po_hi_task.c 9.84 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/*
 * This is a part of PolyORB-HI-C distribution, a minimal
 * middleware written for generated code from AADL models.
 * You should use it with the Ocarina toolsuite.
 *
 * For more informations, please visit http://ocarina.enst.fr
 *
 * Copyright (C) 2007-2009, GET-Telecom Paris.
 */

#include <pthread.h>
#include <sched.h>
#include <errno.h>
/* Headers from the executive */

#include <po_hi_config.h>
#include <po_hi_time.h>
#include <po_hi_task.h>
#include <po_hi_debug.h>
#include <po_hi_returns.h>
21
#include <po_hi_types.h>
22
23
24
/* Header files in PolyORB-HI */

#include <deployment.h>	
25

26
/* Header files from generated code */
27

28
29
30
31
32
33
34
35

int nb_tasks; /* number of created tasks */

typedef struct
{
  __po_hi_task_id     id;       /* Identifier of the task in the system */
  __po_hi_time_t      period;
#if defined(RTEMS_POSIX) || defined(POSIX)
36
  __po_hi_time_t      timer;
37
38
39
40
  pthread_t           tid;              /* The pthread_t type used by the
                                           POSIX library */
  pthread_mutex_t     mutex;
  pthread_cond_t      cond;
41
#elif defined(RTEMS_PURE)
42
  rtems_id            ratemon_period;
43
#endif
44
} __po_hi_task_t;
45
46
47
48
49
50
51
52
53
54
/*
 * Structure of a task, contains platform-dependent members
 */

__po_hi_task_t tasks[__PO_HI_NB_TASKS];
/* Array which contains all tasks informations */

void __po_hi_wait_for_tasks ()
{
#if defined(RTEMS_POSIX) || defined(POSIX)
55
56
  int i;

57
58
59
60
61
  for (i = 0; i < __PO_HI_NB_TASKS; i++)
    {
      pthread_join( tasks[i].tid , NULL );
    }
#endif
62
63
64
#ifdef RTEMS_PURE
  rtems_task_suspend(RTEMS_SELF);
#endif
65
66
67
68
69
70
71
72
73
}

/*
 * compute next period for a task
 * The argument is the task-id
 * The task must be a periodic task
 */
int __po_hi_compute_next_period (__po_hi_task_id task)
{
74

75
#if defined(RTEMS_POSIX) || defined(POSIX)
76
77
78
79
80
81
82
83
84
  __po_hi_time_t mytime;

  if (__po_hi_get_time (&mytime) != __PO_HI_SUCCESS)
    {
      return (__PO_HI_ERROR_CLOCK);
    }
  tasks[task].timer = __po_hi_add_times( mytime, tasks[task].period );
  
  return (__PO_HI_SUCCESS);
85
#elif defined (RTEMS_PURE)
86
87
   rtems_status_code ret;
   rtems_name name;
88

89
90
91
   if (tasks[task].ratemon_period == RTEMS_INVALID_ID)
   {
   name = rtems_build_name ('P', 'R', 'D' + (char)task, ' ');
92

93
94
95
96
97
98
99
100
   __DEBUGMSG ("Create monotonic server for task %d\n", task);
   ret = rtems_rate_monotonic_create (name, &(tasks[task].ratemon_period));
   if (ret != RTEMS_SUCCESSFUL)
   {
      __DEBUGMSG ("Error while creating the monotonic server, task=%d, status=%d\n", task, ret);
   }
   }
  return (__PO_HI_SUCCESS);
101
102
103
#else
   return (__PO_HI_UNAVAILABLE);
#endif
104
105
106
107
}

int __po_hi_wait_for_next_period (__po_hi_task_id task)
{
108
#if defined (POSIX) || defined (RTEMS_POSIX)
109
110
111
112
113
114
115
116
  int ret;
  __po_hi_task_delay_until (tasks[task].timer, task);
  if ( (ret = __po_hi_compute_next_period (task)) != 1)
    {
      return (__PO_HI_ERROR_CLOCK);
    }

  return (__PO_HI_SUCCESS);
117
#elif defined (RTEMS_PURE)
118
119
120
   rtems_status_code ret;
/*   ret = rtems_rate_monotonic_period (&tasks[task].ratemon_period, (rtems_interval)tasks[task].period * ); */
   ret = rtems_rate_monotonic_period (tasks[task].ratemon_period, tasks[task].period / _TOD_Microseconds_per_tick); 
121

122
123
124
125
126
127
128
129
130
131
132
133
134
   switch (ret)
   {
      case RTEMS_SUCCESSFUL:
         return (__PO_HI_SUCCESS);
         break;
      case RTEMS_TIMEOUT:
         __DEBUGMSG ("Error in rtems_rate_monotonic_period (TIMEOUT)\n");
         return (__PO_HI_ERROR_TASK_PERIOD);
         break;
      default:
         return (__PO_HI_UNAVAILABLE);
         break;
   }
135

136
   return (__PO_HI_UNAVAILABLE);
137
138
139
#else
  return (__PO_HI_UNAVAILABLE);
#endif
140
141
142
143
144
145
146
147
148
149
}

int __po_hi_initialize_tasking( )
{
  int i;

  for (i = 0; i < __PO_HI_NB_TASKS; i++)
  {
     tasks[i].period = 0;
     tasks[i].id     = invalid_task_id; 
150
151
152
#ifdef RTEMS_PURE
      tasks[i].ratemon_period = RTEMS_INVALID_ID;
#endif
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
  }

  nb_tasks = 0;

  return (__PO_HI_SUCCESS);
}

/*
 * For each kind of system, we declare a generic function that
 * create a thread. For POSIX-compliant systems, the function
 * is called __po_hi_posix_create_thread
 */

#if defined (POSIX) || defined (RTEMS_POSIX)
pthread_t __po_hi_posix_create_thread (__po_hi_priority_t priority, 
                                       __po_hi_stack_t    stack_size,
				       void*              (*start_routine)(void))
{
  int                policy;
  pthread_t          tid;
  pthread_attr_t     attr;
  struct sched_param param;  

  if (pthread_attr_init (&attr) != 0)
    {
      return ((pthread_t)__PO_HI_ERROR_PTHREAD_ATTR);
    }

#if defined (POSIX)
  if (pthread_attr_setscope (&attr, PTHREAD_SCOPE_SYSTEM) != 0)
    {
      return ((pthread_t)__PO_HI_ERROR_PTHREAD_ATTR);
    }
  if (stack_size != 0)
    {
      if (pthread_attr_setstacksize (&attr, stack_size) != 0)
	{
	  return ((pthread_t)__PO_HI_ERROR_PTHREAD_ATTR);
      }
    }
#elif defined (RTEMS_POSIX)
  if (pthread_attr_setscope (&attr, PTHREAD_SCOPE_PROCESS) != 0)
  {
    return ((pthread_t)__PO_HI_ERROR_PTHREAD_ATTR);
  }
#endif

  if (pthread_create (&tid, &attr, (void* (*)(void*))start_routine, NULL) != 0)
    {
      return ((pthread_t)__PO_HI_ERROR_PTHREAD_CREATE);
    }

julien.delange's avatar
julien.delange committed
205
  policy = SCHED_RR;
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
  param.sched_priority = priority;

#ifdef __PO_HI_DEBUG
  if (priority < sched_get_priority_min (policy))
  {
      __DEBUGMSG("PRIORITY IS TOO LOW\n");
  }

  if (priority > sched_get_priority_max (policy))
  {
      __DEBUGMSG("PRIORITY IS TOO HIGH\n");
  }
#endif

  /*
   * We print a message that the user has to be root on
   * its computer. In fact, most of the time, the
   * function pthread_setschedparam fails because
   * the user is not root. On many systems, only root
   * can change the priority of the threads.
   */

  if (pthread_setschedparam (tid, policy, &param)!=0)
    {
#ifdef __PO_HI_DEBUG
      __DEBUGMSG("CANNOT SET PRIORITY FOR TASK %d\n" , nb_tasks );
      __DEBUGMSG("IF YOU ARE USING POSIX IMPLEMENTATION\n");
      __DEBUGMSG("BE SURE TO BE LOGGED AS ROOT\n");
#endif
    }

  return tid;
}

int __po_hi_posix_initialize_task (__po_hi_task_t* task)
{
        if (pthread_mutex_init (&(task->mutex), NULL) != 0)
        {
                return (__PO_HI_ERROR_PTHREAD_MUTEX);
        }

        if (pthread_cond_init (&(task->cond), NULL) != 0)
        {
                return (__PO_HI_ERROR_PTHREAD_COND);
        }
        return (__PO_HI_SUCCESS);
}
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

#endif /* POSIX || RTEMS_POSIX */


#ifdef RTEMS_PURE
int __po_hi_rtems_create_thread (__po_hi_priority_t priority, 
                                 __po_hi_stack_t    stack_size,
                                void*              (*start_routine)(void))
{
  rtems_id id;
   if (rtems_task_create (rtems_build_name( 'T', 'A', nb_tasks, ' ' ), 1, RTEMS_MINIMUM_STACK_SIZE, RTEMS_DEFAULT_MODES, RTEMS_DEFAULT_ATTRIBUTES | RTEMS_FLOATING_POINT, &id) != RTEMS_SUCCESSFUL)
   {
      __DEBUGMSG ("ERROR when creating the task\n");
   }

268
  if (rtems_task_start( id, (rtems_task_entry)start_routine, 0 ) != RTEMS_SUCCESSFUL)
269
270
271
272
273
274
275
276
277
  {
      __DEBUGMSG ("ERROR when starting the task\n");
  }

   return __PO_HI_SUCCESS;
}
#endif


278
279
280
281
282
283
284
285
286
287

int __po_hi_create_generic_task (__po_hi_task_id    id, 
                                 __po_hi_time_t     period, 
                                 __po_hi_priority_t priority, 
                                 __po_hi_stack_t   stack_size,
                                 void*              (*start_routine)(void))
{
  __po_hi_task_t* my_task;
  if (id == -1) 
    {
288
#if defined (POSIX) || defined (RTEMS_POSIX)
289
      __po_hi_posix_create_thread (priority, stack_size, start_routine);
290
291
292
293
294
295
296
      return (__PO_HI_SUCCESS);
#elif defined (RTEMS_PURE)
      __po_hi_rtems_create_thread (priority, stack_size, start_routine);
      return (__PO_HI_SUCCESS);
#else
      return (__PO_HI_UNAVAILABLE);
#endif
297
298
299
300
301
302
    } 
  else
    {
      my_task         = &(tasks[id]);
      my_task->period = period;
      my_task->id     = id;
303
     
304
#if defined (POSIX) || defined (RTEMS_POSIX)
305
306
      my_task->tid    = __po_hi_posix_create_thread (priority, stack_size, start_routine);
      __po_hi_posix_initialize_task (my_task);
307
308
309
310
311
#elif defined (RTEMS_PURE)
      __po_hi_rtems_create_thread (priority, stack_size, start_routine);
#else
      return (__PO_HI_UNAVAILABLE);
#endif
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
      nb_tasks++;
    }

  return (__PO_HI_SUCCESS);
}

int __po_hi_create_periodic_task (__po_hi_task_id    id, 
				  __po_hi_time_t     period, 
				  __po_hi_priority_t priority, 
				  __po_hi_stack_t    stack_size,
				  void*              (*start_routine)(void))
{
  if (__po_hi_create_generic_task( id, period , priority , stack_size, start_routine ) != 1)
    {
      return (__PO_HI_ERROR_CREATE_TASK);
    }

  /*
   * Compute the next period of the task, using the 
   *__po_hi_time* functions.
   */
333
#if defined (RTEMS_POSIX) || defined (POSIX)
334
335
336
337
  if (__po_hi_compute_next_period (id) != __PO_HI_SUCCESS)
    {
      return (__PO_HI_ERROR_CLOCK);
    }
338
#endif
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
    
  return (__PO_HI_SUCCESS);
}

int __po_hi_create_sporadic_task (__po_hi_task_id    id,
				  __po_hi_time_t     period, 
				  __po_hi_priority_t priority, 
				  __po_hi_stack_t    stack_size,
				  void*              (*start_routine)(void) )
{
  /*
   * Create generic task which will execute the routine given in the
   * last parameter. Typically, a sporadic thread will wait on a
   * mutex.
   */
  if (__po_hi_create_generic_task( id, period , priority , stack_size, start_routine ) != 1)
    {
      return (__PO_HI_ERROR_CREATE_TASK);
    }
  
  return (__PO_HI_SUCCESS);
}

int __po_hi_task_delay_until (__po_hi_time_t time, __po_hi_task_id task)
{
364
#if defined (POSIX) || defined (RTEMS_POSIX)
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
  struct timespec timer;
  int ret;

  timer.tv_sec = time / 1000000;
  
  timer.tv_nsec = (time - (timer.tv_sec*1000000)) * 1000;

  pthread_mutex_lock (&tasks[task].mutex);
  
  ret = pthread_cond_timedwait (&tasks[task].cond, &tasks[task].mutex, &timer);

  if ( (ret != 0) && (ret != ETIMEDOUT))
    {
      ret = __PO_HI_ERROR_PTHREAD_COND;
    }
  else
    {
      ret = __PO_HI_SUCCESS;
    }

  pthread_mutex_unlock (&tasks[task].mutex);

  return (ret);
388
389
#endif
  return (__PO_HI_UNAVAILABLE);
390
}