RCC_PLLCmd(ENABLE);

    /* Wait till PLL is ready */
    while (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) {
    }

    /* Select PLL as system clock source */
    RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);

    /* Wait till PLL is used as system clock source */
    while (RCC_GetSYSCLKSource() != 0x08) {
    }
}
#endif

STATIC mp_obj_t pyb_stop(void) {
#if 0
    PWR_EnterSTANDBYMode();
    //PWR_FlashPowerDownCmd(ENABLE); don't know what the logic is with this

    /* Enter Stop Mode */
    PWR_EnterSTOPMode(PWR_Regulator_LowPower, PWR_STOPEntry_WFI);

    /* Configures system clock after wake-up from STOP: enable HSE, PLL and select 
     *        PLL as system clock source (HSE and PLL are disabled in STOP mode) */
    SYSCLKConfig_STOP();

    //PWR_FlashPowerDownCmd(DISABLE);
#endif
    return mp_const_none;
}

MP_DEFINE_CONST_FUN_OBJ_0(pyb_stop_obj, pyb_stop);

STATIC mp_obj_t pyb_standby(void) {
#if 0
    PWR_EnterSTANDBYMode();
#endif
    return mp_const_none;
}

MP_DEFINE_CONST_FUN_OBJ_0(pyb_standby_obj, pyb_standby);

299
300
/// \function have_cdc()
/// Return True if USB is connected as a serial device, False otherwise.
301
302
303
304
305
STATIC mp_obj_t pyb_have_cdc(void ) {
    return MP_BOOL(usb_vcp_is_connected());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_have_cdc_obj, pyb_have_cdc);

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
/// \function repl_uart(uart)
/// Get or set the UART object that the REPL is repeated on.
STATIC mp_obj_t pyb_repl_uart(uint n_args, const mp_obj_t *args) {
    if (n_args == 0) {
        if (pyb_uart_global_debug == NULL) {
            return mp_const_none;
        } else {
            return pyb_uart_global_debug;
        }
    } else {
        if (args[0] == mp_const_none) {
            pyb_uart_global_debug = NULL;
        } else if (mp_obj_get_type(args[0]) == &pyb_uart_type) {
            pyb_uart_global_debug = args[0];
        } else {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "need a UART object"));
        }
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_repl_uart_obj, 0, 1, pyb_repl_uart);

328
329
330
/// \function hid((buttons, x, y, z))
/// Takes a 4-tuple (or list) and sends it to the USB host (the PC) to
/// signal a HID mouse-motion event.
331
STATIC mp_obj_t pyb_hid_send_report(mp_obj_t arg) {
332
333
    mp_obj_t *items;
    mp_obj_get_array_fixed_n(arg, 4, &items);
334
335
336
337
338
339
340
341
    uint8_t data[4];
    data[0] = mp_obj_get_int(items[0]);
    data[1] = mp_obj_get_int(items[1]);
    data[2] = mp_obj_get_int(items[2]);
    data[3] = mp_obj_get_int(items[3]);
    usb_hid_send_report(data);
    return mp_const_none;
}
342
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_hid_send_report_obj, pyb_hid_send_report);
343
344
345

MP_DECLARE_CONST_FUN_OBJ(pyb_source_dir_obj); // defined in main.c
MP_DECLARE_CONST_FUN_OBJ(pyb_main_obj); // defined in main.c
346
MP_DECLARE_CONST_FUN_OBJ(pyb_usb_mode_obj); // defined in main.c
347
348
349
350

STATIC const mp_map_elem_t pyb_module_globals_table[] = {
    { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_pyb) },

351
    { MP_OBJ_NEW_QSTR(MP_QSTR_bootloader), (mp_obj_t)&pyb_bootloader_obj },
352
    { MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&pyb_info_obj },
353
354
    { MP_OBJ_NEW_QSTR(MP_QSTR_unique_id), (mp_obj_t)&pyb_unique_id_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_freq_obj },
355
356
    { MP_OBJ_NEW_QSTR(MP_QSTR_repl_info), (mp_obj_t)&pyb_set_repl_info_obj },

357
    { MP_OBJ_NEW_QSTR(MP_QSTR_wfi), (mp_obj_t)&pyb_wfi_obj },
358
359
360
    { MP_OBJ_NEW_QSTR(MP_QSTR_disable_irq), (mp_obj_t)&pyb_disable_irq_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_enable_irq), (mp_obj_t)&pyb_enable_irq_obj },

361
362
363
364
    { MP_OBJ_NEW_QSTR(MP_QSTR_stop), (mp_obj_t)&pyb_stop_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_standby), (mp_obj_t)&pyb_standby_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_source_dir), (mp_obj_t)&pyb_source_dir_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_main), (mp_obj_t)&pyb_main_obj },
365
    { MP_OBJ_NEW_QSTR(MP_QSTR_usb_mode), (mp_obj_t)&pyb_usb_mode_obj },
366

367
    { MP_OBJ_NEW_QSTR(MP_QSTR_have_cdc), (mp_obj_t)&pyb_have_cdc_obj },
368
    { MP_OBJ_NEW_QSTR(MP_QSTR_repl_uart), (mp_obj_t)&pyb_repl_uart_obj },
369
370
    { MP_OBJ_NEW_QSTR(MP_QSTR_hid), (mp_obj_t)&pyb_hid_send_report_obj },

371
372
373
374
375
    { MP_OBJ_NEW_QSTR(MP_QSTR_millis), (mp_obj_t)&pyb_millis_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_delay), (mp_obj_t)&pyb_delay_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_udelay), (mp_obj_t)&pyb_udelay_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_sync), (mp_obj_t)&pyb_sync_obj },

376
377
    { MP_OBJ_NEW_QSTR(MP_QSTR_Timer), (mp_obj_t)&pyb_timer_type },

378
#if MICROPY_HW_ENABLE_RNG
379
    { MP_OBJ_NEW_QSTR(MP_QSTR_rng), (mp_obj_t)&pyb_rng_get_obj },
380
381
382
#endif

#if MICROPY_HW_ENABLE_RTC
383
    { MP_OBJ_NEW_QSTR(MP_QSTR_RTC), (mp_obj_t)&pyb_rtc_type },
384
385
#endif

386
387
388
    { MP_OBJ_NEW_QSTR(MP_QSTR_Pin), (mp_obj_t)&pin_type },
    { MP_OBJ_NEW_QSTR(MP_QSTR_ExtInt), (mp_obj_t)&extint_type },

389
390
391
#if MICROPY_HW_ENABLE_SERVO
    { MP_OBJ_NEW_QSTR(MP_QSTR_pwm), (mp_obj_t)&pyb_pwm_set_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_servo), (mp_obj_t)&pyb_servo_set_obj },
392
    { MP_OBJ_NEW_QSTR(MP_QSTR_Servo), (mp_obj_t)&pyb_servo_type },
393
394
395
#endif

#if MICROPY_HW_HAS_SWITCH
396
    { MP_OBJ_NEW_QSTR(MP_QSTR_Switch), (mp_obj_t)&pyb_switch_type },
397
398
399
400
401
402
#endif

#if MICROPY_HW_HAS_SDCARD
    { MP_OBJ_NEW_QSTR(MP_QSTR_SD), (mp_obj_t)&pyb_sdcard_obj },
#endif

403
    { MP_OBJ_NEW_QSTR(MP_QSTR_LED), (mp_obj_t)&pyb_led_type },
404
    { MP_OBJ_NEW_QSTR(MP_QSTR_I2C), (mp_obj_t)&pyb_i2c_type },
Damien George's avatar
Damien George committed
405
    { MP_OBJ_NEW_QSTR(MP_QSTR_SPI), (mp_obj_t)&pyb_spi_type },
Damien George's avatar
Damien George committed
406
    { MP_OBJ_NEW_QSTR(MP_QSTR_UART), (mp_obj_t)&pyb_uart_type },
407
408

    { MP_OBJ_NEW_QSTR(MP_QSTR_ADC), (mp_obj_t)&pyb_adc_type },
409
    { MP_OBJ_NEW_QSTR(MP_QSTR_ADCAll), (mp_obj_t)&pyb_adc_all_type },
Damien George's avatar
Damien George committed
410
411
412

#if MICROPY_HW_ENABLE_DAC
    { MP_OBJ_NEW_QSTR(MP_QSTR_DAC), (mp_obj_t)&pyb_dac_type },
413
414
#endif

415
416
417
#if MICROPY_HW_HAS_MMA7660
    { MP_OBJ_NEW_QSTR(MP_QSTR_Accel), (mp_obj_t)&pyb_accel_type },
#endif
418
419
420
421

#if MICROPY_HW_HAS_LCD
    { MP_OBJ_NEW_QSTR(MP_QSTR_LCD), (mp_obj_t)&pyb_lcd_type },
#endif
422
423
};

424
425
426
427
428
STATIC const mp_obj_dict_t pyb_module_globals = {
    .base = {&mp_type_dict},
    .map = {
        .all_keys_are_qstrs = 1,
        .table_is_fixed_array = 1,
429
430
        .used = MP_ARRAY_SIZE(pyb_module_globals_table),
        .alloc = MP_ARRAY_SIZE(pyb_module_globals_table),
431
432
        .table = (mp_map_elem_t*)pyb_module_globals_table,
    },
433
434
435
436
437
};

const mp_obj_module_t pyb_module = {
    .base = { &mp_type_module },
    .name = MP_QSTR_pyb,
438
    .globals = (mp_obj_dict_t*)&pyb_module_globals,
439
};