po_hi_task.c 7.06 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
/*
 * This is a part of PolyORB-HI-C distribution, a minimal
 * middleware written for generated code from AADL models.
 * You should use it with the Ocarina toolsuite.
 *
 * For more informations, please visit http://ocarina.enst.fr
 *
 * Copyright (C) 2007-2009, GET-Telecom Paris.
 */

#include <pthread.h>
#include <sched.h>
#include <errno.h>
/* Headers from the executive */

#include <po_hi_config.h>
#include <po_hi_time.h>
#include <po_hi_task.h>
#include <po_hi_debug.h>
#include <po_hi_returns.h>
/* Header files in PolyORB-HI */

#include <deployment.h>	
/* Header files from generated code */

int nb_tasks; /* number of created tasks */

typedef struct
{
  __po_hi_task_id     id;       /* Identifier of the task in the system */
  __po_hi_time_t      period;
  __po_hi_time_t      timer;
#if defined(RTEMS_POSIX) || defined(POSIX)
  pthread_t           tid;              /* The pthread_t type used by the
                                           POSIX library */
  pthread_mutex_t     mutex;
  pthread_cond_t      cond;
#endif
}
__po_hi_task_t;
/*
 * Structure of a task, contains platform-dependent members
 */

__po_hi_task_t tasks[__PO_HI_NB_TASKS];
/* Array which contains all tasks informations */

void __po_hi_wait_for_tasks ()
{
  int i;
#if defined(RTEMS_POSIX) || defined(POSIX)
  for (i = 0; i < __PO_HI_NB_TASKS; i++)
    {
      pthread_join( tasks[i].tid , NULL );
    }
#endif
}

/*
 * compute next period for a task
 * The argument is the task-id
 * The task must be a periodic task
 */
int __po_hi_compute_next_period (__po_hi_task_id task)
{
  __po_hi_time_t mytime;

  if (__po_hi_get_time (&mytime) != __PO_HI_SUCCESS)
    {
      return (__PO_HI_ERROR_CLOCK);
    }
  tasks[task].timer = __po_hi_add_times( mytime, tasks[task].period );
  
  return (__PO_HI_SUCCESS);
}

int __po_hi_wait_for_next_period (__po_hi_task_id task)
{
  int ret;
  __po_hi_task_delay_until (tasks[task].timer, task);
  if ( (ret = __po_hi_compute_next_period (task)) != 1)
    {
      return (__PO_HI_ERROR_CLOCK);
    }

  return (__PO_HI_SUCCESS);
}

int __po_hi_initialize_tasking( )
{
  int i;

  for (i = 0; i < __PO_HI_NB_TASKS; i++)
  {
     tasks[i].period = 0;
     tasks[i].id     = invalid_task_id; 
  }

  nb_tasks = 0;

  return (__PO_HI_SUCCESS);
}

/*
 * For each kind of system, we declare a generic function that
 * create a thread. For POSIX-compliant systems, the function
 * is called __po_hi_posix_create_thread
 */

#if defined (POSIX) || defined (RTEMS_POSIX)
pthread_t __po_hi_posix_create_thread (__po_hi_priority_t priority, 
                                       __po_hi_stack_t    stack_size,
				       void*              (*start_routine)(void))
{
  int                policy;
  pthread_t          tid;
  pthread_attr_t     attr;
  struct sched_param param;  

  if (pthread_attr_init (&attr) != 0)
    {
      return ((pthread_t)__PO_HI_ERROR_PTHREAD_ATTR);
    }

#if defined (POSIX)
  if (pthread_attr_setscope (&attr, PTHREAD_SCOPE_SYSTEM) != 0)
    {
      return ((pthread_t)__PO_HI_ERROR_PTHREAD_ATTR);
    }
  if (stack_size != 0)
    {
      if (pthread_attr_setstacksize (&attr, stack_size) != 0)
	{
	  return ((pthread_t)__PO_HI_ERROR_PTHREAD_ATTR);
      }
    }
#elif defined (RTEMS_POSIX)
  if (pthread_attr_setscope (&attr, PTHREAD_SCOPE_PROCESS) != 0)
  {
    return ((pthread_t)__PO_HI_ERROR_PTHREAD_ATTR);
  }
#endif

  if (pthread_create (&tid, &attr, (void* (*)(void*))start_routine, NULL) != 0)
    {
      return ((pthread_t)__PO_HI_ERROR_PTHREAD_CREATE);
    }

  policy = SCHED_FIFO;
  param.sched_priority = priority;

#ifdef __PO_HI_DEBUG
  if (priority < sched_get_priority_min (policy))
  {
      __DEBUGMSG("PRIORITY IS TOO LOW\n");
  }

  if (priority > sched_get_priority_max (policy))
  {
      __DEBUGMSG("PRIORITY IS TOO HIGH\n");
  }
#endif

  /*
   * We print a message that the user has to be root on
   * its computer. In fact, most of the time, the
   * function pthread_setschedparam fails because
   * the user is not root. On many systems, only root
   * can change the priority of the threads.
   */

  if (pthread_setschedparam (tid, policy, &param)!=0)
    {
#ifdef __PO_HI_DEBUG
      __DEBUGMSG("CANNOT SET PRIORITY FOR TASK %d\n" , nb_tasks );
      __DEBUGMSG("IF YOU ARE USING POSIX IMPLEMENTATION\n");
      __DEBUGMSG("BE SURE TO BE LOGGED AS ROOT\n");
#endif
    }

  return tid;
}

int __po_hi_posix_initialize_task (__po_hi_task_t* task)
{
        if (pthread_mutex_init (&(task->mutex), NULL) != 0)
        {
                return (__PO_HI_ERROR_PTHREAD_MUTEX);
        }

        if (pthread_cond_init (&(task->cond), NULL) != 0)
        {
                return (__PO_HI_ERROR_PTHREAD_COND);
        }
        return (__PO_HI_SUCCESS);
}
#endif /* POSIX */

int __po_hi_create_generic_task (__po_hi_task_id    id, 
                                 __po_hi_time_t     period, 
                                 __po_hi_priority_t priority, 
                                 __po_hi_stack_t   stack_size,
                                 void*              (*start_routine)(void))
{
  __po_hi_task_t* my_task;
  if (id == -1) 
    {
      __po_hi_posix_create_thread (priority, stack_size, start_routine);
    } 
  else
    {
      my_task         = &(tasks[id]);
      my_task->period = period;
      my_task->id     = id;
      
      my_task->tid    = __po_hi_posix_create_thread (priority, stack_size, start_routine);
      __po_hi_posix_initialize_task (my_task);
      
      nb_tasks++;
    }

  return (__PO_HI_SUCCESS);
}

int __po_hi_create_periodic_task (__po_hi_task_id    id, 
				  __po_hi_time_t     period, 
				  __po_hi_priority_t priority, 
				  __po_hi_stack_t    stack_size,
				  void*              (*start_routine)(void))
{
  if (__po_hi_create_generic_task( id, period , priority , stack_size, start_routine ) != 1)
    {
      return (__PO_HI_ERROR_CREATE_TASK);
    }

  /*
   * Compute the next period of the task, using the 
   *__po_hi_time* functions.
   */

  if (__po_hi_compute_next_period (id) != __PO_HI_SUCCESS)
    {
      return (__PO_HI_ERROR_CLOCK);
    }
    
  return (__PO_HI_SUCCESS);
}

int __po_hi_create_sporadic_task (__po_hi_task_id    id,
				  __po_hi_time_t     period, 
				  __po_hi_priority_t priority, 
				  __po_hi_stack_t    stack_size,
				  void*              (*start_routine)(void) )
{
  /*
   * Create generic task which will execute the routine given in the
   * last parameter. Typically, a sporadic thread will wait on a
   * mutex.
   */
  if (__po_hi_create_generic_task( id, period , priority , stack_size, start_routine ) != 1)
    {
      return (__PO_HI_ERROR_CREATE_TASK);
    }
  
  return (__PO_HI_SUCCESS);
}

int __po_hi_task_delay_until (__po_hi_time_t time, __po_hi_task_id task)
{
  struct timespec timer;
  int ret;

  timer.tv_sec = time / 1000000;
  
  timer.tv_nsec = (time - (timer.tv_sec*1000000)) * 1000;

  pthread_mutex_lock (&tasks[task].mutex);
  
  ret = pthread_cond_timedwait (&tasks[task].cond, &tasks[task].mutex, &timer);

  if ( (ret != 0) && (ret != ETIMEDOUT))
    {
      ret = __PO_HI_ERROR_PTHREAD_COND;
    }
  else
    {
      ret = __PO_HI_SUCCESS;
    }

  pthread_mutex_unlock (&tasks[task].mutex);

  return (ret);
}