stm32_it.c 19.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * Original template from ST Cube library.  See below for header.
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

/**
  ******************************************************************************
  * @file    Templates/Src/stm32f4xx_it.c
  * @author  MCD Application Team
  * @version V1.0.1
  * @date    26-February-2014
  * @brief   Main Interrupt Service Routines.
  *          This file provides template for all exceptions handler and
  *          peripherals interrupt service routine.
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */

#include <stdio.h>

70
#include "stm32_it.h"
71
#include STM32_HAL_H
72

73
#include "py/obj.h"
74
#include "pendsv.h"
75
#include "irq.h"
76
77
#include "extint.h"
#include "timer.h"
78
#include "uart.h"
79
#include "storage.h"
80
#include "can.h"
81
#include "dma.h"
82
#include "i2c.h"
83
84

extern void __fatal_error(const char*);
85
86
extern PCD_HandleTypeDef pcd_fs_handle;
extern PCD_HandleTypeDef pcd_hs_handle;
87

88
89
90
91
/******************************************************************************/
/*            Cortex-M4 Processor Exceptions Handlers                         */
/******************************************************************************/

92
93
94
95
96
97
98
// Set the following to 1 to get some more information on the Hard Fault
// More information about decoding the fault registers can be found here:
// http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0646a/Cihdjcfc.html
#define REPORT_HARD_FAULT_REGS  0

#if REPORT_HARD_FAULT_REGS

99
#include "py/mphal.h"
100

101
STATIC char *fmt_hex(uint32_t val, char *buf) {
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    const char *hexDig = "0123456789abcdef";

    buf[0] = hexDig[(val >> 28) & 0x0f];
    buf[1] = hexDig[(val >> 24) & 0x0f];
    buf[2] = hexDig[(val >> 20) & 0x0f];
    buf[3] = hexDig[(val >> 16) & 0x0f];
    buf[4] = hexDig[(val >> 12) & 0x0f];
    buf[5] = hexDig[(val >>  8) & 0x0f];
    buf[6] = hexDig[(val >>  4) & 0x0f];
    buf[7] = hexDig[(val >>  0) & 0x0f];
    buf[8] = '\0';

    return buf;
}

117
STATIC void print_reg(const char *label, uint32_t val) {
118
119
120
121
122
123
124
    char hexStr[9];

    mp_hal_stdout_tx_str(label);
    mp_hal_stdout_tx_str(fmt_hex(val, hexStr));
    mp_hal_stdout_tx_str("\r\n");
}

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
// The ARMv7M Architecture manual (section B.1.5.6) says that upon entry
// to an exception, that the registers will be in the following order on the
// // stack: R0, R1, R2, R3, R12, LR, PC, XPSR

typedef struct {
    uint32_t    r0, r1, r2, r3, r12, lr, pc, xpsr;
} ExceptionRegisters_t;

void HardFault_C_Handler(ExceptionRegisters_t *regs) {
    print_reg("R0    ", regs->r0);
    print_reg("R1    ", regs->r1);
    print_reg("R2    ", regs->r2);
    print_reg("R3    ", regs->r3);
    print_reg("R12   ", regs->r12);
    print_reg("LR    ", regs->lr);
    print_reg("PC    ", regs->pc);
    print_reg("XPSR  ", regs->xpsr);
142

143
144
145
146
147
148
149
150
151
152
    uint32_t cfsr = SCB->CFSR;

    print_reg("HFSR  ", SCB->HFSR);
    print_reg("CFSR  ", cfsr);
    if (cfsr & 0x80) {
        print_reg("MMFAR ", SCB->MMFAR);
    }
    if (cfsr & 0x8000) {
        print_reg("BFAR  ", SCB->BFAR);
    }
153
154
155
156
157
    /* Go to infinite loop when Hard Fault exception occurs */
    while (1) {
        __fatal_error("HardFault");
    }
}
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// Naked functions have no compiler generated gunk, so are the best thing to
// use for asm functions.
__attribute__((naked))
void HardFault_Handler(void) {

    // From the ARMv7M Architecture Reference Manual, section B.1.5.6
    // on entry to the Exception, the LR register contains, amongst other
    // things, the value of CONTROL.SPSEL. This can be found in bit 3.
    //
    // If CONTROL.SPSEL is 0, then the exception was stacked up using the
    // main stack pointer (aka MSP). If CONTROL.SPSEL is 1, then the exception
    // was stacked up using the process stack pointer (aka PSP).

    __asm volatile(
    " tst lr, #4    \n"         // Test Bit 3 to see which stack pointer we should use.
    " ite eq        \n"         // Tell the assembler that the nest 2 instructions are if-then-else
    " mrseq r0, msp \n"         // Make R0 point to main stack pointer
    " mrsne r0, psp \n"         // Make R0 point to process stack pointer
    " b HardFault_C_Handler \n" // Off to C land
    );
}
#else
void HardFault_Handler(void) {
182
183
184
185
186
    /* Go to infinite loop when Hard Fault exception occurs */
    while (1) {
        __fatal_error("HardFault");
    }
}
187
188
189
190
191
192
193
194
195
#endif // REPORT_HARD_FAULT_REGS

/**
  * @brief   This function handles NMI exception.
  * @param  None
  * @retval None
  */
void NMI_Handler(void) {
}
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

/**
  * @brief  This function handles Memory Manage exception.
  * @param  None
  * @retval None
  */
void MemManage_Handler(void) {
    /* Go to infinite loop when Memory Manage exception occurs */
    while (1) {
        __fatal_error("MemManage");
    }
}

/**
  * @brief  This function handles Bus Fault exception.
  * @param  None
  * @retval None
  */
void BusFault_Handler(void) {
    /* Go to infinite loop when Bus Fault exception occurs */
    while (1) {
        __fatal_error("BusFault");
    }
}

/**
  * @brief  This function handles Usage Fault exception.
  * @param  None
  * @retval None
  */
void UsageFault_Handler(void) {
    /* Go to infinite loop when Usage Fault exception occurs */
    while (1) {
        __fatal_error("UsageFault");
    }
}

/**
  * @brief  This function handles SVCall exception.
  * @param  None
  * @retval None
  */
void SVC_Handler(void) {
}

/**
  * @brief  This function handles Debug Monitor exception.
  * @param  None
  * @retval None
  */
void DebugMon_Handler(void) {
}

/**
  * @brief  This function handles PendSVC exception.
  * @param  None
  * @retval None
  */
void PendSV_Handler(void) {
    pendsv_isr_handler();
}

/**
  * @brief  This function handles SysTick Handler.
  * @param  None
  * @retval None
  */
void SysTick_Handler(void) {
264
265
266
    // Instead of calling HAL_IncTick we do the increment here of the counter.
    // This is purely for efficiency, since SysTick is called 1000 times per
    // second at the highest interrupt priority.
267
268
269
270
    // Note: we don't need uwTick to be declared volatile here because this is
    // the only place where it can be modified, and the code is more efficient
    // without the volatile specifier.
    extern uint32_t uwTick;
271
    uwTick += 1;
272
273
274
275
276

    // Read the systick control regster. This has the side effect of clearing
    // the COUNTFLAG bit, which makes the logic in sys_tick_get_microseconds
    // work properly.
    SysTick->CTRL;
277

278
279
    // Right now we have the storage and DMA controllers to process during
    // this interrupt and we use custom dispatch handlers.  If this needs to
280
281
    // be generalised in the future then a dispatch table can be used as
    // follows: ((void(*)(void))(systick_dispatch[uwTick & 0xf]))();
282
283
284
285
286

    if (STORAGE_IDLE_TICK(uwTick)) {
        NVIC->STIR = FLASH_IRQn;
    }

287
    if (DMA_IDLE_ENABLED() && DMA_IDLE_TICK(uwTick)) {
288
        dma_idle_handler(uwTick);
289
    }
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
}

/******************************************************************************/
/*                 STM32F4xx Peripherals Interrupt Handlers                   */
/*  Add here the Interrupt Handler for the used peripheral(s) (PPP), for the  */
/*  available peripheral interrupt handler's name please refer to the startup */
/*  file (startup_stm32f4xx.s).                                               */
/******************************************************************************/

/**
  * @brief  This function handles USB-On-The-Go FS global interrupt request.
  * @param  None
  * @retval None
  */
#if defined(USE_USB_FS)
305
void OTG_FS_IRQHandler(void) {
306
    IRQ_ENTER(OTG_FS_IRQn);
307
    HAL_PCD_IRQHandler(&pcd_fs_handle);
308
    IRQ_EXIT(OTG_FS_IRQn);
309
}
310
#endif
311
312
#if defined(USE_USB_HS)
void OTG_HS_IRQHandler(void) {
313
    IRQ_ENTER(OTG_HS_IRQn);
314
    HAL_PCD_IRQHandler(&pcd_hs_handle);
315
    IRQ_EXIT(OTG_HS_IRQn);
316
317
318
}
#endif

319
#if defined(USE_USB_FS) || defined(USE_USB_HS)
320
/**
321
322
  * @brief  This function handles USB OTG Common FS/HS Wakeup functions.
  * @param  *pcd_handle for FS or HS
323
324
  * @retval None
  */
325
STATIC void OTG_CMD_WKUP_Handler(PCD_HandleTypeDef *pcd_handle) {
326

327
  if (pcd_handle->Init.low_power_enable) {
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
    /* Reset SLEEPDEEP bit of Cortex System Control Register */
    SCB->SCR &= (uint32_t)~((uint32_t)(SCB_SCR_SLEEPDEEP_Msk | SCB_SCR_SLEEPONEXIT_Msk));

    /* Configures system clock after wake-up from STOP: enable HSE, PLL and select
    PLL as system clock source (HSE and PLL are disabled in STOP mode) */

    __HAL_RCC_HSE_CONFIG(RCC_HSE_ON);

    /* Wait till HSE is ready */
    while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
    {}

    /* Enable the main PLL. */
    __HAL_RCC_PLL_ENABLE();

    /* Wait till PLL is ready */
    while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
    {}

    /* Select PLL as SYSCLK */
    MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK);

    while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL)
    {}

    /* ungate PHY clock */
354
     __HAL_PCD_UNGATE_PHYCLOCK(pcd_handle);
355
  }
356
357
358
359
360
361
362
363
364
365
366

}
#endif

#if defined(USE_USB_FS)
/**
  * @brief  This function handles USB OTG FS Wakeup IRQ Handler.
  * @param  None
  * @retval None
  */
void OTG_FS_WKUP_IRQHandler(void) {
367
    IRQ_ENTER(OTG_FS_WKUP_IRQn);
368
369
370

  OTG_CMD_WKUP_Handler(&pcd_fs_handle);

371
372
  /* Clear EXTI pending Bit*/
  __HAL_USB_FS_EXTI_CLEAR_FLAG();
373

374
    IRQ_EXIT(OTG_FS_WKUP_IRQn);
375
}
376
377
#endif

378
379
380
381
382
383
384
#if defined(USE_USB_HS)
/**
  * @brief  This function handles USB OTG HS Wakeup IRQ Handler.
  * @param  None
  * @retval None
  */
void OTG_HS_WKUP_IRQHandler(void) {
385
    IRQ_ENTER(OTG_HS_WKUP_IRQn);
386
387
388
389
390
391

  OTG_CMD_WKUP_Handler(&pcd_hs_handle);

  /* Clear EXTI pending Bit*/
  __HAL_USB_HS_EXTI_CLEAR_FLAG();

392
    IRQ_EXIT(OTG_HS_WKUP_IRQn);
393
394
395
396
397
398
399
400
401
402
403
404
405
406
}
#endif

/**
  * @brief  This function handles PPP interrupt request.
  * @param  None
  * @retval None
  */
/*void PPP_IRQHandler(void)
{
}*/

// Handle a flash (erase/program) interrupt.
void FLASH_IRQHandler(void) {
407
    IRQ_ENTER(FLASH_IRQn);
408
409
410
411
412
413
414
415
416
    // This calls the real flash IRQ handler, if needed
    /*
    uint32_t flash_cr = FLASH->CR;
    if ((flash_cr & FLASH_IT_EOP) || (flash_cr & FLASH_IT_ERR)) {
        HAL_FLASH_IRQHandler();
    }
    */
    // This call the storage IRQ handler, to check if the flash cache needs flushing
    storage_irq_handler();
417
    IRQ_EXIT(FLASH_IRQn);
418
419
420
421
422
423
424
425
}

/**
  * @brief  These functions handle the EXTI interrupt requests.
  * @param  None
  * @retval None
  */
void EXTI0_IRQHandler(void) {
426
    IRQ_ENTER(EXTI0_IRQn);
427
    Handle_EXTI_Irq(0);
428
    IRQ_EXIT(EXTI0_IRQn);
429
430
431
}

void EXTI1_IRQHandler(void) {
432
    IRQ_ENTER(EXTI1_IRQn);
433
    Handle_EXTI_Irq(1);
434
    IRQ_EXIT(EXTI1_IRQn);
435
436
437
}

void EXTI2_IRQHandler(void) {
438
    IRQ_ENTER(EXTI2_IRQn);
439
    Handle_EXTI_Irq(2);
440
    IRQ_EXIT(EXTI2_IRQn);
441
442
443
}

void EXTI3_IRQHandler(void) {
444
    IRQ_ENTER(EXTI3_IRQn);
445
    Handle_EXTI_Irq(3);
446
    IRQ_EXIT(EXTI3_IRQn);
447
448
449
}

void EXTI4_IRQHandler(void) {
450
    IRQ_ENTER(EXTI4_IRQn);
451
    Handle_EXTI_Irq(4);
452
    IRQ_EXIT(EXTI4_IRQn);
453
454
455
}

void EXTI9_5_IRQHandler(void) {
456
    IRQ_ENTER(EXTI9_5_IRQn);
457
458
459
460
461
    Handle_EXTI_Irq(5);
    Handle_EXTI_Irq(6);
    Handle_EXTI_Irq(7);
    Handle_EXTI_Irq(8);
    Handle_EXTI_Irq(9);
462
    IRQ_EXIT(EXTI9_5_IRQn);
463
464
465
}

void EXTI15_10_IRQHandler(void) {
466
    IRQ_ENTER(EXTI15_10_IRQn);
467
468
469
470
471
472
    Handle_EXTI_Irq(10);
    Handle_EXTI_Irq(11);
    Handle_EXTI_Irq(12);
    Handle_EXTI_Irq(13);
    Handle_EXTI_Irq(14);
    Handle_EXTI_Irq(15);
473
    IRQ_EXIT(EXTI15_10_IRQn);
474
475
476
}

void PVD_IRQHandler(void) {
477
    IRQ_ENTER(PVD_IRQn);
478
    Handle_EXTI_Irq(EXTI_PVD_OUTPUT);
479
    IRQ_EXIT(PVD_IRQn);
480
481
}

482
483
484
485
486
487
488
489
#if defined(MCU_SERIES_L4)
void PVD_PVM_IRQHandler(void) {
    IRQ_ENTER(PVD_PVM_IRQn);
    Handle_EXTI_Irq(EXTI_PVD_OUTPUT);
    IRQ_EXIT(PVD_PVM_IRQn);
}
#endif

490
void RTC_Alarm_IRQHandler(void) {
491
    IRQ_ENTER(RTC_Alarm_IRQn);
492
    Handle_EXTI_Irq(EXTI_RTC_ALARM);
493
    IRQ_EXIT(RTC_Alarm_IRQn);
494
495
496
497
}

#if defined(ETH)    // The 407 has ETH, the 405 doesn't
void ETH_WKUP_IRQHandler(void)  {
498
    IRQ_ENTER(ETH_WKUP_IRQn);
499
    Handle_EXTI_Irq(EXTI_ETH_WAKEUP);
500
    IRQ_EXIT(ETH_WKUP_IRQn);
501
502
503
504
}
#endif

void TAMP_STAMP_IRQHandler(void) {
505
    IRQ_ENTER(TAMP_STAMP_IRQn);
506
    Handle_EXTI_Irq(EXTI_RTC_TIMESTAMP);
507
    IRQ_EXIT(TAMP_STAMP_IRQn);
508
509
510
}

void RTC_WKUP_IRQHandler(void) {
511
    IRQ_ENTER(RTC_WKUP_IRQn);
512
513
    RTC->ISR &= ~(1 << 10); // clear wakeup interrupt flag
    Handle_EXTI_Irq(EXTI_RTC_WAKEUP); // clear EXTI flag and execute optional callback
514
    IRQ_EXIT(RTC_WKUP_IRQn);
515
516
517
}

void TIM1_BRK_TIM9_IRQHandler(void) {
518
    IRQ_ENTER(TIM1_BRK_TIM9_IRQn);
519
    timer_irq_handler(9);
520
    IRQ_EXIT(TIM1_BRK_TIM9_IRQn);
521
522
}

523
524
525
526
527
528
529
530
#if defined(MCU_SERIES_L4)
void TIM1_BRK_TIM15_IRQHandler(void) {
    IRQ_ENTER(TIM1_BRK_TIM15_IRQn);
    timer_irq_handler(15);
    IRQ_EXIT(TIM1_BRK_TIM15_IRQn);
}
#endif

531
void TIM1_UP_TIM10_IRQHandler(void) {
532
    IRQ_ENTER(TIM1_UP_TIM10_IRQn);
533
534
    timer_irq_handler(1);
    timer_irq_handler(10);
535
    IRQ_EXIT(TIM1_UP_TIM10_IRQn);
536
537
}

538
539
540
541
542
543
544
545
546
#if defined(MCU_SERIES_L4)
void TIM1_UP_TIM16_IRQHandler(void) {
    IRQ_ENTER(TIM1_UP_TIM16_IRQn);
    timer_irq_handler(1);
    timer_irq_handler(16);
    IRQ_EXIT(TIM1_UP_TIM16_IRQn);
}
#endif

547
void TIM1_TRG_COM_TIM11_IRQHandler(void) {
548
    IRQ_ENTER(TIM1_TRG_COM_TIM11_IRQn);
549
    timer_irq_handler(11);
550
    IRQ_EXIT(TIM1_TRG_COM_TIM11_IRQn);
551
552
}

553
554
555
556
557
558
559
560
#if defined(MCU_SERIES_L4)
void TIM1_TRG_COM_TIM17_IRQHandler(void) {
    IRQ_ENTER(TIM1_TRG_COM_TIM17_IRQn);
    timer_irq_handler(17);
    IRQ_EXIT(TIM1_TRG_COM_TIM17_IRQn);
}
#endif

561
562
563
564
565
566
void TIM1_CC_IRQHandler(void) {
    IRQ_ENTER(TIM1_CC_IRQn);
    timer_irq_handler(1);
    IRQ_EXIT(TIM1_CC_IRQn);
}

567
void TIM2_IRQHandler(void) {
568
    IRQ_ENTER(TIM2_IRQn);
569
    timer_irq_handler(2);
570
    IRQ_EXIT(TIM2_IRQn);
571
572
573
}

void TIM3_IRQHandler(void) {
574
    IRQ_ENTER(TIM3_IRQn);
575
    timer_irq_handler(3);
576
    IRQ_EXIT(TIM3_IRQn);
577
578
579
}

void TIM4_IRQHandler(void) {
580
    IRQ_ENTER(TIM4_IRQn);
581
    timer_irq_handler(4);
582
    IRQ_EXIT(TIM4_IRQn);
583
584
585
}

void TIM5_IRQHandler(void) {
586
    IRQ_ENTER(TIM5_IRQn);
587
588
    timer_irq_handler(5);
    HAL_TIM_IRQHandler(&TIM5_Handle);
589
    IRQ_EXIT(TIM5_IRQn);
590
591
}

592
#if defined(TIM6) // STM32F401 doesn't have TIM6
593
void TIM6_DAC_IRQHandler(void) {
594
    IRQ_ENTER(TIM6_DAC_IRQn);
595
    timer_irq_handler(6);
596
    IRQ_EXIT(TIM6_DAC_IRQn);
597
}
598
#endif
599

600
#if defined(TIM7) // STM32F401 doesn't have TIM7
601
void TIM7_IRQHandler(void) {
602
    IRQ_ENTER(TIM7_IRQn);
603
    timer_irq_handler(7);
604
    IRQ_EXIT(TIM7_IRQn);
605
}
606
#endif
607

608
#if defined(TIM8) // STM32F401 doesn't have TIM8
609
void TIM8_BRK_TIM12_IRQHandler(void) {
610
    IRQ_ENTER(TIM8_BRK_TIM12_IRQn);
611
    timer_irq_handler(12);
612
    IRQ_EXIT(TIM8_BRK_TIM12_IRQn);
613
614
615
}

void TIM8_UP_TIM13_IRQHandler(void) {
616
    IRQ_ENTER(TIM8_UP_TIM13_IRQn);
617
618
    timer_irq_handler(8);
    timer_irq_handler(13);
619
    IRQ_EXIT(TIM8_UP_TIM13_IRQn);
620
621
}

622
623
624
625
626
627
628
629
#if defined(MCU_SERIES_L4)
void TIM8_UP_IRQHandler(void) {
    IRQ_ENTER(TIM8_UP_IRQn);
    timer_irq_handler(8);
    IRQ_EXIT(TIM8_UP_IRQn);
}
#endif

630
631
632
633
634
635
void TIM8_CC_IRQHandler(void) {
    IRQ_ENTER(TIM8_CC_IRQn);
    timer_irq_handler(8);
    IRQ_EXIT(TIM8_CC_IRQn);
}

636
void TIM8_TRG_COM_TIM14_IRQHandler(void) {
637
    IRQ_ENTER(TIM8_TRG_COM_TIM14_IRQn);
638
    timer_irq_handler(14);
639
    IRQ_EXIT(TIM8_TRG_COM_TIM14_IRQn);
640
}
641
#endif
642
643
644

// UART/USART IRQ handlers
void USART1_IRQHandler(void) {
645
    IRQ_ENTER(USART1_IRQn);
646
    uart_irq_handler(1);
647
    IRQ_EXIT(USART1_IRQn);
648
649
650
}

void USART2_IRQHandler(void) {
651
    IRQ_ENTER(USART2_IRQn);
652
    uart_irq_handler(2);
653
    IRQ_EXIT(USART2_IRQn);
654
655
656
}

void USART3_IRQHandler(void) {
657
    IRQ_ENTER(USART3_IRQn);
658
    uart_irq_handler(3);
659
    IRQ_EXIT(USART3_IRQn);
660
661
662
}

void UART4_IRQHandler(void) {
663
    IRQ_ENTER(UART4_IRQn);
664
    uart_irq_handler(4);
665
    IRQ_EXIT(UART4_IRQn);
666
667
}

Dave Hylands's avatar
Dave Hylands committed
668
void UART5_IRQHandler(void) {
669
    IRQ_ENTER(UART5_IRQn);
Dave Hylands's avatar
Dave Hylands committed
670
    uart_irq_handler(5);
671
    IRQ_EXIT(UART5_IRQn);
Dave Hylands's avatar
Dave Hylands committed
672
673
}

674
void USART6_IRQHandler(void) {
675
    IRQ_ENTER(USART6_IRQn);
676
    uart_irq_handler(6);
677
    IRQ_EXIT(USART6_IRQn);
678
}
679
680
681

#if MICROPY_HW_ENABLE_CAN
void CAN1_RX0_IRQHandler(void) {
682
    IRQ_ENTER(CAN1_RX0_IRQn);
683
    can_rx_irq_handler(PYB_CAN_1, CAN_FIFO0);
684
    IRQ_EXIT(CAN1_RX0_IRQn);
685
686
687
}

void CAN1_RX1_IRQHandler(void) {
688
    IRQ_ENTER(CAN1_RX1_IRQn);
689
    can_rx_irq_handler(PYB_CAN_1, CAN_FIFO1);
690
    IRQ_EXIT(CAN1_RX1_IRQn);
691
692
693
}

void CAN2_RX0_IRQHandler(void) {
694
    IRQ_ENTER(CAN2_RX0_IRQn);
695
    can_rx_irq_handler(PYB_CAN_2, CAN_FIFO0);
696
    IRQ_EXIT(CAN2_RX0_IRQn);
697
698
699
}

void CAN2_RX1_IRQHandler(void) {
700
    IRQ_ENTER(CAN2_RX1_IRQn);
701
    can_rx_irq_handler(PYB_CAN_2, CAN_FIFO1);
702
    IRQ_EXIT(CAN2_RX1_IRQn);
703
704
}
#endif // MICROPY_HW_ENABLE_CAN
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746

#if defined(MICROPY_HW_I2C1_SCL)
void I2C1_EV_IRQHandler(void) {
    IRQ_ENTER(I2C1_EV_IRQn);
    HAL_I2C_EV_IRQHandler(&I2CHandle1);
    IRQ_EXIT(I2C1_EV_IRQn);
}

void I2C1_ER_IRQHandler(void) {
    IRQ_ENTER(I2C1_ER_IRQn);
    HAL_I2C_ER_IRQHandler(&I2CHandle1);
    IRQ_EXIT(I2C1_ER_IRQn);
}
#endif // defined(MICROPY_HW_I2C1_SCL)

#if defined(MICROPY_HW_I2C2_SCL)
void I2C2_EV_IRQHandler(void) {
    IRQ_ENTER(I2C2_EV_IRQn);
    HAL_I2C_EV_IRQHandler(&I2CHandle2);
    IRQ_EXIT(I2C2_EV_IRQn);
}

void I2C2_ER_IRQHandler(void) {
    IRQ_ENTER(I2C2_ER_IRQn);
    HAL_I2C_ER_IRQHandler(&I2CHandle2);
    IRQ_EXIT(I2C2_ER_IRQn);
}
#endif // defined(MICROPY_HW_I2C2_SCL)

#if defined(MICROPY_HW_I2C3_SCL)
void I2C3_EV_IRQHandler(void) {
    IRQ_ENTER(I2C3_EV_IRQn);
    HAL_I2C_EV_IRQHandler(&I2CHandle3);
    IRQ_EXIT(I2C3_EV_IRQn);
}

void I2C3_ER_IRQHandler(void) {
    IRQ_ENTER(I2C3_ER_IRQn);
    HAL_I2C_ER_IRQHandler(&I2CHandle3);
    IRQ_EXIT(I2C3_ER_IRQn);
}
#endif // defined(MICROPY_HW_I2C3_SCL)