pin.c 22.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27
28
29
30
#include <stdio.h>
#include <stdint.h>
#include <string.h>

31
32
33
#include "py/nlr.h"
#include "py/runtime.h"
#include MICROPY_HAL_H
34
#include "pin.h"
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
/// \moduleref pyb
/// \class Pin - control I/O pins
///
/// A pin is the basic object to control I/O pins.  It has methods to set
/// the mode of the pin (input, output, etc) and methods to get and set the
/// digital logic level.  For analog control of a pin, see the ADC class.
///
/// Usage Model:
///
/// All Board Pins are predefined as pyb.Pin.board.Name
///
///     x1_pin = pyb.Pin.board.X1
///
///     g = pyb.Pin(pyb.Pin.board.X1, pyb.Pin.IN)
///
/// CPU pins which correspond to the board pins are available
/// as `pyb.cpu.Name`. For the CPU pins, the names are the port letter
/// followed by the pin number. On the PYBv1.0, `pyb.Pin.board.X1` and
/// `pyb.Pin.cpu.B6` are the same pin.
///
/// You can also use strings:
///
///     g = pyb.Pin('X1', pyb.Pin.OUT_PP)
///
/// Users can add their own names:
///
62
63
///     MyMapperDict = { 'LeftMotorDir' : pyb.Pin.cpu.C12 }
///     pyb.Pin.dict(MyMapperDict)
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
///     g = pyb.Pin("LeftMotorDir", pyb.Pin.OUT_OD)
///
/// and can query mappings
///
///     pin = pyb.Pin("LeftMotorDir")
///
/// Users can also add their own mapping function:
///
///     def MyMapper(pin_name):
///        if pin_name == "LeftMotorDir":
///            return pyb.Pin.cpu.A0
///
///     pyb.Pin.mapper(MyMapper)
///
/// So, if you were to call: `pyb.Pin("LeftMotorDir", pyb.Pin.OUT_PP)`
/// then `"LeftMotorDir"` is passed directly to the mapper function.
///
/// To summarise, the following order determines how things get mapped into
/// an ordinal pin number:
///
/// 1. Directly specify a pin object
/// 2. User supplied mapping function
/// 3. User supplied mapping (object must be usable as a dictionary key)
/// 4. Supply a string which matches a board pin
/// 5. Supply a string which matches a CPU port/pin
///
/// You can set `pyb.Pin.debug(True)` to get some debug information about
/// how a particular object gets mapped to a pin.
92
93
94
95

// Pin class variables
STATIC bool pin_class_debug;

96
void pin_init0(void) {
97
98
    MP_STATE_PORT(pin_class_mapper) = mp_const_none;
    MP_STATE_PORT(pin_class_map_dict) = mp_const_none;
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    pin_class_debug = false;
}

// C API used to convert a user-supplied pin name into an ordinal pin number.
const pin_obj_t *pin_find(mp_obj_t user_obj) {
    const pin_obj_t *pin_obj;

    // If a pin was provided, then use it
    if (MP_OBJ_IS_TYPE(user_obj, &pin_type)) {
        pin_obj = user_obj;
        if (pin_class_debug) {
            printf("Pin map passed pin ");
            mp_obj_print((mp_obj_t)pin_obj, PRINT_STR);
            printf("\n");
        }
        return pin_obj;
    }

117
118
    if (MP_STATE_PORT(pin_class_mapper) != mp_const_none) {
        pin_obj = mp_call_function_1(MP_STATE_PORT(pin_class_mapper), user_obj);
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        if (pin_obj != mp_const_none) {
            if (!MP_OBJ_IS_TYPE(pin_obj, &pin_type)) {
                nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "Pin.mapper didn't return a Pin object"));
            }
            if (pin_class_debug) {
                printf("Pin.mapper maps ");
                mp_obj_print(user_obj, PRINT_REPR);
                printf(" to ");
                mp_obj_print((mp_obj_t)pin_obj, PRINT_STR);
                printf("\n");
            }
            return pin_obj;
        }
        // The pin mapping function returned mp_const_none, fall through to
        // other lookup methods.
    }

136
137
    if (MP_STATE_PORT(pin_class_map_dict) != mp_const_none) {
        mp_map_t *pin_map_map = mp_obj_dict_get_map(MP_STATE_PORT(pin_class_map_dict));
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
        mp_map_elem_t *elem = mp_map_lookup(pin_map_map, user_obj, MP_MAP_LOOKUP);
        if (elem != NULL && elem->value != NULL) {
            pin_obj = elem->value;
            if (pin_class_debug) {
                printf("Pin.map_dict maps ");
                mp_obj_print(user_obj, PRINT_REPR);
                printf(" to ");
                mp_obj_print((mp_obj_t)pin_obj, PRINT_STR);
                printf("\n");
            }
            return pin_obj;
        }
    }

    // See if the pin name matches a board pin
153
    pin_obj = pin_find_named_pin(&pin_board_pins_locals_dict, user_obj);
154
155
156
157
158
159
160
161
162
163
164
165
    if (pin_obj) {
        if (pin_class_debug) {
            printf("Pin.board maps ");
            mp_obj_print(user_obj, PRINT_REPR);
            printf(" to ");
            mp_obj_print((mp_obj_t)pin_obj, PRINT_STR);
            printf("\n");
        }
        return pin_obj;
    }

    // See if the pin name matches a cpu pin
166
    pin_obj = pin_find_named_pin(&pin_cpu_pins_locals_dict, user_obj);
167
168
169
170
171
172
173
174
175
176
177
    if (pin_obj) {
        if (pin_class_debug) {
            printf("Pin.cpu maps ");
            mp_obj_print(user_obj, PRINT_REPR);
            printf(" to ");
            mp_obj_print((mp_obj_t)pin_obj, PRINT_STR);
            printf("\n");
        }
        return pin_obj;
    }

178
    nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin '%s' not a valid pin identifier", mp_obj_str_get_str(user_obj)));
179
180
}

181
182
/// \method __str__()
/// Return a string describing the pin object.
183
STATIC void pin_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
184
    pin_obj_t *self = self_in;
185

186
    // pin name
187
    mp_printf(print, "Pin(Pin.cpu.%q, mode=Pin.", self->name);
188
189

    uint32_t mode = pin_get_mode(self);
190

191
    if (mode == GPIO_MODE_ANALOG) {
192
        // analog
193
        mp_print_str(print, "ANALOG)");
194

195
    } else {
196
197
198
        // IO mode
        bool af = false;
        qstr mode_qst;
199
        if (mode == GPIO_MODE_INPUT) {
200
201
202
203
204
            mode_qst = MP_QSTR_IN;
        } else if (mode == GPIO_MODE_OUTPUT_PP) {
            mode_qst = MP_QSTR_OUT_PP;
        } else if (mode == GPIO_MODE_OUTPUT_OD) {
            mode_qst = MP_QSTR_OUT_OD;
205
        } else {
206
            af = true;
207
            if (mode == GPIO_MODE_AF_PP) {
208
                mode_qst = MP_QSTR_AF_PP;
209
            } else {
210
                mode_qst = MP_QSTR_AF_OD;
211
            }
212
        }
213
        mp_print_str(print, qstr_str(mode_qst));
214
215
216
217
218
219
220
221
222
223

        // pull mode
        qstr pull_qst = MP_QSTR_NULL;
        uint32_t pull = pin_get_pull(self);
        if (pull == GPIO_PULLUP) {
            pull_qst = MP_QSTR_PULL_UP;
        } else if (pull == GPIO_PULLDOWN) {
            pull_qst = MP_QSTR_PULL_DOWN;
        }
        if (pull_qst != MP_QSTR_NULL) {
224
            mp_printf(print, ", pull=Pin.%q", pull_qst);
225
226
227
228
        }

        // AF mode
        if (af) {
229
            mp_uint_t af_idx = pin_get_af(self);
230
231
            const pin_af_obj_t *af_obj = pin_find_af_by_index(self, af_idx);
            if (af_obj == NULL) {
232
                mp_printf(print, ", af=%d)", af_idx);
233
            } else {
234
                mp_printf(print, ", af=Pin.%q)", af_obj->name);
235
            }
236
        } else {
237
            mp_print_str(print, ")");
238
239
        }
    }
240
241
}

242
STATIC mp_obj_t pin_obj_init_helper(const pin_obj_t *pin, mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args);
243

244
245
246
/// \classmethod \constructor(id, ...)
/// Create a new Pin object associated with the id.  If additional arguments are given,
/// they are used to initialise the pin.  See `init`.
247
STATIC mp_obj_t pin_make_new(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
248
    mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
249
250
251
252

    // Run an argument through the mapper and return the result.
    const pin_obj_t *pin = pin_find(args[0]);

253
    if (n_args > 1 || n_kw > 0) {
254
        // pin mode given, so configure this GPIO
255
256
257
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
        pin_obj_init_helper(pin, n_args - 1, args + 1, &kw_args);
258
259
260
261
262
    }

    return (mp_obj_t)pin;
}

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
// fast method for getting/setting pin value
STATIC mp_obj_t pin_call(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
    mp_arg_check_num(n_args, n_kw, 0, 1, false);
    pin_obj_t *self = self_in;
    if (n_args == 0) {
        // get pin
        return MP_OBJ_NEW_SMALL_INT(GPIO_read_pin(self->gpio, self->pin));
    } else {
        // set pin
        if (mp_obj_is_true(args[0])) {
            GPIO_set_pin(self->gpio, self->pin_mask);
        } else {
            GPIO_clear_pin(self->gpio, self->pin_mask);
        }
        return mp_const_none;
    }
}

281
282
/// \classmethod mapper([fun])
/// Get or set the pin mapper function.
283
STATIC mp_obj_t pin_mapper(mp_uint_t n_args, const mp_obj_t *args) {
284
    if (n_args > 1) {
285
        MP_STATE_PORT(pin_class_mapper) = args[1];
286
287
        return mp_const_none;
    }
288
    return MP_STATE_PORT(pin_class_mapper);
289
290
291
292
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_mapper_fun_obj, 1, 2, pin_mapper);
STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(pin_mapper_obj, (mp_obj_t)&pin_mapper_fun_obj);

293
294
/// \classmethod dict([dict])
/// Get or set the pin mapper dictionary.
295
STATIC mp_obj_t pin_map_dict(mp_uint_t n_args, const mp_obj_t *args) {
296
    if (n_args > 1) {
297
        MP_STATE_PORT(pin_class_map_dict) = args[1];
298
299
        return mp_const_none;
    }
300
    return MP_STATE_PORT(pin_class_map_dict);
301
302
303
304
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_map_dict_fun_obj, 1, 2, pin_map_dict);
STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(pin_map_dict_obj, (mp_obj_t)&pin_map_dict_fun_obj);

305
/// \classmethod af_list()
306
307
308
309
310
311
312
313
314
315
316
317
318
/// Returns an array of alternate functions available for this pin.
STATIC mp_obj_t pin_af_list(mp_obj_t self_in) {
    pin_obj_t *self = self_in;
    mp_obj_t result = mp_obj_new_list(0, NULL);

    const pin_af_obj_t *af = self->af;
    for (mp_uint_t i = 0; i < self->num_af; i++, af++) {
        mp_obj_list_append(result, (mp_obj_t)af);
    }
    return result;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_af_list_obj, pin_af_list);

319
320
/// \classmethod debug([state])
/// Get or set the debugging state (`True` or `False` for on or off).
321
STATIC mp_obj_t pin_debug(mp_uint_t n_args, const mp_obj_t *args) {
322
323
324
325
    if (n_args > 1) {
        pin_class_debug = mp_obj_is_true(args[1]);
        return mp_const_none;
    }
326
    return mp_obj_new_bool(pin_class_debug);
327
328
329
330
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_debug_fun_obj, 1, 2, pin_debug);
STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(pin_debug_obj, (mp_obj_t)&pin_debug_fun_obj);

331
332
333
334
335
336
337
338
339
// init(mode, pull=None, af=-1, *, value, alt)
STATIC mp_obj_t pin_obj_init_helper(const pin_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT },
        { MP_QSTR_pull, MP_ARG_OBJ, {.u_obj = mp_const_none}},
        { MP_QSTR_af, MP_ARG_INT, {.u_int = -1}}, // legacy
        { MP_QSTR_value, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL}},
        { MP_QSTR_alt, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1}},
    };
340
341

    // parse args
342
343
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
344
345

    // get io mode
346
    uint mode = args[0].u_int;
347
348
349
350
351
    if (!IS_GPIO_MODE(mode)) {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid pin mode: %d", mode));
    }

    // get pull mode
352
353
354
355
    uint pull = GPIO_NOPULL;
    if (args[1].u_obj != mp_const_none) {
        pull = mp_obj_get_int(args[1].u_obj);
    }
356
357
358
359
    if (!IS_GPIO_PULL(pull)) {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid pin pull: %d", pull));
    }

360
361
362
363
364
    // get af (alternate function); alt-arg overrides af-arg
    mp_int_t af = args[4].u_int;
    if (af == -1) {
        af = args[2].u_int;
    }
365
366
    if ((mode == GPIO_MODE_AF_PP || mode == GPIO_MODE_AF_OD) && !IS_GPIO_AF(af)) {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid pin af: %d", af));
367
    }
368

369
    // enable the peripheral clock for the port of this pin
370
    mp_hal_gpio_clock_enable(self->gpio);
371

372
373
374
375
376
377
378
379
380
    // if given, set the pin value before initialising to prevent glitches
    if (args[3].u_obj != MP_OBJ_NULL) {
        if (mp_obj_is_true(args[3].u_obj)) {
            GPIO_set_pin(self->gpio, self->pin_mask);
        } else {
            GPIO_clear_pin(self->gpio, self->pin_mask);
        }
    }

381
382
383
384
385
386
    // configure the GPIO as requested
    GPIO_InitTypeDef GPIO_InitStructure;
    GPIO_InitStructure.Pin = self->pin_mask;
    GPIO_InitStructure.Mode = mode;
    GPIO_InitStructure.Pull = pull;
    GPIO_InitStructure.Speed = GPIO_SPEED_FAST;
387
    GPIO_InitStructure.Alternate = af;
388
389
390
391
    HAL_GPIO_Init(self->gpio, &GPIO_InitStructure);

    return mp_const_none;
}
392

393
STATIC mp_obj_t pin_obj_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
394
395
    return pin_obj_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
396
MP_DEFINE_CONST_FUN_OBJ_KW(pin_init_obj, 1, pin_obj_init);
397

398
399
400
401
402
403
404
/// \method value([value])
/// Get or set the digital logic level of the pin:
///
///   - With no argument, return 0 or 1 depending on the logic level of the pin.
///   - With `value` given, set the logic level of the pin.  `value` can be
///   anything that converts to a boolean.  If it converts to `True`, the pin
///   is set high, otherwise it is set low.
405
STATIC mp_obj_t pin_value(mp_uint_t n_args, const mp_obj_t *args) {
406
    return pin_call(args[0], n_args - 1, 0, args + 1);
407
408
409
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_value_obj, 1, 2, pin_value);

410
411
/// \method low()
/// Set the pin to a low logic level.
412
413
STATIC mp_obj_t pin_low(mp_obj_t self_in) {
    pin_obj_t *self = self_in;
Dave Hylands's avatar
Dave Hylands committed
414
    GPIO_clear_pin(self->gpio, self->pin_mask);;
415
416
417
418
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_low_obj, pin_low);

419
420
/// \method high()
/// Set the pin to a high logic level.
421
422
STATIC mp_obj_t pin_high(mp_obj_t self_in) {
    pin_obj_t *self = self_in;
Dave Hylands's avatar
Dave Hylands committed
423
    GPIO_set_pin(self->gpio, self->pin_mask);;
424
425
426
427
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_high_obj, pin_high);

428
429
/// \method name()
/// Get the pin name.
430
STATIC mp_obj_t pin_name(mp_obj_t self_in) {
431
    pin_obj_t *self = self_in;
432
    return MP_OBJ_NEW_QSTR(self->name);
433
}
434
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_name_obj, pin_name);
435

436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
/// \method names()
/// Returns the cpu and board names for this pin.
STATIC mp_obj_t pin_names(mp_obj_t self_in) {
    pin_obj_t *self = self_in;
    mp_obj_t result = mp_obj_new_list(0, NULL);
    mp_obj_list_append(result, MP_OBJ_NEW_QSTR(self->name));

    mp_map_t *map = mp_obj_dict_get_map((mp_obj_t)&pin_board_pins_locals_dict);
    mp_map_elem_t *elem = map->table;

    for (mp_uint_t i = 0; i < map->used; i++, elem++) {
        if (elem->value == self) {
            mp_obj_list_append(result, elem->key);
        }
    }
    return result;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_names_obj, pin_names);

455
456
/// \method port()
/// Get the pin port.
457
STATIC mp_obj_t pin_port(mp_obj_t self_in) {
458
    pin_obj_t *self = self_in;
459
    return MP_OBJ_NEW_SMALL_INT(self->port);
460
}
461
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_port_obj, pin_port);
462

463
464
/// \method pin()
/// Get the pin number.
465
STATIC mp_obj_t pin_pin(mp_obj_t self_in) {
466
    pin_obj_t *self = self_in;
467
    return MP_OBJ_NEW_SMALL_INT(self->pin);
468
}
469
470
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_pin_obj, pin_pin);

471
472
473
474
475
476
477
478
/// \method gpio()
/// Returns the base address of the GPIO block associated with this pin.
STATIC mp_obj_t pin_gpio(mp_obj_t self_in) {
    pin_obj_t *self = self_in;
    return MP_OBJ_NEW_SMALL_INT((mp_int_t)self->gpio);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_gpio_obj, pin_gpio);

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
/// \method mode()
/// Returns the currently configured mode of the pin. The integer returned
/// will match one of the allowed constants for the mode argument to the init
/// function.
STATIC mp_obj_t pin_mode(mp_obj_t self_in) {
    return MP_OBJ_NEW_SMALL_INT(pin_get_mode(self_in));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_mode_obj, pin_mode);

/// \method pull()
/// Returns the currently configured pull of the pin. The integer returned
/// will match one of the allowed constants for the pull argument to the init
/// function.
STATIC mp_obj_t pin_pull(mp_obj_t self_in) {
    return MP_OBJ_NEW_SMALL_INT(pin_get_pull(self_in));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_pull_obj, pin_pull);

/// \method af()
498
499
500
/// Returns the currently configured alternate-function of the pin. The
/// integer returned will match one of the allowed constants for the af
/// argument to the init function.
501
502
503
504
505
STATIC mp_obj_t pin_af(mp_obj_t self_in) {
    return MP_OBJ_NEW_SMALL_INT(pin_get_af(self_in));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_af_obj, pin_af);

506
507
STATIC const mp_map_elem_t pin_locals_dict_table[] = {
    // instance methods
508
    { MP_OBJ_NEW_QSTR(MP_QSTR_init),    (mp_obj_t)&pin_init_obj },
509
510
511
512
    { MP_OBJ_NEW_QSTR(MP_QSTR_value),   (mp_obj_t)&pin_value_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_low),     (mp_obj_t)&pin_low_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_high),    (mp_obj_t)&pin_high_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_name),    (mp_obj_t)&pin_name_obj },
513
514
    { MP_OBJ_NEW_QSTR(MP_QSTR_names),   (mp_obj_t)&pin_names_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_af_list), (mp_obj_t)&pin_af_list_obj },
515
516
    { MP_OBJ_NEW_QSTR(MP_QSTR_port),    (mp_obj_t)&pin_port_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_pin),     (mp_obj_t)&pin_pin_obj },
517
    { MP_OBJ_NEW_QSTR(MP_QSTR_gpio),    (mp_obj_t)&pin_gpio_obj },
518
519
520
    { MP_OBJ_NEW_QSTR(MP_QSTR_mode),    (mp_obj_t)&pin_mode_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_pull),    (mp_obj_t)&pin_pull_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_af),      (mp_obj_t)&pin_af_obj },
521
522
523
524
525

    // class methods
    { MP_OBJ_NEW_QSTR(MP_QSTR_mapper),  (mp_obj_t)&pin_mapper_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_dict),    (mp_obj_t)&pin_map_dict_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_debug),   (mp_obj_t)&pin_debug_obj },
526

527
    // class attributes
528
529
    { MP_OBJ_NEW_QSTR(MP_QSTR_board),   (mp_obj_t)&pin_board_pins_obj_type },
    { MP_OBJ_NEW_QSTR(MP_QSTR_cpu),     (mp_obj_t)&pin_cpu_pins_obj_type },
530

531
532
    // class constants
    { MP_OBJ_NEW_QSTR(MP_QSTR_IN),        MP_OBJ_NEW_SMALL_INT(GPIO_MODE_INPUT) },
533
534
535
536
537
538
539
540
541
    { MP_OBJ_NEW_QSTR(MP_QSTR_OUT),       MP_OBJ_NEW_SMALL_INT(GPIO_MODE_OUTPUT_PP) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OPEN_DRAIN), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_OUTPUT_OD) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_ALT),       MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_PP) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_ALT_OPEN_DRAIN), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_OD) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_ANALOG),    MP_OBJ_NEW_SMALL_INT(GPIO_MODE_ANALOG) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_PULL_UP),   MP_OBJ_NEW_SMALL_INT(GPIO_PULLUP) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_PULL_DOWN), MP_OBJ_NEW_SMALL_INT(GPIO_PULLDOWN) },

    // legacy class constants
542
543
544
545
546
    { MP_OBJ_NEW_QSTR(MP_QSTR_OUT_PP),    MP_OBJ_NEW_SMALL_INT(GPIO_MODE_OUTPUT_PP) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_OUT_OD),    MP_OBJ_NEW_SMALL_INT(GPIO_MODE_OUTPUT_OD) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_AF_PP),     MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_PP) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_AF_OD),     MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_OD) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_PULL_NONE), MP_OBJ_NEW_SMALL_INT(GPIO_NOPULL) },
547

548
#include "genhdr/pins_af_const.h"
549
550
};

551
552
553
STATIC MP_DEFINE_CONST_DICT(pin_locals_dict, pin_locals_dict_table);

const mp_obj_type_t pin_type = {
554
555
    { &mp_type_type },
    .name = MP_QSTR_Pin,
556
557
    .print = pin_print,
    .make_new = pin_make_new,
558
    .call = pin_call,
559
    .locals_dict = (mp_obj_t)&pin_locals_dict,
560
561
};

562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
/// \moduleref pyb
/// \class PinAF - Pin Alternate Functions
///
/// A Pin represents a physical pin on the microcprocessor. Each pin
/// can have a variety of functions (GPIO, I2C SDA, etc). Each PinAF
/// object represents a particular function for a pin.
///
/// Usage Model:
///
///     x3 = pyb.Pin.board.X3
///     x3_af = x3.af_list()
///
/// x3_af will now contain an array of PinAF objects which are availble on
/// pin X3.
///
/// For the pyboard, x3_af would contain:
///     [Pin.AF1_TIM2, Pin.AF2_TIM5, Pin.AF3_TIM9, Pin.AF7_USART2]
///
/// Normally, each peripheral would configure the af automatically, but sometimes
/// the same function is available on multiple pins, and having more control
/// is desired.
///
/// To configure X3 to expose TIM2_CH3, you could use:
///    pin = pyb.Pin(pyb.Pin.board.X3, mode=pyb.Pin.AF_PP, af=pyb.Pin.AF1_TIM2)
/// or:
///    pin = pyb.Pin(pyb.Pin.board.X3, mode=pyb.Pin.AF_PP, af=1)

/// \method __str__()
/// Return a string describing the alternate function.
591
STATIC void pin_af_obj_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
592
    pin_af_obj_t *self = self_in;
593
    mp_printf(print, "Pin.%q", self->name);
594
595
}

596
597
598
599
600
601
602
603
/// \method index()
/// Return the alternate function index.
STATIC mp_obj_t pin_af_index(mp_obj_t self_in) {
    pin_af_obj_t *af = self_in;
    return MP_OBJ_NEW_SMALL_INT(af->idx);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_af_index_obj, pin_af_index);

604
/// \method name()
605
606
607
608
609
610
611
/// Return the name of the alternate function.
STATIC mp_obj_t pin_af_name(mp_obj_t self_in) {
    pin_af_obj_t *af = self_in;
    return MP_OBJ_NEW_QSTR(af->name);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_af_name_obj, pin_af_name);

612
/// \method reg()
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
/// Return the base register associated with the peripheral assigned to this
/// alternate function. For example, if the alternate function were TIM2_CH3
/// this would return stm.TIM2
STATIC mp_obj_t pin_af_reg(mp_obj_t self_in) {
    pin_af_obj_t *af = self_in;
    return MP_OBJ_NEW_SMALL_INT((mp_uint_t)af->reg);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_af_reg_obj, pin_af_reg);

STATIC const mp_map_elem_t pin_af_locals_dict_table[] = {
    { MP_OBJ_NEW_QSTR(MP_QSTR_index),   (mp_obj_t)&pin_af_index_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_name),    (mp_obj_t)&pin_af_name_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_reg),     (mp_obj_t)&pin_af_reg_obj },
};
STATIC MP_DEFINE_CONST_DICT(pin_af_locals_dict, pin_af_locals_dict_table);

629
const mp_obj_type_t pin_af_type = {
630
631
632
    { &mp_type_type },
    .name = MP_QSTR_PinAF,
    .print = pin_af_obj_print,
633
    .locals_dict = (mp_obj_t)&pin_af_locals_dict,
634
};