modpyb.c 19.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

27
28
29
#include <stdint.h>
#include <stdio.h>

30
#include "stm32f4xx_hal.h"
31
32

#include "mpconfig.h"
33
34
#include "misc.h"
#include "nlr.h"
35
36
37
38
#include "qstr.h"
#include "obj.h"
#include "gc.h"
#include "gccollect.h"
Dave Hylands's avatar
Dave Hylands committed
39
#include "irq.h"
40
41
#include "systick.h"
#include "pyexec.h"
42
#include "led.h"
43
#include "pin.h"
44
#include "timer.h"
45
#include "extint.h"
46
#include "usrsw.h"
47
#include "rng.h"
48
#include "rtc.h"
Damien George's avatar
Damien George committed
49
50
#include "i2c.h"
#include "spi.h"
Damien George's avatar
Damien George committed
51
#include "uart.h"
52
#include "can.h"
Dave Hylands's avatar
Dave Hylands committed
53
#include "adc.h"
54
#include "storage.h"
Damien George's avatar
Damien George committed
55
#include "sdcard.h"
56
#include "accel.h"
57
#include "servo.h"
Damien George's avatar
Damien George committed
58
#include "dac.h"
59
#include "lcd.h"
60
#include "usb.h"
61
#include "pybstdio.h"
62
#include "ff.h"
63
#include "portmodules.h"
64

65
66
67
68
/// \module pyb - functions related to the pyboard
///
/// The `pyb` module contains specific functions related to the pyboard.

69
70
/// \function bootloader()
/// Activate the bootloader without BOOT* pins.
71
STATIC NORETURN mp_obj_t pyb_bootloader(void) {
72
    pyb_usb_dev_stop();
73
74
75
76
77
    storage_flush();

    HAL_RCC_DeInit();
    HAL_DeInit();

78
    __HAL_REMAPMEMORY_SYSTEMFLASH();
79
80
81
82
83
84

    // arm-none-eabi-gcc 4.9.0 does not correctly inline this
    // MSP function, so we write it out explicitly here.
    //__set_MSP(*((uint32_t*) 0x00000000));
    __ASM volatile ("movs r3, #0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp");

85
    ((void (*)(void)) *((uint32_t*) 0x00000004))();
86
87
88

    while (1);
}
89
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_bootloader_obj, pyb_bootloader);
90

91
92
93
94
95
96
97
98
99
/// \function hard_reset()
/// Resets the pyboard in a manner similar to pushing the external RESET
/// button.
STATIC mp_obj_t pyb_hard_reset(void) {
    NVIC_SystemReset();
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_hard_reset_obj, pyb_hard_reset);

100
101
/// \function info([dump_alloc_table])
/// Print out lots of information about the board.
102
STATIC mp_obj_t pyb_info(mp_uint_t n_args, const mp_obj_t *args) {
103
104
105
106
107
108
109
110
111
    // get and print unique id; 96 bits
    {
        byte *id = (byte*)0x1fff7a10;
        printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
    }

    // get and print clock speeds
    // SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
    {
112
        printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n",
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
               HAL_RCC_GetSysClockFreq(),
               HAL_RCC_GetHCLKFreq(),
               HAL_RCC_GetPCLK1Freq(),
               HAL_RCC_GetPCLK2Freq());
    }

    // to print info about memory
    {
        printf("_etext=%p\n", &_etext);
        printf("_sidata=%p\n", &_sidata);
        printf("_sdata=%p\n", &_sdata);
        printf("_edata=%p\n", &_edata);
        printf("_sbss=%p\n", &_sbss);
        printf("_ebss=%p\n", &_ebss);
        printf("_estack=%p\n", &_estack);
        printf("_ram_start=%p\n", &_ram_start);
        printf("_heap_start=%p\n", &_heap_start);
        printf("_heap_end=%p\n", &_heap_end);
        printf("_ram_end=%p\n", &_ram_end);
    }

    // qstr info
    {
136
        mp_uint_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
137
        qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
138
        printf("qstr:\n  n_pool=" UINT_FMT "\n  n_qstr=" UINT_FMT "\n  n_str_data_bytes=" UINT_FMT "\n  n_total_bytes=" UINT_FMT "\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
139
140
141
142
143
144
145
    }

    // GC info
    {
        gc_info_t info;
        gc_info(&info);
        printf("GC:\n");
146
147
148
        printf("  " UINT_FMT " total\n", info.total);
        printf("  " UINT_FMT " : " UINT_FMT "\n", info.used, info.free);
        printf("  1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block);
149
150
151
152
153
154
    }

    // free space on flash
    {
        DWORD nclst;
        FATFS *fatfs;
155
        f_getfree("/flash", &nclst, &fatfs);
156
157
158
        printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512));
    }

159
160
161
162
163
    if (n_args == 1) {
        // arg given means dump gc allocation table
        gc_dump_alloc_table();
    }

164
165
    return mp_const_none;
}
166
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_info_obj, 0, 1, pyb_info);
167

168
169
/// \function unique_id()
/// Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU.
170
171
172
173
174
175
STATIC mp_obj_t pyb_unique_id(void) {
    byte *id = (byte*)0x1fff7a10;
    return mp_obj_new_bytes(id, 12);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_unique_id_obj, pyb_unique_id);

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/// \function freq([sys_freq])
///
/// If given no arguments, returns a tuple of clock frequencies:
/// (SYSCLK, HCLK, PCLK1, PCLK2).
///
/// If given an argument, sets the system frequency to that value in Hz.
/// Eg freq(120000000) gives 120MHz.  Note that not all values are
/// supported and the largest supported frequency not greater than
/// the given sys_freq will be selected.
STATIC mp_obj_t pyb_freq(mp_uint_t n_args, const mp_obj_t *args) {
    if (n_args == 0) {
        // get
        mp_obj_t tuple[4] = {
           mp_obj_new_int(HAL_RCC_GetSysClockFreq()),
           mp_obj_new_int(HAL_RCC_GetHCLKFreq()),
           mp_obj_new_int(HAL_RCC_GetPCLK1Freq()),
           mp_obj_new_int(HAL_RCC_GetPCLK2Freq()),
        };
        return mp_obj_new_tuple(4, tuple);
    } else {
        // set
        mp_int_t wanted_sysclk = mp_obj_get_int(args[0]) / 1000000;
        // search for a valid PLL configuration that keeps USB at 48MHz
        for (; wanted_sysclk > 0; wanted_sysclk--) {
            for (mp_uint_t p = 2; p <= 8; p += 2) {
                if (wanted_sysclk * p % 48 != 0) {
                    continue;
                }
                mp_uint_t q = wanted_sysclk * p / 48;
                if (q < 2 || q > 15) {
                    continue;
                }
                if (wanted_sysclk * p % (HSE_VALUE / 1000000) != 0) {
                    continue;
                }
                mp_uint_t n_by_m = wanted_sysclk * p / (HSE_VALUE / 1000000);
                mp_uint_t m = 192 / n_by_m;
                while (m < (HSE_VALUE / 2000000) || n_by_m * m < 192) {
                    m += 1;
                }
                if (m > (HSE_VALUE / 1000000)) {
                    continue;
                }
                mp_uint_t n = n_by_m * m;
                if (n < 192 || n > 432) {
                    continue;
                }

                // found values!

                // let the USB CDC have a chance to process before we change the clock
                HAL_Delay(USBD_CDC_POLLING_INTERVAL + 2);

                // set HSE as system clock source to allow modification of the PLL configuration
                RCC_ClkInitTypeDef RCC_ClkInitStruct;
                RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
                RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;
                if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) {
                    goto fail;
                }

                // re-configure PLL
                RCC_OscInitTypeDef RCC_OscInitStruct;
                RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
                RCC_OscInitStruct.HSEState = RCC_HSE_ON;
                RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
                RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
                RCC_OscInitStruct.PLL.PLLM = m;
                RCC_OscInitStruct.PLL.PLLN = n;
                RCC_OscInitStruct.PLL.PLLP = p;
                RCC_OscInitStruct.PLL.PLLQ = q;
                if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
                    goto fail;
                }

                // set PLL as system clock source
                RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
                RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
                RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
                RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
                RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
                if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) {
                    goto fail;
                }

                // re-init TIM3 for USB CDC rate
                timer_tim3_init();

                return mp_const_none;

                void __fatal_error(const char *msg);
                fail:
                __fatal_error("can't change freq");
            }
        }
        nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "can't make valid freq"));
    }
273
}
274
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_freq_obj, 0, 1, pyb_freq);
275

276
277
/// \function sync()
/// Sync all file systems.
278
279
280
281
282
283
STATIC mp_obj_t pyb_sync(void) {
    storage_flush();
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_sync_obj, pyb_sync);

284
285
/// \function millis()
/// Returns the number of milliseconds since the board was last reset.
286
///
287
288
289
/// The result is always a micropython smallint (31-bit signed number), so
/// after 2^30 milliseconds (about 12.4 days) this will start to return
/// negative numbers.
290
STATIC mp_obj_t pyb_millis(void) {
291
292
293
294
    // We want to "cast" the 32 bit unsigned into a small-int.  This means
    // copying the MSB down 1 bit (extending the sign down), which is
    // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
    return MP_OBJ_NEW_SMALL_INT(HAL_GetTick());
295
296
297
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_millis_obj, pyb_millis);

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
/// \function elapsed_millis(start)
/// Returns the number of milliseconds which have elapsed since `start`.
///
/// This function takes care of counter wrap, and always returns a positive
/// number. This means it can be used to measure periods upto about 12.4 days.
///
/// Example:
///     start = pyb.millis()
///     while pyb.elapsed_millis(start) < 1000:
///         # Perform some operation
STATIC mp_obj_t pyb_elapsed_millis(mp_obj_t start) {
    uint32_t startMillis = mp_obj_get_int(start);
    uint32_t currMillis = HAL_GetTick();
    return MP_OBJ_NEW_SMALL_INT((currMillis - startMillis) & 0x3fffffff);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_millis_obj, pyb_elapsed_millis);

315
316
317
/// \function micros()
/// Returns the number of microseconds since the board was last reset.
///
318
319
320
/// The result is always a micropython smallint (31-bit signed number), so
/// after 2^30 microseconds (about 17.8 minutes) this will start to return
/// negative numbers.
321
STATIC mp_obj_t pyb_micros(void) {
322
323
324
325
    // We want to "cast" the 32 bit unsigned into a small-int.  This means
    // copying the MSB down 1 bit (extending the sign down), which is
    // equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
    return MP_OBJ_NEW_SMALL_INT(sys_tick_get_microseconds());
326
327
328
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_micros_obj, pyb_micros);

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
/// \function elapsed_micros(start)
/// Returns the number of microseconds which have elapsed since `start`.
///
/// This function takes care of counter wrap, and always returns a positive
/// number. This means it can be used to measure periods upto about 17.8 minutes.
///
/// Example:
///     start = pyb.micros()
///     while pyb.elapsed_micros(start) < 1000:
///         # Perform some operation
STATIC mp_obj_t pyb_elapsed_micros(mp_obj_t start) {
    uint32_t startMicros = mp_obj_get_int(start);
    uint32_t currMicros = sys_tick_get_microseconds();
    return MP_OBJ_NEW_SMALL_INT((currMicros - startMicros) & 0x3fffffff);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_micros_obj, pyb_elapsed_micros);

346
347
/// \function delay(ms)
/// Delay for the given number of milliseconds.
348
STATIC mp_obj_t pyb_delay(mp_obj_t ms_in) {
349
    mp_int_t ms = mp_obj_get_int(ms_in);
350
351
352
    if (ms >= 0) {
        HAL_Delay(ms);
    }
353
354
355
356
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_delay_obj, pyb_delay);

357
358
/// \function udelay(us)
/// Delay for the given number of microseconds.
359
STATIC mp_obj_t pyb_udelay(mp_obj_t usec_in) {
360
    mp_int_t usec = mp_obj_get_int(usec_in);
361
362
363
364
    if (usec > 0) {
        uint32_t count = 0;
        const uint32_t utime = (168 * usec / 4);
        while (++count <= utime) {
365
366
        }
    }
367
    return mp_const_none;
368
369
370
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_udelay_obj, pyb_udelay);

371
372
373
/// \function stop()
STATIC mp_obj_t pyb_stop(void) {
    HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);
374

375
    // reconfigure the system clock after waking up
376

377
378
379
    // enable HSE
    __HAL_RCC_HSE_CONFIG(RCC_HSE_ON);
    while (!__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY)) {
380
381
    }

382
383
384
    // enable PLL
    __HAL_RCC_PLL_ENABLE();
    while (!__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)) {
385
386
    }

387
388
389
390
    // select PLL as system clock source
    MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK);
    while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) {
    }
391
392
393
394
395

    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_stop_obj, pyb_stop);

396
/// \function standby()
397
STATIC mp_obj_t pyb_standby(void) {
398
    HAL_PWR_EnterSTANDBYMode();
399
400
401
402
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_standby_obj, pyb_standby);

403
404
/// \function have_cdc()
/// Return True if USB is connected as a serial device, False otherwise.
405
406
407
408
409
STATIC mp_obj_t pyb_have_cdc(void ) {
    return MP_BOOL(usb_vcp_is_connected());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_have_cdc_obj, pyb_have_cdc);

410
411
/// \function repl_uart(uart)
/// Get or set the UART object that the REPL is repeated on.
412
STATIC mp_obj_t pyb_repl_uart(mp_uint_t n_args, const mp_obj_t *args) {
413
    if (n_args == 0) {
414
        if (pyb_stdio_uart == NULL) {
415
416
            return mp_const_none;
        } else {
417
            return pyb_stdio_uart;
418
419
420
        }
    } else {
        if (args[0] == mp_const_none) {
421
            pyb_stdio_uart = NULL;
422
        } else if (mp_obj_get_type(args[0]) == &pyb_uart_type) {
423
            pyb_stdio_uart = args[0];
424
425
426
427
428
429
430
431
        } else {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "need a UART object"));
        }
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_repl_uart_obj, 0, 1, pyb_repl_uart);

432
433
434
/// \function hid((buttons, x, y, z))
/// Takes a 4-tuple (or list) and sends it to the USB host (the PC) to
/// signal a HID mouse-motion event.
435
STATIC mp_obj_t pyb_hid_send_report(mp_obj_t arg) {
436
437
    mp_obj_t *items;
    mp_obj_get_array_fixed_n(arg, 4, &items);
438
439
440
441
442
443
444
445
    uint8_t data[4];
    data[0] = mp_obj_get_int(items[0]);
    data[1] = mp_obj_get_int(items[1]);
    data[2] = mp_obj_get_int(items[2]);
    data[3] = mp_obj_get_int(items[3]);
    usb_hid_send_report(data);
    return mp_const_none;
}
446
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_hid_send_report_obj, pyb_hid_send_report);
447
448

MP_DECLARE_CONST_FUN_OBJ(pyb_main_obj); // defined in main.c
449
MP_DECLARE_CONST_FUN_OBJ(pyb_usb_mode_obj); // defined in main.c
450
451
452
453

STATIC const mp_map_elem_t pyb_module_globals_table[] = {
    { MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_pyb) },

454
    { MP_OBJ_NEW_QSTR(MP_QSTR_bootloader), (mp_obj_t)&pyb_bootloader_obj },
455
    { MP_OBJ_NEW_QSTR(MP_QSTR_hard_reset), (mp_obj_t)&pyb_hard_reset_obj },
456
    { MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&pyb_info_obj },
457
458
    { MP_OBJ_NEW_QSTR(MP_QSTR_unique_id), (mp_obj_t)&pyb_unique_id_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_freq_obj },
459
460
    { MP_OBJ_NEW_QSTR(MP_QSTR_repl_info), (mp_obj_t)&pyb_set_repl_info_obj },

461
    { MP_OBJ_NEW_QSTR(MP_QSTR_wfi), (mp_obj_t)&pyb_wfi_obj },
462
463
464
    { MP_OBJ_NEW_QSTR(MP_QSTR_disable_irq), (mp_obj_t)&pyb_disable_irq_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_enable_irq), (mp_obj_t)&pyb_enable_irq_obj },

465
466
467
    { MP_OBJ_NEW_QSTR(MP_QSTR_stop), (mp_obj_t)&pyb_stop_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_standby), (mp_obj_t)&pyb_standby_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_main), (mp_obj_t)&pyb_main_obj },
468
    { MP_OBJ_NEW_QSTR(MP_QSTR_usb_mode), (mp_obj_t)&pyb_usb_mode_obj },
469

470
    { MP_OBJ_NEW_QSTR(MP_QSTR_have_cdc), (mp_obj_t)&pyb_have_cdc_obj },
471
    { MP_OBJ_NEW_QSTR(MP_QSTR_repl_uart), (mp_obj_t)&pyb_repl_uart_obj },
472
    { MP_OBJ_NEW_QSTR(MP_QSTR_hid), (mp_obj_t)&pyb_hid_send_report_obj },
473
    { MP_OBJ_NEW_QSTR(MP_QSTR_USB_VCP), (mp_obj_t)&pyb_usb_vcp_type },
474

475
    { MP_OBJ_NEW_QSTR(MP_QSTR_millis), (mp_obj_t)&pyb_millis_obj },
476
    { MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_millis), (mp_obj_t)&pyb_elapsed_millis_obj },
477
    { MP_OBJ_NEW_QSTR(MP_QSTR_micros), (mp_obj_t)&pyb_micros_obj },
478
    { MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_micros), (mp_obj_t)&pyb_elapsed_micros_obj },
479
480
481
482
    { MP_OBJ_NEW_QSTR(MP_QSTR_delay), (mp_obj_t)&pyb_delay_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_udelay), (mp_obj_t)&pyb_udelay_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_sync), (mp_obj_t)&pyb_sync_obj },

483
484
    { MP_OBJ_NEW_QSTR(MP_QSTR_Timer), (mp_obj_t)&pyb_timer_type },

485
#if MICROPY_HW_ENABLE_RNG
486
    { MP_OBJ_NEW_QSTR(MP_QSTR_rng), (mp_obj_t)&pyb_rng_get_obj },
487
488
489
#endif

#if MICROPY_HW_ENABLE_RTC
490
    { MP_OBJ_NEW_QSTR(MP_QSTR_RTC), (mp_obj_t)&pyb_rtc_type },
491
492
#endif

493
494
495
    { MP_OBJ_NEW_QSTR(MP_QSTR_Pin), (mp_obj_t)&pin_type },
    { MP_OBJ_NEW_QSTR(MP_QSTR_ExtInt), (mp_obj_t)&extint_type },

496
497
498
#if MICROPY_HW_ENABLE_SERVO
    { MP_OBJ_NEW_QSTR(MP_QSTR_pwm), (mp_obj_t)&pyb_pwm_set_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_servo), (mp_obj_t)&pyb_servo_set_obj },
499
    { MP_OBJ_NEW_QSTR(MP_QSTR_Servo), (mp_obj_t)&pyb_servo_type },
500
501
502
#endif

#if MICROPY_HW_HAS_SWITCH
503
    { MP_OBJ_NEW_QSTR(MP_QSTR_Switch), (mp_obj_t)&pyb_switch_type },
504
505
506
507
508
509
#endif

#if MICROPY_HW_HAS_SDCARD
    { MP_OBJ_NEW_QSTR(MP_QSTR_SD), (mp_obj_t)&pyb_sdcard_obj },
#endif

510
    { MP_OBJ_NEW_QSTR(MP_QSTR_LED), (mp_obj_t)&pyb_led_type },
511
    { MP_OBJ_NEW_QSTR(MP_QSTR_I2C), (mp_obj_t)&pyb_i2c_type },
Damien George's avatar
Damien George committed
512
    { MP_OBJ_NEW_QSTR(MP_QSTR_SPI), (mp_obj_t)&pyb_spi_type },
Damien George's avatar
Damien George committed
513
    { MP_OBJ_NEW_QSTR(MP_QSTR_UART), (mp_obj_t)&pyb_uart_type },
514
#if MICROPY_HW_ENABLE_CAN
515
    { MP_OBJ_NEW_QSTR(MP_QSTR_CAN), (mp_obj_t)&pyb_can_type },
516
#endif
517
518

    { MP_OBJ_NEW_QSTR(MP_QSTR_ADC), (mp_obj_t)&pyb_adc_type },
519
    { MP_OBJ_NEW_QSTR(MP_QSTR_ADCAll), (mp_obj_t)&pyb_adc_all_type },
Damien George's avatar
Damien George committed
520
521
522

#if MICROPY_HW_ENABLE_DAC
    { MP_OBJ_NEW_QSTR(MP_QSTR_DAC), (mp_obj_t)&pyb_dac_type },
523
524
#endif

525
526
527
#if MICROPY_HW_HAS_MMA7660
    { MP_OBJ_NEW_QSTR(MP_QSTR_Accel), (mp_obj_t)&pyb_accel_type },
#endif
528
529
530
531

#if MICROPY_HW_HAS_LCD
    { MP_OBJ_NEW_QSTR(MP_QSTR_LCD), (mp_obj_t)&pyb_lcd_type },
#endif
532
533
};

534
535
536
537
538
STATIC const mp_obj_dict_t pyb_module_globals = {
    .base = {&mp_type_dict},
    .map = {
        .all_keys_are_qstrs = 1,
        .table_is_fixed_array = 1,
539
540
        .used = MP_ARRAY_SIZE(pyb_module_globals_table),
        .alloc = MP_ARRAY_SIZE(pyb_module_globals_table),
541
542
        .table = (mp_map_elem_t*)pyb_module_globals_table,
    },
543
544
545
546
547
};

const mp_obj_module_t pyb_module = {
    .base = { &mp_type_module },
    .name = MP_QSTR_pyb,
548
    .globals = (mp_obj_dict_t*)&pyb_module_globals,
549
};