i2c.c 21.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27
28
29
#include <stdio.h>
#include <string.h>

30
31
#include "py/nlr.h"
#include "py/runtime.h"
32
33
#include "pin.h"
#include "genhdr/pins.h"
34
#include "bufhelper.h"
35
#include "i2c.h"
36
#include MICROPY_HAL_H
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
/// \moduleref pyb
/// \class I2C - a two-wire serial protocol
///
/// I2C is a two-wire protocol for communicating between devices.  At the physical
/// level it consists of 2 wires: SCL and SDA, the clock and data lines respectively.
///
/// I2C objects are created attached to a specific bus.  They can be initialised
/// when created, or initialised later on:
///
///     from pyb import I2C
///
///     i2c = I2C(1)                         # create on bus 1
///     i2c = I2C(1, I2C.MASTER)             # create and init as a master
///     i2c.init(I2C.MASTER, baudrate=20000) # init as a master
///     i2c.init(I2C.SLAVE, addr=0x42)       # init as a slave with given address
///     i2c.deinit()                         # turn off the peripheral
///
/// Printing the i2c object gives you information about its configuration.
///
/// Basic methods for slave are send and recv:
///
///     i2c.send('abc')      # send 3 bytes
///     i2c.send(0x42)       # send a single byte, given by the number
///     data = i2c.recv(3)   # receive 3 bytes
///
/// To receive inplace, first create a bytearray:
///
///     data = bytearray(3)  # create a buffer
///     i2c.recv(data)       # receive 3 bytes, writing them into data
///
/// You can specify a timeout (in ms):
///
///     i2c.send(b'123', timeout=2000)   # timout after 2 seconds
///
/// A master must specify the recipient's address:
///
///     i2c.init(I2C.MASTER)
///     i2c.send('123', 0x42)        # send 3 bytes to slave with address 0x42
///     i2c.send(b'456', addr=0x42)  # keyword for address
///
/// Master also has other methods:
///
///     i2c.is_ready(0x42)           # check if slave 0x42 is ready
///     i2c.scan()                   # scan for slaves on the bus, returning
///                                  #   a list of valid addresses
///     i2c.mem_read(3, 0x42, 2)     # read 3 bytes from memory of slave 0x42,
///                                  #   starting at address 2 in the slave
///     i2c.mem_write('abc', 0x42, 2, timeout=1000)
86

87
88
89
#define PYB_I2C_MASTER (0)
#define PYB_I2C_SLAVE  (1)

90
#if MICROPY_HW_ENABLE_I2C1
91
I2C_HandleTypeDef I2CHandle1 = {.Instance = NULL};
92
#endif
93
I2C_HandleTypeDef I2CHandle2 = {.Instance = NULL};
94

95
96
void i2c_init0(void) {
    // reset the I2C1 handles
97
#if MICROPY_HW_ENABLE_I2C1
98
99
    memset(&I2CHandle1, 0, sizeof(I2C_HandleTypeDef));
    I2CHandle1.Instance = I2C1;
100
#endif
101
102
    memset(&I2CHandle2, 0, sizeof(I2C_HandleTypeDef));
    I2CHandle2.Instance = I2C2;
103
104
}

105
void i2c_init(I2C_HandleTypeDef *i2c) {
106
    // init the GPIO lines
107
    GPIO_InitTypeDef GPIO_InitStructure;
108
109
110
111
    GPIO_InitStructure.Mode = GPIO_MODE_AF_OD;
    GPIO_InitStructure.Speed = GPIO_SPEED_FAST;
    GPIO_InitStructure.Pull = GPIO_NOPULL; // have external pull-up resistors on both lines

112
    const pin_obj_t *pins[2];
113
    if (0) {
114
#if MICROPY_HW_ENABLE_I2C1
115
    } else if (i2c == &I2CHandle1) {
116
        // X-skin: X9=PB6=SCL, X10=PB7=SDA
117
118
        pins[0] = &pin_B6;
        pins[1] = &pin_B7;
119
120
121
        GPIO_InitStructure.Alternate = GPIO_AF4_I2C1;
        // enable the I2C clock
        __I2C1_CLK_ENABLE();
122
#endif
123
    } else if (i2c == &I2CHandle2) {
124
        // Y-skin: Y9=PB10=SCL, Y10=PB11=SDA
125
126
        pins[0] = &pin_B10;
        pins[1] = &pin_B11;
127
128
129
        GPIO_InitStructure.Alternate = GPIO_AF4_I2C2;
        // enable the I2C clock
        __I2C2_CLK_ENABLE();
130
131
132
    } else {
        // I2C does not exist for this board (shouldn't get here, should be checked by caller)
        return;
133
134
    }

135
136
137
138
139
140
    // init the GPIO lines
    for (uint i = 0; i < 2; i++) {
        GPIO_InitStructure.Pin = pins[i]->pin_mask;
        HAL_GPIO_Init(pins[i]->gpio, &GPIO_InitStructure);
    }

141
    // init the I2C device
142
    if (HAL_I2C_Init(i2c) != HAL_OK) {
143
        // init error
144
145
        // TODO should raise an exception, but this function is not necessarily going to be
        // called via Python, so may not be properly wrapped in an NLR handler
146
        printf("OSError: HAL_I2C_Init failed\n");
147
148
149
150
        return;
    }
}

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
void i2c_deinit(I2C_HandleTypeDef *i2c) {
    HAL_I2C_DeInit(i2c);
    if (0) {
#if MICROPY_HW_ENABLE_I2C1
    } else if (i2c->Instance == I2C1) {
        __I2C1_FORCE_RESET();
        __I2C1_RELEASE_RESET();
        __I2C1_CLK_DISABLE();
#endif
    } else if (i2c->Instance == I2C2) {
        __I2C2_FORCE_RESET();
        __I2C2_RELEASE_RESET();
        __I2C2_CLK_DISABLE();
    }
}

167
168
169
170
171
/******************************************************************************/
/* Micro Python bindings                                                      */

typedef struct _pyb_i2c_obj_t {
    mp_obj_base_t base;
172
    I2C_HandleTypeDef *i2c;
173
174
} pyb_i2c_obj_t;

175
176
STATIC inline bool in_master_mode(pyb_i2c_obj_t *self) { return self->i2c->Init.OwnAddress1 == PYB_I2C_MASTER_ADDRESS; }

177
178
STATIC const pyb_i2c_obj_t pyb_i2c_obj[] = {
#if MICROPY_HW_ENABLE_I2C1
179
    {{&pyb_i2c_type}, &I2CHandle1},
180
181
182
#else
    {{&pyb_i2c_type}, NULL},
#endif
183
184
    {{&pyb_i2c_type}, &I2CHandle2}
};
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
STATIC void pyb_i2c_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
    pyb_i2c_obj_t *self = self_in;

    uint i2c_num;
    if (self->i2c->Instance == I2C1) { i2c_num = 1; }
    else { i2c_num = 2; }

    if (self->i2c->State == HAL_I2C_STATE_RESET) {
        print(env, "I2C(%u)", i2c_num);
    } else {
        if (in_master_mode(self)) {
            print(env, "I2C(%u, I2C.MASTER, baudrate=%u)", i2c_num, self->i2c->Init.ClockSpeed);
        } else {
            print(env, "I2C(%u, I2C.SLAVE, addr=0x%02x)", i2c_num, (self->i2c->Instance->OAR1 >> 1) & 0x7f);
        }
    }
}

204
205
206
207
208
209
210
211
/// \method init(mode, *, addr=0x12, baudrate=400000, gencall=False)
///
/// Initialise the I2C bus with the given parameters:
///
///   - `mode` must be either `I2C.MASTER` or `I2C.SLAVE`
///   - `addr` is the 7-bit address (only sensible for a slave)
///   - `baudrate` is the SCL clock rate (only sensible for a master)
///   - `gencall` is whether to support general call mode
212
213
214
215
216
STATIC const mp_arg_t pyb_i2c_init_args[] = {
    { MP_QSTR_mode,     MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
    { MP_QSTR_addr,     MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0x12} },
    { MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 400000} },
    { MP_QSTR_gencall,  MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
217
};
218
#define PYB_I2C_INIT_NUM_ARGS MP_ARRAY_SIZE(pyb_i2c_init_args)
219

220
STATIC mp_obj_t pyb_i2c_init_helper(const pyb_i2c_obj_t *self, mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
221
    // parse args
222
223
    mp_arg_val_t vals[PYB_I2C_INIT_NUM_ARGS];
    mp_arg_parse_all(n_args, args, kw_args, PYB_I2C_INIT_NUM_ARGS, pyb_i2c_init_args, vals);
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

    // set the I2C configuration values
    I2C_InitTypeDef *init = &self->i2c->Init;

    if (vals[0].u_int == PYB_I2C_MASTER) {
        // use a special address to indicate we are a master
        init->OwnAddress1 = PYB_I2C_MASTER_ADDRESS;
    } else {
        init->OwnAddress1 = (vals[1].u_int << 1) & 0xfe;
    }

    init->AddressingMode  = I2C_ADDRESSINGMODE_7BIT;
    init->ClockSpeed      = MIN(vals[2].u_int, 400000);
    init->DualAddressMode = I2C_DUALADDRESS_DISABLED;
    init->DutyCycle       = I2C_DUTYCYCLE_16_9;
    init->GeneralCallMode = vals[3].u_bool ? I2C_GENERALCALL_ENABLED : I2C_GENERALCALL_DISABLED;
    init->NoStretchMode   = I2C_NOSTRETCH_DISABLED;
    init->OwnAddress2     = 0xfe; // unused

    // init the I2C bus
    i2c_init(self->i2c);

    return mp_const_none;
}

249
250
251
252
253
254
255
/// \classmethod \constructor(bus, ...)
///
/// Construct an I2C object on the given bus.  `bus` can be 1 or 2.
/// With no additional parameters, the I2C object is created but not
/// initialised (it has the settings from the last initialisation of
/// the bus, if any).  If extra arguments are given, the bus is initialised.
/// See `init` for parameters of initialisation.
256
257
258
259
260
///
/// The physical pins of the I2C busses are:
///
///   - `I2C(1)` is on the X position: `(SCL, SDA) = (X9, X10) = (PB6, PB7)`
///   - `I2C(2)` is on the Y position: `(SCL, SDA) = (Y9, Y10) = (PB10, PB11)`
261
STATIC mp_obj_t pyb_i2c_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
262
    // check arguments
263
    mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
264
265

    // get i2c number
266
    mp_int_t i2c_id = mp_obj_get_int(args[0]) - 1;
267
268

    // check i2c number
269
    if (!(0 <= i2c_id && i2c_id < MP_ARRAY_SIZE(pyb_i2c_obj) && pyb_i2c_obj[i2c_id].i2c != NULL)) {
270
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "I2C bus %d does not exist", i2c_id + 1));
271
272
    }

273
    // get I2C object
274
    const pyb_i2c_obj_t *i2c_obj = &pyb_i2c_obj[i2c_id];
275

276
277
278
279
280
281
    if (n_args > 1 || n_kw > 0) {
        // start the peripheral
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
        pyb_i2c_init_helper(i2c_obj, n_args - 1, args + 1, &kw_args);
    }
282

283
    return (mp_obj_t)i2c_obj;
284
285
}

286
STATIC mp_obj_t pyb_i2c_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
287
288
289
290
    return pyb_i2c_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_init_obj, 1, pyb_i2c_init);

291
292
/// \method deinit()
/// Turn off the I2C bus.
293
294
295
296
297
298
299
STATIC mp_obj_t pyb_i2c_deinit(mp_obj_t self_in) {
    pyb_i2c_obj_t *self = self_in;
    i2c_deinit(self->i2c);
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_deinit_obj, pyb_i2c_deinit);

300
301
/// \method is_ready(addr)
/// Check if an I2C device responds to the given address.  Only valid when in master mode.
302
303
STATIC mp_obj_t pyb_i2c_is_ready(mp_obj_t self_in, mp_obj_t i2c_addr_o) {
    pyb_i2c_obj_t *self = self_in;
304
305
306
307
308

    if (!in_master_mode(self)) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
    }

309
    mp_uint_t i2c_addr = mp_obj_get_int(i2c_addr_o) << 1;
310
311

    for (int i = 0; i < 10; i++) {
312
        HAL_StatusTypeDef status = HAL_I2C_IsDeviceReady(self->i2c, i2c_addr, 10, 200);
313
314
315
316
317
318
319
320
321
        if (status == HAL_OK) {
            return mp_const_true;
        }
    }

    return mp_const_false;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_i2c_is_ready_obj, pyb_i2c_is_ready);

322
323
324
/// \method scan()
/// Scan all I2C addresses from 0x01 to 0x7f and return a list of those that respond.
/// Only valid when in master mode.
325
326
327
STATIC mp_obj_t pyb_i2c_scan(mp_obj_t self_in) {
    pyb_i2c_obj_t *self = self_in;

328
329
330
331
    if (!in_master_mode(self)) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
    }

332
333
334
335
    mp_obj_t list = mp_obj_new_list(0, NULL);

    for (uint addr = 1; addr <= 127; addr++) {
        for (int i = 0; i < 10; i++) {
336
            HAL_StatusTypeDef status = HAL_I2C_IsDeviceReady(self->i2c, addr << 1, 10, 200);
337
338
339
340
341
342
343
344
345
346
347
            if (status == HAL_OK) {
                mp_obj_list_append(list, mp_obj_new_int(addr));
                break;
            }
        }
    }

    return list;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_scan_obj, pyb_i2c_scan);

348
349
350
351
352
353
354
355
/// \method send(send, addr=0x00, timeout=5000)
/// Send data on the bus:
///
///   - `send` is the data to send (an integer to send, or a buffer object)
///   - `addr` is the address to send to (only required in master mode)
///   - `timeout` is the timeout in milliseconds to wait for the send
///
/// Return value: `None`.
356
357
358
359
STATIC const mp_arg_t pyb_i2c_send_args[] = {
    { MP_QSTR_send,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
    { MP_QSTR_addr,    MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} },
    { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
360
};
361
#define PYB_I2C_SEND_NUM_ARGS MP_ARRAY_SIZE(pyb_i2c_send_args)
362

363
STATIC mp_obj_t pyb_i2c_send(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
364
365
366
    pyb_i2c_obj_t *self = args[0];

    // parse args
367
368
    mp_arg_val_t vals[PYB_I2C_SEND_NUM_ARGS];
    mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_I2C_SEND_NUM_ARGS, pyb_i2c_send_args, vals);
369
370
371
372
373
374
375
376
377
378
379
380

    // get the buffer to send from
    mp_buffer_info_t bufinfo;
    uint8_t data[1];
    pyb_buf_get_for_send(vals[0].u_obj, &bufinfo, data);

    // send the data
    HAL_StatusTypeDef status;
    if (in_master_mode(self)) {
        if (vals[1].u_int == PYB_I2C_MASTER_ADDRESS) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "addr argument required"));
        }
381
        mp_uint_t i2c_addr = vals[1].u_int << 1;
382
383
384
385
        status = HAL_I2C_Master_Transmit(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len, vals[2].u_int);
    } else {
        status = HAL_I2C_Slave_Transmit(self->i2c, bufinfo.buf, bufinfo.len, vals[2].u_int);
    }
386
387

    if (status != HAL_OK) {
388
        mp_hal_raise(status);
389
390
    }

391
    return mp_const_none;
392
}
393
394
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_send_obj, 1, pyb_i2c_send);

395
/// \method recv(recv, addr=0x00, timeout=5000)
396
397
398
399
400
401
402
403
404
405
///
/// Receive data on the bus:
///
///   - `recv` can be an integer, which is the number of bytes to receive,
///     or a mutable buffer, which will be filled with received bytes
///   - `addr` is the address to receive from (only required in master mode)
///   - `timeout` is the timeout in milliseconds to wait for the receive
///
/// Return value: if `recv` is an integer then a new buffer of the bytes received,
/// otherwise the same buffer that was passed in to `recv`.
406
407
408
409
STATIC const mp_arg_t pyb_i2c_recv_args[] = {
    { MP_QSTR_recv,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
    { MP_QSTR_addr,    MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} },
    { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
410
};
411
#define PYB_I2C_RECV_NUM_ARGS MP_ARRAY_SIZE(pyb_i2c_recv_args)
412

413
STATIC mp_obj_t pyb_i2c_recv(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
414
    pyb_i2c_obj_t *self = args[0];
415

416
    // parse args
417
418
    mp_arg_val_t vals[PYB_I2C_RECV_NUM_ARGS];
    mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_I2C_RECV_NUM_ARGS, pyb_i2c_recv_args, vals);
419
420
421
422
423
424

    // get the buffer to receive into
    mp_buffer_info_t bufinfo;
    mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &bufinfo);

    // receive the data
425
    HAL_StatusTypeDef status;
426
427
428
429
    if (in_master_mode(self)) {
        if (vals[1].u_int == PYB_I2C_MASTER_ADDRESS) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "addr argument required"));
        }
430
        mp_uint_t i2c_addr = vals[1].u_int << 1;
431
        status = HAL_I2C_Master_Receive(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len, vals[2].u_int);
432
    } else {
433
        status = HAL_I2C_Slave_Receive(self->i2c, bufinfo.buf, bufinfo.len, vals[2].u_int);
434
435
436
    }

    if (status != HAL_OK) {
437
        mp_hal_raise(status);
438
439
    }

440
441
442
443
444
445
    // return the received data
    if (o_ret == MP_OBJ_NULL) {
        return vals[0].u_obj;
    } else {
        return mp_obj_str_builder_end(o_ret);
    }
446
}
447
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_recv_obj, 1, pyb_i2c_recv);
448

449
/// \method mem_read(data, addr, memaddr, timeout=5000, addr_size=8)
450
451
452
453
454
455
456
///
/// Read from the memory of an I2C device:
///
///   - `data` can be an integer or a buffer to read into
///   - `addr` is the I2C device address
///   - `memaddr` is the memory location within the I2C device
///   - `timeout` is the timeout in milliseconds to wait for the read
457
///   - `addr_size` selects width of memaddr: 8 or 16 bits
458
459
460
///
/// Returns the read data.
/// This is only valid in master mode.
461
462
463
464
465
STATIC const mp_arg_t pyb_i2c_mem_read_args[] = {
    { MP_QSTR_data,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
    { MP_QSTR_addr,    MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
    { MP_QSTR_memaddr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
    { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
466
    { MP_QSTR_addr_size, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
467
};
468
#define PYB_I2C_MEM_READ_NUM_ARGS MP_ARRAY_SIZE(pyb_i2c_mem_read_args)
469

470
STATIC mp_obj_t pyb_i2c_mem_read(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
471
472
    pyb_i2c_obj_t *self = args[0];

473
474
475
476
477
    if (!in_master_mode(self)) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
    }

    // parse args
478
479
    mp_arg_val_t vals[PYB_I2C_MEM_READ_NUM_ARGS];
    mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_I2C_MEM_READ_NUM_ARGS, pyb_i2c_mem_read_args, vals);
480
481
482
483

    // get the buffer to read into
    mp_buffer_info_t bufinfo;
    mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &bufinfo);
484

485
    // get the addresses
486
487
    mp_uint_t i2c_addr = vals[1].u_int << 1;
    mp_uint_t mem_addr = vals[2].u_int;
488
    // determine width of mem_addr; default is 8 bits, entering any other value gives 16 bit width
489
    mp_uint_t mem_addr_size = I2C_MEMADD_SIZE_8BIT;
490
    if (vals[4].u_int != 8) {
491
        mem_addr_size = I2C_MEMADD_SIZE_16BIT;
492
    }
493

494
    HAL_StatusTypeDef status = HAL_I2C_Mem_Read(self->i2c, i2c_addr, mem_addr, mem_addr_size, bufinfo.buf, bufinfo.len, vals[3].u_int);
495
496

    if (status != HAL_OK) {
497
        mp_hal_raise(status);
498
499
    }

500
501
502
503
504
505
    // return the read data
    if (o_ret == MP_OBJ_NULL) {
        return vals[0].u_obj;
    } else {
        return mp_obj_str_builder_end(o_ret);
    }
506
}
507
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_read_obj, 1, pyb_i2c_mem_read);
508

509
/// \method mem_write(data, addr, memaddr, timeout=5000, addr_size=8)
510
511
512
513
514
515
516
///
/// Write to the memory of an I2C device:
///
///   - `data` can be an integer or a buffer to write from
///   - `addr` is the I2C device address
///   - `memaddr` is the memory location within the I2C device
///   - `timeout` is the timeout in milliseconds to wait for the write
517
///   - `addr_size` selects width of memaddr: 8 or 16 bits
518
519
520
///
/// Returns `None`.
/// This is only valid in master mode.
521
STATIC mp_obj_t pyb_i2c_mem_write(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
522
    pyb_i2c_obj_t *self = args[0];
523
524
525

    if (!in_master_mode(self)) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
526
527
    }

528
    // parse args (same as mem_read)
529
530
    mp_arg_val_t vals[PYB_I2C_MEM_READ_NUM_ARGS];
    mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_I2C_MEM_READ_NUM_ARGS, pyb_i2c_mem_read_args, vals);
531
532
533
534
535
536
537

    // get the buffer to write from
    mp_buffer_info_t bufinfo;
    uint8_t data[1];
    pyb_buf_get_for_send(vals[0].u_obj, &bufinfo, data);

    // get the addresses
538
539
    mp_uint_t i2c_addr = vals[1].u_int << 1;
    mp_uint_t mem_addr = vals[2].u_int;
540
    // determine width of mem_addr; default is 8 bits, entering any other value gives 16 bit width
541
    mp_uint_t mem_addr_size = I2C_MEMADD_SIZE_8BIT;
542
    if (vals[4].u_int != 8) {
543
        mem_addr_size = I2C_MEMADD_SIZE_16BIT;
544
    }
545

546
    HAL_StatusTypeDef status = HAL_I2C_Mem_Write(self->i2c, i2c_addr, mem_addr, mem_addr_size, bufinfo.buf, bufinfo.len, vals[3].u_int);
547
548

    if (status != HAL_OK) {
549
        mp_hal_raise(status);
550
551
552
553
    }

    return mp_const_none;
}
554
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_write_obj, 1, pyb_i2c_mem_write);
555

556
STATIC const mp_map_elem_t pyb_i2c_locals_dict_table[] = {
557
558
559
    // instance methods
    { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_i2c_init_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_i2c_deinit_obj },
560
    { MP_OBJ_NEW_QSTR(MP_QSTR_is_ready), (mp_obj_t)&pyb_i2c_is_ready_obj },
561
    { MP_OBJ_NEW_QSTR(MP_QSTR_scan), (mp_obj_t)&pyb_i2c_scan_obj },
562
563
    { MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&pyb_i2c_send_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&pyb_i2c_recv_obj },
564
565
    { MP_OBJ_NEW_QSTR(MP_QSTR_mem_read), (mp_obj_t)&pyb_i2c_mem_read_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_mem_write), (mp_obj_t)&pyb_i2c_mem_write_obj },
566
567

    // class constants
568
569
    /// \constant MASTER - for initialising the bus to master mode
    /// \constant SLAVE - for initialising the bus to slave mode
570
571
    { MP_OBJ_NEW_QSTR(MP_QSTR_MASTER),       MP_OBJ_NEW_SMALL_INT(PYB_I2C_MASTER) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_SLAVE),        MP_OBJ_NEW_SMALL_INT(PYB_I2C_SLAVE) },
572
573
};

574
575
STATIC MP_DEFINE_CONST_DICT(pyb_i2c_locals_dict, pyb_i2c_locals_dict_table);

576
577
578
const mp_obj_type_t pyb_i2c_type = {
    { &mp_type_type },
    .name = MP_QSTR_I2C,
579
    .print = pyb_i2c_print,
580
    .make_new = pyb_i2c_make_new,
581
    .locals_dict = (mp_obj_t)&pyb_i2c_locals_dict,
582
};