po_hi_task.c 11.9 KB
Newer Older
1
2
3
4
5
6
7
/*
 * This is a part of PolyORB-HI-C distribution, a minimal
 * middleware written for generated code from AADL models.
 * You should use it with the Ocarina toolsuite.
 *
 * For more informations, please visit http://ocarina.enst.fr
 *
8
 * Copyright (C) 2007-2011, European Space Agency (ESA).
9
10
 */

11
#if defined (RTEMS_POSIX) || defined (POSIX) || defined (XENO_POSIX)
12
13
#include <pthread.h>
#include <sched.h>
14
15
#endif

16
17
18
19
20
21
22
23
#include <errno.h>
/* Headers from the executive */

#include <po_hi_config.h>
#include <po_hi_time.h>
#include <po_hi_task.h>
#include <po_hi_debug.h>
#include <po_hi_returns.h>
24
#include <po_hi_types.h>
25
26
27
/* Header files in PolyORB-HI */

#include <deployment.h>	
28

29
/* Header files from generated code */
30

31
32
33
34
35
36
37

int nb_tasks; /* number of created tasks */

typedef struct
{
  __po_hi_task_id     id;       /* Identifier of the task in the system */
  __po_hi_time_t      period;
38
#if defined(RTEMS_POSIX) || defined(POSIX) || defined (XENO_POSIX)
39
  __po_hi_time_t      timer;
40
41
42
43
  pthread_t           tid;              /* The pthread_t type used by the
                                           POSIX library */
  pthread_mutex_t     mutex;
  pthread_cond_t      cond;
44
#elif defined(RTEMS_PURE)
45
  rtems_id            ratemon_period;
46
  rtems_id            rtems_id;
47
48
#elif defined(XENO_NATIVE)
  RT_TASK             xeno_id;
49
#endif
50
} __po_hi_task_t;
51
52
53
54
55
56
57
58
59
/*
 * Structure of a task, contains platform-dependent members
 */

__po_hi_task_t tasks[__PO_HI_NB_TASKS];
/* Array which contains all tasks informations */

void __po_hi_wait_for_tasks ()
{
60
#if defined(RTEMS_POSIX) || defined(POSIX) || defined (XENO_POSIX)
61
62
  int i;

63
64
65
66
67
  for (i = 0; i < __PO_HI_NB_TASKS; i++)
    {
      pthread_join( tasks[i].tid , NULL );
    }
#endif
68
69
70
#ifdef RTEMS_PURE
  rtems_task_suspend(RTEMS_SELF);
#endif
71
72
73
74
75
76
77
78
79
}

/*
 * compute next period for a task
 * The argument is the task-id
 * The task must be a periodic task
 */
int __po_hi_compute_next_period (__po_hi_task_id task)
{
80

81
#if defined(RTEMS_POSIX) || defined(POSIX)
82
83
84
85
86
87
88
89
90
  __po_hi_time_t mytime;

  if (__po_hi_get_time (&mytime) != __PO_HI_SUCCESS)
    {
      return (__PO_HI_ERROR_CLOCK);
    }
  tasks[task].timer = __po_hi_add_times( mytime, tasks[task].period );
  
  return (__PO_HI_SUCCESS);
91
#elif defined (RTEMS_PURE)
92
93
   rtems_status_code ret;
   rtems_name name;
94

95
96
97
   if (tasks[task].ratemon_period == RTEMS_INVALID_ID)
   {
   name = rtems_build_name ('P', 'R', 'D' + (char)task, ' ');
98

99
100
101
102
103
104
105
106
   __DEBUGMSG ("Create monotonic server for task %d\n", task);
   ret = rtems_rate_monotonic_create (name, &(tasks[task].ratemon_period));
   if (ret != RTEMS_SUCCESSFUL)
   {
      __DEBUGMSG ("Error while creating the monotonic server, task=%d, status=%d\n", task, ret);
   }
   }
  return (__PO_HI_SUCCESS);
107
108
109
#else
   return (__PO_HI_UNAVAILABLE);
#endif
110
111
112
113
}

int __po_hi_wait_for_next_period (__po_hi_task_id task)
{
114
#if defined (POSIX) || defined (RTEMS_POSIX) || defined (XENO_POSIX)
115
116
117
118
119
120
121
122
  int ret;
  __po_hi_task_delay_until (tasks[task].timer, task);
  if ( (ret = __po_hi_compute_next_period (task)) != 1)
    {
      return (__PO_HI_ERROR_CLOCK);
    }

  return (__PO_HI_SUCCESS);
123
#elif defined (RTEMS_PURE)
124
125
126
   rtems_status_code ret;
/*   ret = rtems_rate_monotonic_period (&tasks[task].ratemon_period, (rtems_interval)tasks[task].period * ); */
   ret = rtems_rate_monotonic_period (tasks[task].ratemon_period, tasks[task].period / _TOD_Microseconds_per_tick); 
127

128
129
130
131
132
133
   switch (ret)
   {
      case RTEMS_SUCCESSFUL:
         return (__PO_HI_SUCCESS);
         break;
      case RTEMS_TIMEOUT:
134
         __DEBUGMSG ("Error in rtems_rate_monotonic_period (TIMEOUT, task = %d)\n", task);
135
136
137
         return (__PO_HI_ERROR_TASK_PERIOD);
         break;
      default:
138
         __DEBUGMSG ("Error in rtems_rate_monotonic_period (unknown, error code=%d, task=%d)\n", ret, task);
139
         return (__PO_HI_ERROR_UNKNOWN);
140
141
         break;
   }
142

143
   return (__PO_HI_UNAVAILABLE);
144
145
146
147
148
149
150
#elif defined (XENO_NATIVE)
   if ( ! rt_task_wait_period (NULL))
   {
         return (__PO_HI_ERROR_TASK_PERIOD);
   }

   return (__PO_HI_SUCCESS);
151
152
153
#else
  return (__PO_HI_UNAVAILABLE);
#endif
154
155
156
157
158
159
160
161
162
163
}

int __po_hi_initialize_tasking( )
{
  int i;

  for (i = 0; i < __PO_HI_NB_TASKS; i++)
  {
     tasks[i].period = 0;
     tasks[i].id     = invalid_task_id; 
164
165
166
#ifdef RTEMS_PURE
      tasks[i].ratemon_period = RTEMS_INVALID_ID;
#endif
167
168
169
170
171
172
173
174
175
176
177
178
179
  }

  nb_tasks = 0;

  return (__PO_HI_SUCCESS);
}

/*
 * For each kind of system, we declare a generic function that
 * create a thread. For POSIX-compliant systems, the function
 * is called __po_hi_posix_create_thread
 */

180
#if defined (POSIX) || defined (RTEMS_POSIX) || defined (XENO_POSIX)
181
182
183
184
185
186
187
pthread_t __po_hi_posix_create_thread (__po_hi_priority_t priority, 
                                       __po_hi_stack_t    stack_size,
				       void*              (*start_routine)(void))
{
  int                policy;
  pthread_t          tid;
  pthread_attr_t     attr;
188
  struct sched_param param;
189
190
191
192
193
194

  if (pthread_attr_init (&attr) != 0)
    {
      return ((pthread_t)__PO_HI_ERROR_PTHREAD_ATTR);
    }

julien.delange's avatar
julien.delange committed
195
#if defined (POSIX) || defined (XENO_POSIX)
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
  if (pthread_attr_setscope (&attr, PTHREAD_SCOPE_SYSTEM) != 0)
    {
      return ((pthread_t)__PO_HI_ERROR_PTHREAD_ATTR);
    }
  if (stack_size != 0)
    {
      if (pthread_attr_setstacksize (&attr, stack_size) != 0)
	{
	  return ((pthread_t)__PO_HI_ERROR_PTHREAD_ATTR);
      }
    }
#elif defined (RTEMS_POSIX)
  if (pthread_attr_setscope (&attr, PTHREAD_SCOPE_PROCESS) != 0)
  {
    return ((pthread_t)__PO_HI_ERROR_PTHREAD_ATTR);
  }
#endif

  if (pthread_create (&tid, &attr, (void* (*)(void*))start_routine, NULL) != 0)
    {
      return ((pthread_t)__PO_HI_ERROR_PTHREAD_CREATE);
    }

julien.delange's avatar
julien.delange committed
219
  policy = SCHED_RR;
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
  param.sched_priority = priority;

#ifdef __PO_HI_DEBUG
  if (priority < sched_get_priority_min (policy))
  {
      __DEBUGMSG("PRIORITY IS TOO LOW\n");
  }

  if (priority > sched_get_priority_max (policy))
  {
      __DEBUGMSG("PRIORITY IS TOO HIGH\n");
  }
#endif

  /*
   * We print a message that the user has to be root on
   * its computer. In fact, most of the time, the
   * function pthread_setschedparam fails because
   * the user is not root. On many systems, only root
   * can change the priority of the threads.
   */

  if (pthread_setschedparam (tid, policy, &param)!=0)
    {
#ifdef __PO_HI_DEBUG
      __DEBUGMSG("CANNOT SET PRIORITY FOR TASK %d\n" , nb_tasks );
      __DEBUGMSG("IF YOU ARE USING POSIX IMPLEMENTATION\n");
      __DEBUGMSG("BE SURE TO BE LOGGED AS ROOT\n");
#endif
    }

  return tid;
}

int __po_hi_posix_initialize_task (__po_hi_task_t* task)
{
        if (pthread_mutex_init (&(task->mutex), NULL) != 0)
        {
                return (__PO_HI_ERROR_PTHREAD_MUTEX);
        }

        if (pthread_cond_init (&(task->cond), NULL) != 0)
        {
                return (__PO_HI_ERROR_PTHREAD_COND);
        }
        return (__PO_HI_SUCCESS);
}
267
268
269
270
271

#endif /* POSIX || RTEMS_POSIX */


#ifdef RTEMS_PURE
272
273
274
rtems_id __po_hi_rtems_create_thread (__po_hi_priority_t priority, 
                                      __po_hi_stack_t    stack_size,
                                      void*              (*start_routine)(void))
275
{
276
277
  rtems_id rid;
   if (rtems_task_create (rtems_build_name( 'T', 'A', nb_tasks, ' ' ), 1, RTEMS_MINIMUM_STACK_SIZE, RTEMS_DEFAULT_MODES, RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &rid) != RTEMS_SUCCESSFUL)
278
279
   {
      __DEBUGMSG ("ERROR when creating the task\n");
280
      return __PO_HI_ERROR_CREATE_TASK;
281
282
   }

283
  if (rtems_task_start (rid, (rtems_task_entry)start_routine, 0 ) != RTEMS_SUCCESSFUL)
284
285
  {
      __DEBUGMSG ("ERROR when starting the task\n");
286
      return __PO_HI_ERROR_CREATE_TASK;
287
288
  }

289
   return rid;
290
291
292
}
#endif

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#ifdef XENO_NATIVE
RT_TASK __po_hi_xenomai_create_thread (__po_hi_priority_t priority, 
                                     __po_hi_stack_t    stack_size,
                                     void*              (*start_routine)(void))
{
   RT_TASK newtask;

   if (! rt_task_create (&newtask, NULL, stack_size, priority, 0))
   {
      __DEBUGMSG ("ERROR when creating the task\n");
   }
   if ( ! rt_task_start (&newtask, (void*)start_routine, NULL))
   {
      __DEBUGMSG ("ERROR when starting the task\n");
   }

   return newtask;
}
#endif



315

316
317
318
319
320
321
322
323
324
325

int __po_hi_create_generic_task (__po_hi_task_id    id, 
                                 __po_hi_time_t     period, 
                                 __po_hi_priority_t priority, 
                                 __po_hi_stack_t   stack_size,
                                 void*              (*start_routine)(void))
{
  __po_hi_task_t* my_task;
  if (id == -1) 
    {
326
#if defined (POSIX) || defined (RTEMS_POSIX) || defined (XENO_POSIX)
327
      __po_hi_posix_create_thread (priority, stack_size, start_routine);
328
      return (__PO_HI_SUCCESS);
329
330
331
#elif defined (XENO_NATIVE)
      __po_hi_xenomai_create_thread (priority, stack_size, start_routine);
      return (__PO_HI_SUCCESS);
332
333
334
335
336
337
#elif defined (RTEMS_PURE)
      __po_hi_rtems_create_thread (priority, stack_size, start_routine);
      return (__PO_HI_SUCCESS);
#else
      return (__PO_HI_UNAVAILABLE);
#endif
338
339
340
341
342
343
    } 
  else
    {
      my_task         = &(tasks[id]);
      my_task->period = period;
      my_task->id     = id;
344
     
345
#if defined (POSIX) || defined (RTEMS_POSIX) || defined (XENO_POSIX)
346
347
      my_task->tid    = __po_hi_posix_create_thread (priority, stack_size, start_routine);
      __po_hi_posix_initialize_task (my_task);
348
#elif defined (RTEMS_PURE)
349
      my_task->rtems_id = __po_hi_rtems_create_thread (priority, stack_size, start_routine);
350
351
#elif defined (XENO_NATIVE)
      my_task->xeno_id = __po_hi_xenomai_create_thread (priority, stack_size, start_routine);
352
353
354
#else
      return (__PO_HI_UNAVAILABLE);
#endif
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
      nb_tasks++;
    }

  return (__PO_HI_SUCCESS);
}

int __po_hi_create_periodic_task (__po_hi_task_id    id, 
				  __po_hi_time_t     period, 
				  __po_hi_priority_t priority, 
				  __po_hi_stack_t    stack_size,
				  void*              (*start_routine)(void))
{
  if (__po_hi_create_generic_task( id, period , priority , stack_size, start_routine ) != 1)
    {
      return (__PO_HI_ERROR_CREATE_TASK);
    }

  /*
   * Compute the next period of the task, using the 
   *__po_hi_time* functions.
   */
376
#if defined (RTEMS_POSIX) || defined (POSIX) || defined (XENO_POSIX)
377
378
379
380
  if (__po_hi_compute_next_period (id) != __PO_HI_SUCCESS)
    {
      return (__PO_HI_ERROR_CLOCK);
    }
381
382
383
384
385
#elif defined (XENO_NATIVE)
   if (! rt_task_set_periodic (&(tasks[id].xeno_id), TM_NOW, tasks[id].period * 1000000))
   {
      return (__PO_HI_ERROR_CLOCK);
   }
386
#endif
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    
  return (__PO_HI_SUCCESS);
}

int __po_hi_create_sporadic_task (__po_hi_task_id    id,
				  __po_hi_time_t     period, 
				  __po_hi_priority_t priority, 
				  __po_hi_stack_t    stack_size,
				  void*              (*start_routine)(void) )
{
  /*
   * Create generic task which will execute the routine given in the
   * last parameter. Typically, a sporadic thread will wait on a
   * mutex.
   */
  if (__po_hi_create_generic_task( id, period , priority , stack_size, start_routine ) != 1)
    {
      return (__PO_HI_ERROR_CREATE_TASK);
    }
  
  return (__PO_HI_SUCCESS);
}

int __po_hi_task_delay_until (__po_hi_time_t time, __po_hi_task_id task)
{
412
#if defined (POSIX) || defined (RTEMS_POSIX) || defined (XENO_POSIX)
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
  struct timespec timer;
  int ret;

  timer.tv_sec = time / 1000000;
  
  timer.tv_nsec = (time - (timer.tv_sec*1000000)) * 1000;

  pthread_mutex_lock (&tasks[task].mutex);
  
  ret = pthread_cond_timedwait (&tasks[task].cond, &tasks[task].mutex, &timer);

  if ( (ret != 0) && (ret != ETIMEDOUT))
    {
      ret = __PO_HI_ERROR_PTHREAD_COND;
    }
  else
    {
      ret = __PO_HI_SUCCESS;
    }

  pthread_mutex_unlock (&tasks[task].mutex);

  return (ret);
436
437
#endif
  return (__PO_HI_UNAVAILABLE);
438
}
439
440
441
442
443
444
445
446
447
448

void __po_hi_tasks_killall ()
{
   int i;
   for (i = 0; i < __PO_HI_NB_TASKS; i++)
    {
       __DEBUGMSG ("Kill task %d\n", i);
#ifdef RTEMS_PURE
      rtems_task_delete (tasks[i].rtems_id);
#endif
449
#if defined (POSIX) || defined (RTEMS_POSIX) || defined (XENO_POSIX)
450
451
452
453
454
      pthread_cancel (tasks[i].tid);
      __DEBUGMSG ("[TASKS] Cancel thread %d\n", (int) tasks[i].tid);
#endif
    }
}