po_hi_task.c 10.5 KB
Newer Older
1
2
3
4
5
6
7
/*
 * This is a part of PolyORB-HI-C distribution, a minimal
 * middleware written for generated code from AADL models.
 * You should use it with the Ocarina toolsuite.
 *
 * For more informations, please visit http://ocarina.enst.fr
 *
8
 * Copyright (C) 2007-2010, European Space Agency (ESA).
9
10
 */

11
#if defined (RTEMS_POSIX) || defined (POSIX)
12
13
#include <pthread.h>
#include <sched.h>
14
15
#endif

16
17
18
19
20
21
22
23
#include <errno.h>
/* Headers from the executive */

#include <po_hi_config.h>
#include <po_hi_time.h>
#include <po_hi_task.h>
#include <po_hi_debug.h>
#include <po_hi_returns.h>
24
#include <po_hi_types.h>
25
26
27
/* Header files in PolyORB-HI */

#include <deployment.h>	
28

29
/* Header files from generated code */
30

31
32
33
34
35
36
37
38

int nb_tasks; /* number of created tasks */

typedef struct
{
  __po_hi_task_id     id;       /* Identifier of the task in the system */
  __po_hi_time_t      period;
#if defined(RTEMS_POSIX) || defined(POSIX)
39
  __po_hi_time_t      timer;
40
41
42
43
  pthread_t           tid;              /* The pthread_t type used by the
                                           POSIX library */
  pthread_mutex_t     mutex;
  pthread_cond_t      cond;
44
#elif defined(RTEMS_PURE)
45
  rtems_id            ratemon_period;
46
  rtems_id            rtems_id;
47
#endif
48
} __po_hi_task_t;
49
50
51
52
53
54
55
56
57
58
/*
 * Structure of a task, contains platform-dependent members
 */

__po_hi_task_t tasks[__PO_HI_NB_TASKS];
/* Array which contains all tasks informations */

void __po_hi_wait_for_tasks ()
{
#if defined(RTEMS_POSIX) || defined(POSIX)
59
60
  int i;

61
62
63
64
65
  for (i = 0; i < __PO_HI_NB_TASKS; i++)
    {
      pthread_join( tasks[i].tid , NULL );
    }
#endif
66
67
68
#ifdef RTEMS_PURE
  rtems_task_suspend(RTEMS_SELF);
#endif
69
70
71
72
73
74
75
76
77
}

/*
 * compute next period for a task
 * The argument is the task-id
 * The task must be a periodic task
 */
int __po_hi_compute_next_period (__po_hi_task_id task)
{
78

79
#if defined(RTEMS_POSIX) || defined(POSIX)
80
81
82
83
84
85
86
87
88
  __po_hi_time_t mytime;

  if (__po_hi_get_time (&mytime) != __PO_HI_SUCCESS)
    {
      return (__PO_HI_ERROR_CLOCK);
    }
  tasks[task].timer = __po_hi_add_times( mytime, tasks[task].period );
  
  return (__PO_HI_SUCCESS);
89
#elif defined (RTEMS_PURE)
90
91
   rtems_status_code ret;
   rtems_name name;
92

93
94
95
   if (tasks[task].ratemon_period == RTEMS_INVALID_ID)
   {
   name = rtems_build_name ('P', 'R', 'D' + (char)task, ' ');
96

97
98
99
100
101
102
103
104
   __DEBUGMSG ("Create monotonic server for task %d\n", task);
   ret = rtems_rate_monotonic_create (name, &(tasks[task].ratemon_period));
   if (ret != RTEMS_SUCCESSFUL)
   {
      __DEBUGMSG ("Error while creating the monotonic server, task=%d, status=%d\n", task, ret);
   }
   }
  return (__PO_HI_SUCCESS);
105
106
107
#else
   return (__PO_HI_UNAVAILABLE);
#endif
108
109
110
111
}

int __po_hi_wait_for_next_period (__po_hi_task_id task)
{
112
#if defined (POSIX) || defined (RTEMS_POSIX)
113
114
115
116
117
118
119
120
  int ret;
  __po_hi_task_delay_until (tasks[task].timer, task);
  if ( (ret = __po_hi_compute_next_period (task)) != 1)
    {
      return (__PO_HI_ERROR_CLOCK);
    }

  return (__PO_HI_SUCCESS);
121
#elif defined (RTEMS_PURE)
122
123
124
   rtems_status_code ret;
/*   ret = rtems_rate_monotonic_period (&tasks[task].ratemon_period, (rtems_interval)tasks[task].period * ); */
   ret = rtems_rate_monotonic_period (tasks[task].ratemon_period, tasks[task].period / _TOD_Microseconds_per_tick); 
125

126
127
128
129
130
131
   switch (ret)
   {
      case RTEMS_SUCCESSFUL:
         return (__PO_HI_SUCCESS);
         break;
      case RTEMS_TIMEOUT:
132
         __DEBUGMSG ("Error in rtems_rate_monotonic_period (TIMEOUT, task = %d)\n", task);
133
134
135
         return (__PO_HI_ERROR_TASK_PERIOD);
         break;
      default:
136
         __DEBUGMSG ("Error in rtems_rate_monotonic_period (unknown, error code=%d, task=%d)\n", ret, task);
137
         return (__PO_HI_ERROR_UNKNOWN);
138
139
         break;
   }
140

141
   return (__PO_HI_UNAVAILABLE);
142
143
144
#else
  return (__PO_HI_UNAVAILABLE);
#endif
145
146
147
148
149
150
151
152
153
154
}

int __po_hi_initialize_tasking( )
{
  int i;

  for (i = 0; i < __PO_HI_NB_TASKS; i++)
  {
     tasks[i].period = 0;
     tasks[i].id     = invalid_task_id; 
155
156
157
#ifdef RTEMS_PURE
      tasks[i].ratemon_period = RTEMS_INVALID_ID;
#endif
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
  }

  nb_tasks = 0;

  return (__PO_HI_SUCCESS);
}

/*
 * For each kind of system, we declare a generic function that
 * create a thread. For POSIX-compliant systems, the function
 * is called __po_hi_posix_create_thread
 */

#if defined (POSIX) || defined (RTEMS_POSIX)
pthread_t __po_hi_posix_create_thread (__po_hi_priority_t priority, 
                                       __po_hi_stack_t    stack_size,
				       void*              (*start_routine)(void))
{
  int                policy;
  pthread_t          tid;
  pthread_attr_t     attr;
179
  struct sched_param param;
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

  if (pthread_attr_init (&attr) != 0)
    {
      return ((pthread_t)__PO_HI_ERROR_PTHREAD_ATTR);
    }

#if defined (POSIX)
  if (pthread_attr_setscope (&attr, PTHREAD_SCOPE_SYSTEM) != 0)
    {
      return ((pthread_t)__PO_HI_ERROR_PTHREAD_ATTR);
    }
  if (stack_size != 0)
    {
      if (pthread_attr_setstacksize (&attr, stack_size) != 0)
	{
	  return ((pthread_t)__PO_HI_ERROR_PTHREAD_ATTR);
      }
    }
#elif defined (RTEMS_POSIX)
  if (pthread_attr_setscope (&attr, PTHREAD_SCOPE_PROCESS) != 0)
  {
    return ((pthread_t)__PO_HI_ERROR_PTHREAD_ATTR);
  }
#endif

  if (pthread_create (&tid, &attr, (void* (*)(void*))start_routine, NULL) != 0)
    {
      return ((pthread_t)__PO_HI_ERROR_PTHREAD_CREATE);
    }

julien.delange's avatar
julien.delange committed
210
  policy = SCHED_RR;
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
  param.sched_priority = priority;

#ifdef __PO_HI_DEBUG
  if (priority < sched_get_priority_min (policy))
  {
      __DEBUGMSG("PRIORITY IS TOO LOW\n");
  }

  if (priority > sched_get_priority_max (policy))
  {
      __DEBUGMSG("PRIORITY IS TOO HIGH\n");
  }
#endif

  /*
   * We print a message that the user has to be root on
   * its computer. In fact, most of the time, the
   * function pthread_setschedparam fails because
   * the user is not root. On many systems, only root
   * can change the priority of the threads.
   */

  if (pthread_setschedparam (tid, policy, &param)!=0)
    {
#ifdef __PO_HI_DEBUG
      __DEBUGMSG("CANNOT SET PRIORITY FOR TASK %d\n" , nb_tasks );
      __DEBUGMSG("IF YOU ARE USING POSIX IMPLEMENTATION\n");
      __DEBUGMSG("BE SURE TO BE LOGGED AS ROOT\n");
#endif
    }

  return tid;
}

int __po_hi_posix_initialize_task (__po_hi_task_t* task)
{
        if (pthread_mutex_init (&(task->mutex), NULL) != 0)
        {
                return (__PO_HI_ERROR_PTHREAD_MUTEX);
        }

        if (pthread_cond_init (&(task->cond), NULL) != 0)
        {
                return (__PO_HI_ERROR_PTHREAD_COND);
        }
        return (__PO_HI_SUCCESS);
}
258
259
260
261
262

#endif /* POSIX || RTEMS_POSIX */


#ifdef RTEMS_PURE
263
264
265
rtems_id __po_hi_rtems_create_thread (__po_hi_priority_t priority, 
                                      __po_hi_stack_t    stack_size,
                                      void*              (*start_routine)(void))
266
{
267
268
  rtems_id rid;
   if (rtems_task_create (rtems_build_name( 'T', 'A', nb_tasks, ' ' ), 1, RTEMS_MINIMUM_STACK_SIZE, RTEMS_DEFAULT_MODES, RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &rid) != RTEMS_SUCCESSFUL)
269
270
   {
      __DEBUGMSG ("ERROR when creating the task\n");
271
      return __PO_HI_ERROR_CREATE_TASK;
272
273
   }

274
  if (rtems_task_start (rid, (rtems_task_entry)start_routine, 0 ) != RTEMS_SUCCESSFUL)
275
276
  {
      __DEBUGMSG ("ERROR when starting the task\n");
277
      return __PO_HI_ERROR_CREATE_TASK;
278
279
  }

280
   return rid;
281
282
283
284
}
#endif


285
286
287
288
289
290
291
292
293
294

int __po_hi_create_generic_task (__po_hi_task_id    id, 
                                 __po_hi_time_t     period, 
                                 __po_hi_priority_t priority, 
                                 __po_hi_stack_t   stack_size,
                                 void*              (*start_routine)(void))
{
  __po_hi_task_t* my_task;
  if (id == -1) 
    {
295
#if defined (POSIX) || defined (RTEMS_POSIX)
296
      __po_hi_posix_create_thread (priority, stack_size, start_routine);
297
298
299
300
301
302
303
      return (__PO_HI_SUCCESS);
#elif defined (RTEMS_PURE)
      __po_hi_rtems_create_thread (priority, stack_size, start_routine);
      return (__PO_HI_SUCCESS);
#else
      return (__PO_HI_UNAVAILABLE);
#endif
304
305
306
307
308
309
    } 
  else
    {
      my_task         = &(tasks[id]);
      my_task->period = period;
      my_task->id     = id;
310
     
311
#if defined (POSIX) || defined (RTEMS_POSIX)
312
313
      my_task->tid    = __po_hi_posix_create_thread (priority, stack_size, start_routine);
      __po_hi_posix_initialize_task (my_task);
314
#elif defined (RTEMS_PURE)
315
      my_task->rtems_id = __po_hi_rtems_create_thread (priority, stack_size, start_routine);
316
317
318
#else
      return (__PO_HI_UNAVAILABLE);
#endif
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
      nb_tasks++;
    }

  return (__PO_HI_SUCCESS);
}

int __po_hi_create_periodic_task (__po_hi_task_id    id, 
				  __po_hi_time_t     period, 
				  __po_hi_priority_t priority, 
				  __po_hi_stack_t    stack_size,
				  void*              (*start_routine)(void))
{
  if (__po_hi_create_generic_task( id, period , priority , stack_size, start_routine ) != 1)
    {
      return (__PO_HI_ERROR_CREATE_TASK);
    }

  /*
   * Compute the next period of the task, using the 
   *__po_hi_time* functions.
   */
340
#if defined (RTEMS_POSIX) || defined (POSIX)
341
342
343
344
  if (__po_hi_compute_next_period (id) != __PO_HI_SUCCESS)
    {
      return (__PO_HI_ERROR_CLOCK);
    }
345
#endif
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
    
  return (__PO_HI_SUCCESS);
}

int __po_hi_create_sporadic_task (__po_hi_task_id    id,
				  __po_hi_time_t     period, 
				  __po_hi_priority_t priority, 
				  __po_hi_stack_t    stack_size,
				  void*              (*start_routine)(void) )
{
  /*
   * Create generic task which will execute the routine given in the
   * last parameter. Typically, a sporadic thread will wait on a
   * mutex.
   */
  if (__po_hi_create_generic_task( id, period , priority , stack_size, start_routine ) != 1)
    {
      return (__PO_HI_ERROR_CREATE_TASK);
    }
  
  return (__PO_HI_SUCCESS);
}

int __po_hi_task_delay_until (__po_hi_time_t time, __po_hi_task_id task)
{
371
#if defined (POSIX) || defined (RTEMS_POSIX)
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
  struct timespec timer;
  int ret;

  timer.tv_sec = time / 1000000;
  
  timer.tv_nsec = (time - (timer.tv_sec*1000000)) * 1000;

  pthread_mutex_lock (&tasks[task].mutex);
  
  ret = pthread_cond_timedwait (&tasks[task].cond, &tasks[task].mutex, &timer);

  if ( (ret != 0) && (ret != ETIMEDOUT))
    {
      ret = __PO_HI_ERROR_PTHREAD_COND;
    }
  else
    {
      ret = __PO_HI_SUCCESS;
    }

  pthread_mutex_unlock (&tasks[task].mutex);

  return (ret);
395
396
#endif
  return (__PO_HI_UNAVAILABLE);
397
}
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

void __po_hi_tasks_killall ()
{
   int i;
   for (i = 0; i < __PO_HI_NB_TASKS; i++)
    {
       __DEBUGMSG ("Kill task %d\n", i);
#ifdef RTEMS_PURE
      rtems_task_delete (tasks[i].rtems_id);
#endif
#if defined (POSIX) || defined (RTEMS_POSIX)
      pthread_cancel (tasks[i].tid);
      __DEBUGMSG ("[TASKS] Cancel thread %d\n", (int) tasks[i].tid);
#endif
    }
}