ocarina-analyzer-aadl-semantics.adb 92.6 KB
Newer Older
1 2 3 4 5 6 7 8
------------------------------------------------------------------------------
--                                                                          --
--                           OCARINA COMPONENTS                             --
--                                                                          --
--      O C A R I N A . A N A L Y Z E R . A A D L . S E M A N T I C S       --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
9
--          Copyright (C) 2009-2011, European Space Agency (ESA).           --
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
--                                                                          --
-- Ocarina  is free software;  you  can  redistribute  it and/or  modify    --
-- it under terms of the GNU General Public License as published by the     --
-- Free Software Foundation; either version 2, or (at your option) any      --
-- later version. Ocarina is distributed  in  the  hope  that it will be    --
-- useful, but WITHOUT ANY WARRANTY;  without even the implied warranty of  --
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General --
-- Public License for more details. You should have received  a copy of the --
-- GNU General Public License distributed with Ocarina; see file COPYING.   --
-- If not, write to the Free Software Foundation, 51 Franklin Street, Fifth --
-- Floor, Boston, MA 02111-1301, USA.                                       --
--                                                                          --
-- As a special exception,  if other files  instantiate  generics from this --
-- unit, or you link  this unit with other files  to produce an executable, --
-- this  unit  does not  by itself cause  the resulting  executable to be   --
-- covered  by the  GNU  General  Public  License. This exception does not  --
-- however invalidate  any other reasons why the executable file might be   --
-- covered by the GNU Public License.                                       --
--                                                                          --
--                 Ocarina is maintained by the Ocarina team                --
--                       (ocarina-users@listes.enst.fr)                     --
--                                                                          --
------------------------------------------------------------------------------

with Errors;
with Namet;
with Utils;

with Ocarina.AADL_Values;

with Ocarina.Analyzer.Messages;
with Ocarina.Analyzer.AADL.Finder;
with Ocarina.Analyzer.AADL.Queries;

with Ocarina.ME_AADL;
with Ocarina.ME_AADL.AADL_Tree.Nodes;
with Ocarina.ME_AADL.AADL_Tree.Nutils;
with Ocarina.ME_AADL.AADL_Tree.Entities;
with Ocarina.ME_AADL.AADL_Tree.Entities.Properties;

with Ocarina.Processor.Properties;

package body Ocarina.Analyzer.AADL.Semantics is

   use Errors;
   use Namet;
   use Utils;
   use Ocarina.AADL_Values;
   use Ocarina.Analyzer.Messages;
   use Ocarina.Analyzer.AADL.Queries;
   use Ocarina.ME_AADL;
   use Ocarina.ME_AADL.AADL_Tree.Nodes;
   use Ocarina.ME_AADL.AADL_Tree.Nutils;
   use Ocarina.ME_AADL.AADL_Tree.Entities;
   use Ocarina.ME_AADL.AADL_Tree.Entities.Properties;
   use Ocarina.Processor.Properties;

   function Check_Cycles_In_Component_Implementation
     (Node         : Node_Id;
      Initial_Node : Node_Id := No_Node)
     return Boolean;

   function Check_Cycles_In_Port_Group_Or_Component_Type
     (Node         : Node_Id;
      Initial_Node : Node_Id := No_Node)
     return Boolean;

   function Check_Cycles_In_Inversions_Of_Port_Groups
     (Node         : Node_Id;
      Initial_Node : Node_Id := No_Node)
     return Boolean;

   function Check_For_A_Unique_Initial_Mode (Node : Node_Id) return Boolean;

   function Check_Cycles_In_Subcomponents
     (Node         : Node_Id;
      Initial_Node : Node_Id := No_Node)
     return Boolean;

   function Check_Connections (Node : Node_Id) return Boolean;

   procedure Reset_Connections (Node : Node_Id);

   function Connection_End_Is_Local (Node : Node_Id) return Boolean;

   function Check_End_Types_Consistency (Node : Node_Id) return Boolean;
   --  Check that the end of the connection have compatible types

   function Check_Connection_Ends_Consistency (Node : Node_Id) return Boolean;
   --  Check if that the source is an in port, the destination is an
   --  out port, etc.

   function Check_Connection_End_Consistency
     (Connection_End      : Node_Id;
      Connection_Category : Connection_Type)
     return Boolean;
   --  Check if the connection end (source or destination) is of a
   --  consistent type regarding the connection type.

   function Check_End_Directions_Consistency (Node : Node_Id) return Boolean;
   --  Check that the connected entities are consistent with the
   --  direction of the connection.

   function Check_Property_Associations
     (Properties : List_Id;
      Container  : Node_Id)
     return Boolean;
   --  Return True if the value type of the property association
   --  Property is consistent with the one specified in the property
   --  name declaration. Container is the entity declaration in which
   --  the property association is declared

   function Check_Applies_To
     (Property  : Node_Id;
      Container : Node_Id)
     return Boolean;
   --  Return True if the property association can be applied to the
   --  container or to the entity designated by the 'applies to'
   --  statement, if any.

   function Check_Values_Of_Property_Association
     (Property_Association : Node_Id)
     return Boolean;
   --  Check wether the values of the property association are
   --  conformant with the type associated with the corresponding
   --  property name.

   function Check_Properties_Of_Component_Type
     (Component : Node_Id)
     return Boolean;

   function Check_Properties_Of_Component_Implementation
     (Component : Node_Id)
     return Boolean;

   function Check_Properties_Of_Port_Group_Type
     (Port_Group : Node_Id)
     return Boolean;

   function Check_Property_Type
     (Property_Type         : Node_Id;
      Display_Error_Message : Boolean := True)
     return Boolean;
   --  Return True if the property type is consistent, else False

   function Compare_Numbers
     (Number_1 : Node_Id;
      Number_2 : Node_Id)
     return Integer;
   --  Return -1 if Number_1 > Number_2, 1 if Number_2 > Number_1, or
   --  0 if Number_1 and Number_2 are equal. Return -2 if there is an
   --  error. If Number_1 and Number_2 are two unit number, the
   --  comparision is done with respect to the units (1sec is greater
   --  that 500ms).

   procedure Homogenize_Unit_Numbers
     (Number_1  :     Node_Id;
      Number_2  :     Node_Id;
      Literal_1 : out Node_Id;
      Literal_2 : out Node_Id);
   --  If Number_1 and Number_2 are to unit literals, convert them to
   --  the first common unit to be able to compare them. For example
   --  if Number_1 is 1sec and Number_2 is 500ms then Literal_1 is set
   --  to 1000 and Literal_2 is set to 500.

   function Convert_Single_Value_To_List
     (Property_Association : Node_Id)
     return Boolean;
   --  Edit the value of the property association in order to create a
   --  list with its single value

   function Test_Property_Type_Equivalence
     (Type_Of_Property_Name :
      Ocarina.Me_AADL.AADL_Tree.Entities.Properties.Property_Type;
      Type_Of_Property_Association :
      Ocarina.Me_AADL.AADL_Tree.Entities.Properties.Property_Type)
     return Boolean;

   function Test_Property_Value_Validity
     (Property_Type  : Node_Id;
      Property_Value : Node_Id)
     return Boolean;

   --------------------------------
   -- Check_Qualified_References --
   --------------------------------

   function Check_Qualified_References
     (Container           : Node_Id;
      Qualified_Reference : Node_Id)
     return Boolean
   is
      use Ocarina.Analyzer.AADL.Finder;

      pragma Assert (Kind (Container) = K_Package_Specification
                       or else Kind (Container) = K_Component_Type
                       or else Kind (Container) = K_Component_Implementation
                       or else Kind (Container) = K_Feature_Group_Type
                       or else Kind (Container) = K_Subcomponent
209
                       or else Kind (Container) = K_Subcomponent_Access
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
                       or else Kind (Container) = K_Port_Spec
                       or else Kind (Container) = K_Parameter
                       or else Kind (Container) = K_Connection);

      pragma Assert (Kind (Qualified_Reference) = K_Entity_Reference
             or else Kind (Qualified_Reference) = K_Identifier);

      Pack_Container : Node_Id  := No_Node;
      Success        : Boolean  := False;
   begin
      if Kind (Container) = K_Component_Type
        or else Kind (Container) = K_Component_Implementation
        or else Kind (Container) = K_Feature_Group_Type
      then
         Pack_Container := Namespace (Container);
      elsif Kind (Container) = K_Subcomponent
        or else Kind (Container) = K_Port_Spec
        or else Kind (Container) = K_Parameter
        or else Kind (Container) = K_Feature_Group_Spec
        or else Kind (Container) = K_Subcomponent_Access
        or else Kind (Container) = K_Connection
      then
         Pack_Container := Namespace (Container_Component (Container));
      elsif Kind (Container) = K_Package_Specification then
         Pack_Container := Container;
      end if;

      if Kind (Qualified_Reference) = K_Entity_Reference
        and then Name (Identifier (Pack_Container)) =
                    Name (Namespace_Identifier (Qualified_Reference))
      then
         Success := True;
242

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
      elsif Kind (Qualified_Reference) = K_Identifier
        and then Name (Identifier (Pack_Container)) =
                    Name (Qualified_Reference)
      then
         Success := True;
      else
         Success := Find_In_Import_Declaration (Pack_Container,
                                                Qualified_Reference);
      end if;

      if Success = False then
         Display_Analyzer_Error
           (Qualified_Reference,
            "qualified reference name not found in 'with' statements of ",
            Pack_Container);
      end if;

      return Success;
   end Check_Qualified_References;

   ----------------------
   -- Check_Applies_To --
   ----------------------

   function Check_Applies_To
     (Property  : Node_Id;
      Container : Node_Id)
     return Boolean
   is
      pragma Assert (Kind (Property) = K_Property_Association);
      pragma Assert (Present (Container));

      Pointed_Node       : Node_Id;
      Entity_Of_Property : Node_Id;
      Success            : Boolean;
   begin
      if Applies_To_Prop (Property) = No_List then
         Entity_Of_Property := Container;
      else
         Pointed_Node := First_Node (List_Items
                                       (First_Node
                                          (Applies_To_Prop (Property))));
         if Kind (Pointed_Node) = K_Array_Selection then
            Entity_Of_Property := Corresponding_Entity
              (Identifier (Pointed_Node));
         else
            Entity_Of_Property := Corresponding_Entity (Pointed_Node);
            --  XXX Here we must make this verification OK for all contained
            --  element path in 'applies' to list
         end if;
      end if;

      if Kind (Entity_Of_Property) = K_Package_Specification then
         Success := True;
      else
         Success := Property_Can_Apply_To_Entity
           (Property, Entity_Of_Property);
      end if;

      if Success then
         return True;
      else
         Display_Property_Not_Applicable (Property, Entity_Of_Property);
         return False;
      end if;
   end Check_Applies_To;

   ----------------------------------------------
   -- Check_Cycles_In_Component_Implementation --
   ----------------------------------------------

   function Check_Cycles_In_Component_Implementation
     (Node         : Node_Id;
      Initial_Node : Node_Id := No_Node)
     return Boolean
   is
      pragma Assert (Kind (Node) = K_Component_Implementation);
      pragma Assert (No (Initial_Node)
                     or else Kind (Initial_Node) = K_Component_Implementation);

      First_Extension_Node : Node_Id;
      Success              : Boolean := True;
   begin
      --  We note the first visited node in each component we
      --  scan. Thus, if we scan a component in which we find the same
      --  node_id, it means there is a cycle.

      if No (Initial_Node) then
         First_Extension_Node := Node;
      else
         First_Extension_Node := Initial_Node;
      end if;

      if First_Visited_Node (Node) = First_Extension_Node then
         Display_Cyclic_Extension (Node);
         Set_First_Visited_Node (Node, No_Node);
         return False;
      else
         Set_First_Visited_Node (Node, First_Extension_Node);
      end if;

      if Parent (Node) /= No_Node
        and then Get_Referenced_Entity (Parent (Node)) /= No_Node
      then
         Success := Check_Cycles_In_Component_Implementation
           (Get_Referenced_Entity (Parent (Node)),
            First_Extension_Node);
      else
         Success := Check_Cycles_In_Port_Group_Or_Component_Type
           (Corresponding_Entity (Component_Type_Identifier (Node)));
      end if;

      Set_First_Visited_Node (Node, No_Node);
      return Success;
   end Check_Cycles_In_Component_Implementation;

   -----------------------------------------------
   -- Check_Cycles_In_Inversions_Of_Port_Groups --
   -----------------------------------------------

   function Check_Cycles_In_Inversions_Of_Port_Groups
     (Node         : Node_Id;
      Initial_Node : Node_Id := No_Node)
     return Boolean
   is
      pragma Assert (Kind (Node) = K_Feature_Group_Type);
      pragma Assert (No (Initial_Node)
                     or else Kind (Initial_Node) = K_Feature_Group_Type);

      First_Inversion_Node : Node_Id;
      Success              : Boolean := True;
   begin
      --  We note the first visited node in each component we
      --  scan. Thus, if we scan a component in which we find the same
      --  node id, it means there is a cycle.

      if No (Initial_Node) then
         First_Inversion_Node := Node;
      else
         First_Inversion_Node := Initial_Node;
      end if;

      if First_Visited_Node (Node) = First_Inversion_Node then
         Display_Cyclic_Inversion (Node);
         Set_First_Visited_Node (Node, No_Node);
         return False;
      else
         Set_First_Visited_Node (Node, First_Inversion_Node);
      end if;

      if Inverse_Of (Node) /= No_Node
        and then Get_Referenced_Entity (Inverse_Of (Node)) /= No_Node
      then
         Success := Check_Cycles_In_Inversions_Of_Port_Groups
           (Get_Referenced_Entity (Inverse_Of (Node)),
            First_Inversion_Node);
      end if;

      Set_First_Visited_Node (Node, No_Node);
      return Success;
   end Check_Cycles_In_Inversions_Of_Port_Groups;

   --------------------------------------------------
   -- Check_Cycles_In_Port_Group_Or_Component_Type --
   --------------------------------------------------

   function Check_Cycles_In_Port_Group_Or_Component_Type
     (Node         : Node_Id;
      Initial_Node : Node_Id := No_Node)
     return Boolean
   is
      pragma Assert (Kind (Node) = K_Component_Type
                     or else Kind (Node) = K_Feature_Group_Type);
      pragma Assert (No (Initial_Node)
                     or else Kind (Initial_Node) = K_Component_Type
                     or else Kind (Initial_Node) = K_Feature_Group_Type);

      First_Extension_Node : Node_Id;
      Success              : Boolean := True;
   begin
      --  We note the first visited node in each component we
      --  scan. Thus, if we scan a component in which we find the same
      --  node id, it means there is a cycle.

      if No (Initial_Node) then
         First_Extension_Node := Node;
      else
         First_Extension_Node := Initial_Node;
      end if;

      if First_Visited_Node (Node) = First_Extension_Node then
         Display_Cyclic_Extension (Node);
         Set_First_Visited_Node (Node, No_Node);
         return False;
      else
         Set_First_Visited_Node (Node, First_Extension_Node);
      end if;

      if Parent (Node) /= No_Node
        and then Get_Referenced_Entity (Parent (Node)) /= No_Node
      then
         Success := Check_Cycles_In_Port_Group_Or_Component_Type
           (Get_Referenced_Entity (Parent (Node)),
            First_Extension_Node);
      end if;

      Set_First_Visited_Node (Node, No_Node);
      return Success;
   end Check_Cycles_In_Port_Group_Or_Component_Type;

   -----------------------------------
   -- Check_Cycles_In_Subcomponents --
   -----------------------------------

   function Check_Cycles_In_Subcomponents
     (Node         : Node_Id;
      Initial_Node : Node_Id := No_Node)
     return Boolean
   is
      pragma Assert (Kind (Node) = K_Component_Implementation
                     or else Kind (Node) = K_Component_Type);

      List_Node           : Node_Id;
      First_Instance_Node : Node_Id;
      Success             : Boolean := True;
   begin
      if Kind (Node) = K_Component_Implementation then
         if No (Initial_Node) then
            First_Instance_Node := Node;
         else
            First_Instance_Node := Initial_Node;
         end if;

         if First_Visited_Node (Node) = First_Instance_Node then
            Display_Cyclic_Subcomponents (Node);
            Set_First_Visited_Node (Node, No_Node);
            return False;
         else
            Set_First_Visited_Node (Node, First_Instance_Node);
         end if;

         if not Is_Empty (Subcomponents (Node)) then
            List_Node := First_Node (Subcomponents (Node));

            while Present (List_Node) loop
               if Entity_Ref (List_Node) /= No_Node
                 and then Get_Referenced_Entity
                 (Entity_Ref (List_Node)) /= No_Node
               then
                  Success := Success
                    and then Check_Cycles_In_Subcomponents
                    (Get_Referenced_Entity (Entity_Ref (List_Node)),
                     First_Instance_Node);
               end if;

               List_Node := Next_Node (List_Node);
            end loop;
         end if;

         Set_First_Visited_Node (Node, No_Node);
      end if;

      return Success;
   end Check_Cycles_In_Subcomponents;

   ----------------------
   -- Check_Connection --
   ----------------------

   function Check_Connection (Node : Node_Id) return Boolean is
      pragma Assert (Kind (Node) = K_Connection);

      Success : Boolean := True;
   begin
      if Is_Refinement (Node) then
         return True;
      end if;

      if not Check_Connection_End_Consistency
        (Connection_End      => Get_Referenced_Entity (Destination (Node)),
         Connection_Category => Connection_Type'Val (Category (Node)))
      then
         DAE (Node1    => Destination (Node),
              Message1 => " points to ",
              Node2    => Get_Referenced_Entity (Destination (Node)),
              Message2 => ", which is not of a proper type");
         Success := False;
      end if;

      if not Check_Connection_End_Consistency
        (Connection_End => Get_Referenced_Entity (Source (Node)),
         Connection_Category => Connection_Type'Val (Category (Node)))
      then
         DAE (Node1 => Source (Node),
              Message1 => " points to ",
              Node2 => Get_Referenced_Entity (Source (Node)),
              Message2 => ", which is not of a proper type");
         Success := False;
      end if;

      if Success then
         Success := Check_End_Types_Consistency (Node)
           and then Check_Connection_Ends_Consistency (Node)
           and then Check_End_Directions_Consistency (Node);
      end if;

      return Success;
   end Check_Connection;

   ---------------------------------------
   -- Check_Connection_Ends_Consistency --
   ---------------------------------------

   function Check_Connection_Ends_Consistency
     (Node : Node_Id)
     return Boolean
   is
      pragma Assert (Kind (Node) = K_Connection);

      Connection_Source      : constant Node_Id := Get_Referenced_Entity
        (Source (Node));
      Connection_Destination : constant Node_Id := Get_Referenced_Entity
        (Destination (Node));

      Same_Kind                                : Boolean := False;
      Data_Port_And_Parameter                  : Boolean := False;
      Data_And_Require_Data_Access             : Boolean := False;
      Provide_Data_Access_And_Data             : Boolean := False;
      Provide_Bus_Access_And_Bus               : Boolean := False;
      Bus_And_Require_Bus_Access               : Boolean := False;
      Provide_Subprogram_Access_And_Subprogram : Boolean := False;
      Subprogram_And_Require_Subprogram_Access : Boolean := False;
   begin
      pragma Assert
        (Kind (Connection_Source) = K_Port_Spec
         or else Kind (Connection_Source) = K_Parameter
         or else Kind (Connection_Source) = K_Feature_Group_Spec
         or else Kind (Connection_Source) = K_Subcomponent_Access
         or else Kind (Connection_Source) = K_Subcomponent
         or else Kind (Connection_Destination) = K_Subprogram_Call);

      pragma Assert
        (Kind (Connection_Destination) = K_Port_Spec
         or else Kind (Connection_Destination) = K_Parameter
         or else Kind (Connection_Destination) = K_Feature_Group_Spec
         or else Kind (Connection_Destination) = K_Subcomponent_Access
         or else Kind (Connection_Destination) = K_Subcomponent
         or else Kind (Connection_Destination) = K_Subprogram_Call);

      Same_Kind := Kind (Connection_Source) = Kind (Connection_Destination);

      Data_Port_And_Parameter :=
        (Kind (Connection_Source) = K_Port_Spec
         and then Is_Data (Connection_Source)
         and then Kind (Connection_Destination) = K_Parameter)
        or else (Kind (Connection_Destination) = K_Port_Spec
                 and then Is_Data (Connection_Destination)
                 and then Kind (Connection_Source) = K_Parameter);

      Data_And_Require_Data_Access :=
        Kind (Connection_Source) = K_Subcomponent
        and then Component_Category'Val (Category
                                         (Connection_Source)) = CC_Data
        and then Kind (Connection_Destination) = K_Subcomponent_Access
        and then Component_Category'Val
        (Subcomponent_Category (Connection_Destination)) = CC_Data;

      Provide_Data_Access_And_Data :=
        (Kind (Connection_Destination) = K_Subcomponent_Access
         and then Component_Category'Val
         (Subcomponent_Category (Connection_Destination)) = CC_Data
         and then Is_Provided (Connection_Destination)
         and then Kind (Connection_Source) = K_Subcomponent
         and then Component_Category'Val
         (Category (Connection_Source)) = CC_Data);

      Bus_And_Require_Bus_Access :=
        Kind (Connection_Source) = K_Subcomponent
        and then Component_Category'Val (Category
                                         (Connection_Source)) = CC_Bus
        and then Kind (Connection_Destination) = K_Subcomponent_Access
        and then Component_Category'Val
        (Subcomponent_Category (Connection_Destination)) = CC_Bus;

      Provide_Bus_Access_And_Bus :=
        (Kind (Connection_Destination) = K_Subcomponent_Access
         and then Component_Category'Val
        (Subcomponent_Category (Connection_Destination)) = CC_Bus
         and then Is_Provided (Connection_Destination)
         and then Kind (Connection_Source) = K_Subcomponent
         and then Component_Category'Val
         (Category (Connection_Source)) = CC_Bus);

      Subprogram_And_Require_Subprogram_Access :=
        Kind (Connection_Source) = K_Subcomponent
        and then Component_Category'Val (Category
                                         (Connection_Source)) = CC_Subprogram
        and then Kind (Connection_Destination) = K_Subcomponent_Access
        and then Component_Category'Val
        (Subcomponent_Category (Connection_Destination)) = CC_Subprogram;

      Provide_Subprogram_Access_And_Subprogram :=
        (Kind (Connection_Destination) = K_Subcomponent_Access
         and then Component_Category'Val
        (Subcomponent_Category (Connection_Destination)) = CC_Subprogram
         and then Is_Provided (Connection_Destination)
         and then Kind (Connection_Source) = K_Subcomponent
         and then Component_Category'Val
         (Category (Connection_Source)) = CC_Subprogram);

      --  We assume that the only possibility is to connect a
      --  subcomponent into a component requires. The contrary
      --  (connecting a component requires into a subcomponent) is
      --  forbidden.

      if not (Bus_And_Require_Bus_Access
              or else Provide_Bus_Access_And_Bus
              or else Provide_Data_Access_And_Data
              or else Data_And_Require_Data_Access
              or else Subprogram_And_Require_Subprogram_Access
              or else Provide_Subprogram_Access_And_Subprogram
              or else Data_Port_And_Parameter
              or else Same_Kind)
      then
         DAE (Loc      => Ocarina.Me_AADL.AADL_Tree.Nodes.Loc (Node),
              Node1    => Get_Referenced_Entity (Source (Node)),
              Message1 => " and ",
              Node2    => Get_Referenced_Entity (Destination (Node)),
              Message2 => " are not compatible");
         return False;
      else
         return True;
      end if;
   end Check_Connection_Ends_Consistency;

   --------------------------------------
   -- Check_Connection_End_Consistency --
   --------------------------------------

   function Check_Connection_End_Consistency
     (Connection_End      : Node_Id;
      Connection_Category : Connection_Type)
     return Boolean
   is
      pragma Assert
        (Kind (Connection_End) = K_Port_Spec
         or else Kind (Connection_End) = K_Parameter
         or else Kind (Connection_End) = K_Feature_Group_Spec
         or else Kind (Connection_End) = K_Subcomponent_Access
         or else Kind (Connection_End) = K_Subcomponent
         or else Kind (Connection_End) = K_Subprogram_Call);

      Success : Boolean := True;
   begin
      case Connection_Category is
         when CT_Error =>
            Success := False;

         when CT_Port_Connection
           | CT_Access_Subprogram_Group
703 704
           | CT_Access_Virtual_Bus
           | CT_Access =>
705 706 707
            Success := True;
            --  XXX Incomplete TODO

708 709
         when CT_Data
           | CT_Data_Delayed =>
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
            Success := Kind (Connection_End) = K_Port_Spec
              and then Is_Data (Connection_End)
              and then not Is_Event (Connection_End);

         when CT_Event =>
            Success := Kind (Connection_End) = K_Port_Spec
              and then not Is_Data (Connection_End)
              and then Is_Event (Connection_End);

         when CT_Event_Data =>
            Success := Kind (Connection_End) = K_Port_Spec
              and then Is_Data (Connection_End)
              and then Is_Event (Connection_End);

         when CT_Feature_Group =>
            Success := Kind (Connection_End) = K_Feature_Group_Spec;

         when CT_Parameter =>
            --  Parameter connections can connect (event) data ports
            --  to subprogram parameters, since parameter have the
            --  same semantic as (event) data ports.

            Success :=  Kind (Connection_End) = K_Parameter
              or else (Kind (Connection_End) = K_Port_Spec
                       and then Is_Data (Connection_End));

         when CT_Access_Bus =>
            Success := (Kind (Connection_End) = K_Subcomponent_Access
                         and then Component_Category'Val
                         (Subcomponent_Category (Connection_End)) = CC_Bus)
              or else (Kind (Connection_End) = K_Subcomponent
                       and then Component_Category'Val
                       (Category (Connection_End)) = CC_Bus);

         when CT_Access_Data =>
            Success := (Kind (Connection_End) = K_Subcomponent_Access
                        and then Component_Category'Val
                        (Subcomponent_Category (Connection_End)) = CC_Data)
              or else (Kind (Connection_End) = K_Subcomponent
                       and then Component_Category'Val
                       (Category (Connection_End)) = CC_Data);

         when CT_Access_Subprogram =>
            Success :=
              (Kind (Connection_End) = K_Subcomponent_Access
               and then Component_Category'Val
               (Subcomponent_Category (Connection_End)) = CC_Subprogram)
              or else (Kind (Connection_End) = K_Subcomponent
                       and then Component_Category'Val
                       (Category (Connection_End)) = CC_Subprogram);
      end case;

      return Success;
   end Check_Connection_End_Consistency;

   -----------------------
   -- Check_Connections --
   -----------------------

   function Check_Connections (Node : Node_Id) return Boolean is

      pragma Assert (Kind (Node) = K_Component_Implementation);

      List_Node : Node_Id;
      Success   : Boolean := True;
   begin
      if not Is_Empty (Ocarina.Me_AADL.AADL_Tree.Nodes.Connections (Node)) then
         List_Node := First_Node
           (Ocarina.Me_AADL.AADL_Tree.Nodes.Connections (Node));

         while Present (List_Node) loop
            Success := Check_Connection (List_Node) and then Success;
            List_Node := Next_Node (List_Node);
         end loop;
      end if;

      --  Check whether there are duplicate connections

      if Success and then
        not Is_Empty (Ocarina.Me_AADL.AADL_Tree.Nodes.Connections (Node))
      then
         List_Node := First_Node
           (Ocarina.Me_AADL.AADL_Tree.Nodes.Connections (Node));

         while Present (List_Node) loop
            declare
               Src    : constant Node_Id := Source (List_Node);
               Dst    : constant Node_Id := Destination (List_Node);
               N      : Node_Id;
               I_Name : Name_Id;
               Info   : Nat;
            begin
               --  We use name_buffer hash codes for efficiency. First
               --  we inster the following string : Node%Path
               --  (Src)%Path (Dst)%dup%cnx%check and then we compute
               --  its byte info. If we find a non-zero info, this
               --  means the connection is duplicate and the info
               --  poits to the first met connection. Finally, we set
               --  the info of the string to point to the current
               --  connection.

               Set_Nat_To_Name_Buffer (Nat (Node));
               Add_Char_To_Name_Buffer ('%');

               N := First_Node (Path (Src));
               while Present (N) loop
                  Add_Nat_To_Name_Buffer
                    (Nat (Corresponding_Entity (Item (N))));
                  Add_Char_To_Name_Buffer ('%');

                  N := Next_Node (N);
               end loop;

               N := First_Node (Path (Dst));
               while Present (N) loop
                  Add_Nat_To_Name_Buffer
                    (Nat (Corresponding_Entity (Item (N))));
                  Add_Char_To_Name_Buffer ('%');

                  N := Next_Node (N);
               end loop;

               Add_Str_To_Name_Buffer ("dup%cnx%check");
               I_Name := Name_Find;
               Info := Get_Name_Table_Info (I_Name);

               if Info /= 0 then
                  --  Check whether the two connections have common
                  --  modes.

                  if Have_Common_Statements (In_Modes (List_Node),
                                             In_Modes (Node_Id (Info)))
                  then
                     Error_Loc (1) := Loc (List_Node);
                     Error_Loc (2) := Loc (Node_Id (Info));

                     DE ("This connection is a duplication of the"
                         & " connection declared!");

                     Success := False;
                  end if;
               else
                  Set_Name_Table_Info (I_Name, Nat (List_Node));
               end if;
            end;

            List_Node := Next_Node (List_Node);
         end loop;
      end if;

      return Success;
   end Check_Connections;

   --------------------------------------
   -- Check_End_Directions_Consistency --
   --------------------------------------

   function Check_End_Directions_Consistency (Node : Node_Id) return Boolean is

      pragma Assert (Kind (Node) = K_Connection);

      Connection_Source      : constant Node_Id := Get_Referenced_Entity
        (Source (Node));
      Source_Is_Local        : constant Boolean := Connection_End_Is_Local
        (Source (Node));
      Connection_Destination : constant Node_Id := Get_Referenced_Entity
        (Destination (Node));
      Destination_Is_Local   : constant Boolean := Connection_End_Is_Local
        (Destination (Node));

      Directions : Boolean := False;
   begin
      pragma Assert
        (Kind (Connection_Source) = K_Port_Spec
         or else Kind (Connection_Source) = K_Parameter
         or else Kind (Connection_Source) = K_Feature_Group_Spec
         or else Kind (Connection_Source) = K_Subcomponent_Access
         or else Kind (Connection_Source) = K_Subcomponent);

      pragma Assert
        (Kind (Connection_Destination) = K_Port_Spec
         or else Kind (Connection_Destination) = K_Parameter
         or else Kind (Connection_Destination) = K_Feature_Group_Spec
         or else Kind (Connection_Destination) = K_Subcomponent_Access
         or else Kind (Connection_Destination) = K_Subcomponent);

      case Kind (Connection_Destination) is
         when K_Port_Spec | K_Parameter =>

            --  We do not check strict correspondence between port
            --  directions: an in port can be connected to an in/out
            --  port. This seems strange, but the examples provided
            --  with Osate accept this situation. After all, it can
            --  make sense: an in/out port could have two different
            --  connections.

            Directions := (not Source_Is_Local
                           and then not Destination_Is_Local
                           and then Is_Out (Connection_Source)
                           and then Is_In (Connection_Destination))
              or else (Source_Is_Local
                       and then not Destination_Is_Local
                       and then Is_In (Connection_Source)
                       and then Is_In (Connection_Destination))
              or else (not Source_Is_Local
                       and then Destination_Is_Local
                       and then Is_Out (Connection_Source)
                       and then Is_Out (Connection_Destination))
              or else (Source_Is_Local
                       and then Destination_Is_Local
                       and then Is_In (Connection_Source)
                       and then Is_Out (Connection_Destination))
              or else (Is_In (Connection_Source)
                       and then Is_Out (Connection_Source)
                       and then Is_Out (Connection_Destination)
                       and then Is_In (Connection_Destination));
            --  XXX The latest test may be redudant with the previous
            --  ones

         when K_Feature_Group_Spec =>
            Directions := True;
            --  There is no direction for a port group

         when K_Subcomponent_Access =>
            Directions :=
              (not Source_Is_Local
               and then not Destination_Is_Local
               and then not Is_Provided (Connection_Destination)
               and then Kind (Connection_Source) = K_Subcomponent_Access
               and then Is_Provided (Connection_Source))
              or else
              (Source_Is_Local
               and then not Destination_Is_Local
               and then not Is_Provided (Connection_Destination)
               and then ((Kind (Connection_Source) = K_Subcomponent_Access
                          and then not Is_Provided (Connection_Source))
                         or else Kind (Connection_Source) = K_Subcomponent))
              or else
              (not Source_Is_Local
               and then Destination_Is_Local
               and then Is_Provided (Connection_Destination)
               and then Kind (Connection_Source) = K_Subcomponent_Access
               and then Is_Provided (Connection_Source))
              or else
              (Source_Is_Local
               and then Destination_Is_Local
               and then Is_Provided (Connection_Destination)
               and then Kind (Connection_Source) = K_Subcomponent);

         when K_Subcomponent =>
            Directions := False;

         when others =>
            Directions := True;
      end case;

      if not Directions then
         DAE (Loc      => Ocarina.Me_AADL.AADL_Tree.Nodes.Loc (Node),
              Node1    => Get_Referenced_Entity (Source (Node)),
              Message1 => " and ",
              Node2    => Get_Referenced_Entity (Destination (Node)),
              Message2 => " do not have compatible directions");
         Directions := False;
      end if;

      return Directions;
   end Check_End_Directions_Consistency;

   ---------------------------------
   -- Check_End_Types_Consistency --
   ---------------------------------

   function Check_End_Types_Consistency (Node : Node_Id) return Boolean is

      pragma Assert (Kind (Node) = K_Connection);

      Source_Node          : constant Node_Id := Get_Referenced_Entity
        (Source (Node));
      Destination_Node     : constant Node_Id := Get_Referenced_Entity
        (Destination (Node));
      Source_Is_Local      : constant Boolean := Connection_End_Is_Local
        (Source (Node));
      Destination_Is_Local : constant Boolean := Connection_End_Is_Local
        (Destination (Node));

      Source_Type      : Node_Id;
      Destination_Type : Node_Id;

      Success : Boolean := True;
      No_Type : Boolean := True;
   begin
      --  For port and parameter connections, the consistency is
      --  ensured if the associated data are of the same type, or if
      --  one is an implementation of the other one. For subcomponent
      --  accesses, the provided subcomponent must be of the same type
      --  or be an implementation of the required one. Same thing for
      --  subprogram as features. Ends of a Port group connection must
      --  be the inverse one of the other.

      if Present (Entity_Ref (Source_Node)) then
         Source_Type := Get_Referenced_Entity (Entity_Ref (Source_Node));
      else
         Source_Type := No_Node;
      end if;

      if Present (Entity_Ref (Destination_Node)) then
         Destination_Type :=
           Get_Referenced_Entity (Entity_Ref (Destination_Node));
      else
         Destination_Type := No_Node;
      end if;

      No_Type := No (Source_Type) or else No (Destination_Type);

      if No_Type then
         return True;

         --  If one of the two ends has no type, there is no use
         --  checking anything.
      end if;

      case Connection_Type'Val (Category (Node)) is
         when CT_Error =>
            Success := False;

         when CT_Port_Connection
           | CT_Access_Subprogram_Group
1037 1038
           | CT_Access_Virtual_Bus
           | CT_Access =>
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
            Success := True;
            --  XXX incomplete TODO

         when CT_Data
           | CT_Data_Delayed
           | CT_Event_Data
           | CT_Parameter =>
            if Source_Type = Destination_Type then
               Success := True;
            else
               DAE (Loc      => Loc (Node),
                    Node1    => Source (Node),
                    Message1 => " and ",
                    Node2    => Destination (Node),
                    Message2 => " do not have compatible types");
               Success := False;
            end if;

         when CT_Event =>
            Success := True;

         when CT_Feature_Group =>
            if Source_Is_Local = Destination_Is_Local then
               Success := (Present (Inverse_Of (Source_Type))
                           and then Get_Referenced_Entity
                           (Inverse_Of (Source_Type)) = Destination_Type)
                 or else (Present (Inverse_Of (Destination_Type))
                          and then Get_Referenced_Entity
                          (Inverse_Of (Destination_Type)) = Source_Type);
            else
               Success := (Source_Type = Destination_Type);
            end if;

            if not Success then
               DAE (Loc      => Loc (Node),
                    Node1    => Source (Node),
                    Message1 => " and ",
                    Node2    => Destination (Node),
                    Message2 => " do not have compatible types");
               Success := False;
            end if;

            --  XXX This comparison is too basic. We should compare
            --  the content of the port groups instead

         when CT_Access_Bus
           | CT_Access_Data
           | CT_Access_Subprogram =>
            if Source_Type = Destination_Type then
               Success := True;
            else
               DAE (Loc      => Loc (Node),
                    Node1    => Source (Node),
                    Message1 => " and ",
                    Node2    => Destination (Node),
                    Message2 => " do not have compatible types");
               Success := False;
            end if;
      end case;

      return Success;
   end Check_End_Types_Consistency;

   -------------------------------------
   -- Check_For_A_Unique_Initial_Mode --
   -------------------------------------

   function Check_For_A_Unique_Initial_Mode (Node : Node_Id) return Boolean is

      pragma Assert (Kind (Node) = K_Component_Implementation);

      First_Initial_Mode : Node_Id := No_Node;
      Number_Of_Modes    : Integer := 0;
      Component          : Node_Id := Node;
      Success            : Boolean := True;
      List_Node          : Node_Id;
   begin
      while Present (Component) loop
         if not Is_Empty (Modes (Component)) then
            List_Node := First_Node (Modes (Component));

            while Present (List_Node) loop
               if Kind (List_Node) = K_Mode then
                  Number_Of_Modes := Number_Of_Modes + 1;

                  if Is_Initial (List_Node) then
                     --  The initial mode may be overridden by the
                     --  component.

                     if No (First_Initial_Mode) then
                        First_Initial_Mode := List_Node;
                     else
                        if Component = Node then
                           Display_Conflicting_Initial_Modes
                             (List_Node, First_Initial_Mode);
                        else
                           Display_Conflicting_Initial_Modes
                             (First_Initial_Mode, List_Node);
                        end if;
                        Success := False;
                     end if;
                  end if;
               end if;

               List_Node := Next_Node (List_Node);
            end loop;
         end if;

         if Present (Parent (Component)) then
            Component := Get_Referenced_Entity (Parent (Component));
         else
            Component := No_Node;
         end if;
      end loop;

      if No (First_Initial_Mode) and then Number_Of_Modes /= 0 then
         DAE (Node1    => Node,
              Message1 => " has no initial mode");
         Success := False;
      end if;

      return Success;
   end Check_For_A_Unique_Initial_Mode;

   --------------------------------------------------
   -- Check_Properties_Of_Component_Implementation --
   --------------------------------------------------

   function Check_Properties_Of_Component_Implementation
     (Component : Node_Id)
     return Boolean
   is
      pragma Assert (Kind (Component) = K_Component_Implementation);

      Success        : Boolean := True;
      List_Node      : Node_Id;
      Call_List_Node : Node_Id;
   begin
      --  Type refinements

      if Refines_Type (Component) /= No_List then
         List_Node := First_Node (Refines_Type (Component));

         while Present (List_Node) loop
            Success := Check_Property_Associations
              (Ocarina.Me_AADL.AADL_Tree.Nodes.Properties (List_Node),
               List_Node)
              and then Success;
            List_Node := Next_Node (List_Node);
         end loop;
      end if;

      --  Subcomponents

      if Subcomponents (Component) /= No_List then
         List_Node := First_Node (Subcomponents (Component));

         while Present (List_Node) loop
            Success := Check_Property_Associations
              (Ocarina.Me_AADL.AADL_Tree.Nodes.Properties (List_Node),
               List_Node)
              and then Success;
            List_Node := Next_Node (List_Node);
         end loop;
      end if;

      --  Call sequences
      --  Some call sequences are anonymous

      if Calls (Component) /= No_List then
         List_Node := First_Node (Calls (Component));

         while Present (List_Node) loop
            if Subprogram_Calls (List_Node) /= No_List then
               Call_List_Node := First_Node (Subprogram_Calls (List_Node));

               while Present (Call_List_Node) loop
                  Success := Check_Property_Associations
                    (Ocarina.Me_AADL.AADL_Tree.Nodes.Properties
                       (Call_List_Node),
                     Call_List_Node)
                    and then Success;
                  Call_List_Node := Next_Node (Call_List_Node);
               end loop;
            end if;

            List_Node := Next_Node (List_Node);
         end loop;
      end if;

      --  Connections
      --  Some connections are anonymous

      if Ocarina.Me_AADL.AADL_Tree.Nodes.Connections
        (Component) /= No_List then
         List_Node := First_Node
           (Ocarina.Me_AADL.AADL_Tree.Nodes.Connections (Component));

         while Present (List_Node) loop
            Success := Check_Property_Associations
              (Ocarina.Me_AADL.AADL_Tree.Nodes.Properties (List_Node),
               List_Node)
              and then Success;

               List_Node := Next_Node (List_Node);
         end loop;
      end if;

      --  Flows

      if Flows (Component) /= No_List then
         List_Node := First_Node (Flows (Component));

         while Present (List_Node) loop
            Success := Check_Property_Associations
              (Ocarina.Me_AADL.AADL_Tree.Nodes.Properties (List_Node),
               List_Node)
              and then Success;
            List_Node := Next_Node (List_Node);
         end loop;
      end if;

      --  Modes

      if Modes (Component) /= No_List then
         List_Node := First_Node (Modes (Component));

         while Present (List_Node) loop
            if Kind (List_Node) = K_Mode then
               Success := Check_Property_Associations
                 (Ocarina.Me_AADL.AADL_Tree.Nodes.Properties (List_Node),
                  List_Node)
                 and then Success;
            end if;

            List_Node := Next_Node (List_Node);
         end loop;
      end if;

      --  Properties

      Success := Check_Property_Associations
        (Ocarina.Me_AADL.AADL_Tree.Nodes.Properties (Component), Component)
        and then Success;

      return Success;
   end Check_Properties_Of_Component_Implementation;

   ----------------------------------------
   -- Check_Properties_Of_Component_Type --
   ----------------------------------------

   function Check_Properties_Of_Component_Type
     (Component : Node_Id)
     return Boolean
   is
      pragma Assert (Kind (Component) = K_Component_Type);

      Success   : Boolean := True;
      List_Node : Node_Id;
   begin
      --  Features

      if Features (Component) /= No_List then
         List_Node := First_Node (Features (Component));

         while Present (List_Node) loop
            Success := Check_Property_Associations
              (Ocarina.Me_AADL.AADL_Tree.Nodes.Properties (List_Node),
               List_Node)
              and then Success;
            List_Node := Next_Node (List_Node);
         end loop;
      end if;

      --  Flows

      if Flows (Component) /= No_List then
         List_Node := First_Node (Flows (Component));

         while Present (List_Node) loop
            Success := Check_Property_Associations
              (Ocarina.Me_AADL.AADL_Tree.Nodes.Properties (List_Node),
               List_Node)
              and then Success;
            List_Node := Next_Node (List_Node);
         end loop;
      end if;

      --  Properties

      Success := Check_Property_Associations
        (Ocarina.Me_AADL.AADL_Tree.Nodes.Properties (Component), Component)
        and then Success;

      return Success;
   end Check_Properties_Of_Component_Type;

   -----------------------------------------
   -- Check_Properties_Of_Port_Group_Type --
   -----------------------------------------

   function Check_Properties_Of_Port_Group_Type
     (Port_Group : Node_Id)
     return Boolean
   is
      pragma Assert (Kind (Port_Group) = K_Feature_Group_Type);

      Success   : Boolean := True;
      List_Node : Node_Id;
   begin
      --  Features

      if Features (Port_Group) /= No_List then
         List_Node := First_Node (Features (Port_Group));

         while Present (List_Node) loop
            Success := Check_Property_Associations
              (Ocarina.Me_AADL.AADL_Tree.Nodes.Properties (List_Node),
               List_Node)
              and then Success;
            List_Node := Next_Node (List_Node);
         end loop;
      end if;

      --  Properties

      Success := Check_Property_Associations
        (Ocarina.Me_AADL.AADL_Tree.Nodes.Properties (Port_Group), Port_Group)
        and then Success;

      return Success;
   end Check_Properties_Of_Port_Group_Type;

   ---------------------------------
   -- Check_Property_Associations --
   ---------------------------------

   function Check_Property_Associations
     (Properties : List_Id;
      Container  : Node_Id)
     return Boolean
   is
      pragma Assert (Present (Container));

      Success   : Boolean := True;
      List_Node : Node_Id;
   begin
      if Properties /= No_List then
         List_Node := First_Node (Properties);

         while Present (List_Node) loop
            pragma Assert (Kind (List_Node) = K_Property_Association);

            Success := Check_Applies_To (List_Node, Container)
              and then Check_Values_Of_Property_Association (List_Node)
              and then Success;

            List_Node := Next_Node (List_Node);
         end loop;
      end if;

      return Success;
   end Check_Property_Associations;

   -------------------------
   -- Check_Property_Type --
   -------------------------

   function Check_Property_Type
     (Property_Type         : Node_Id;
      Display_Error_Message : Boolean := True)
     return Boolean
   is
      pragma Assert
        (Kind (Property_Type) = K_Property_Type_Declaration
         or else Kind (Property_Type) = K_Property_Type
         or else Kind (Property_Type) = K_Integer_Type
         or else Kind (Property_Type) = K_Real_Type
         or else Kind (Property_Type) = K_Enumeration_Type
         or else Kind (Property_Type) = K_Boolean_Type
         or else Kind (Property_Type) = K_String_Type
         or else Kind (Property_Type) = K_Range_Type
         or else Kind (Property_Type) = K_Reference_Type
         or else Kind (Property_Type) = K_Classifier_Type
         or else Kind (Property_Type) = K_Unique_Property_Type_Identifier
         or else Kind (Property_Type) = K_Record_Type);

      Type_Designator : Node_Id;
      Success         : Boolean := True;
   begin
      case Kind (Property_Type) is
         when K_Property_Type_Declaration =>
            Type_Designator := Property_Type_Designator (Property_Type);
         when K_Property_Type =>
            Type_Designator := Expanded_Type_Designator (Property_Type);
         when others =>
            Type_Designator := Property_Type;
      end case;

      if Present (Type_Designator) then
         case Kind (Type_Designator) is
            when K_Integer_Type
              | K_Real_Type =>
               if Present (Type_Range (Type_Designator))
                 and then Present (Lower_Bound (Type_Range (Type_Designator)))
                 and then Kind (Lower_Bound (Type_Range (Type_Designator)))
                 = K_Literal
                 and then Present (Upper_Bound (Type_Range (Type_Designator)))
                 and then Kind (Upper_Bound (Type_Range (Type_Designator)))
                 = K_Literal
               then
                  --  We only check the types that are completely
                  --  defined. Typically, the types that have been
                  --  expanded.

                  Success := Compare_Numbers
                    (Lower_Bound (Type_Range (Type_Designator)),
                     Upper_Bound (Type_Range (Type_Designator))) >= 0;
               end if;

            when K_Range_Type =>
               Success := Check_Property_Type
                 (Number_Type (Type_Designator), False);

            when others =>
               Success := True;
         end case;
      end if;

      if Display_Error_Message and then not Success then
         Display_Inconsistent_Property_Type (Property_Type);
      end if;

      return Success;
   end Check_Property_Type;

   -----------------------
   -- Reset_Connections --
   -----------------------

   procedure Reset_Connections (Node : Node_Id)
   is
      pragma Assert (Kind (Node) = K_Component_Implementation);

      List_Node : Node_Id;
   begin
      --  Reset connections info on name table

      if not Is_Empty (Ocarina.Me_AADL.AADL_Tree.Nodes.Connections (Node)) then
         List_Node := First_Node
           (Ocarina.Me_AADL.AADL_Tree.Nodes.Connections (Node));

         while Present (List_Node) loop
            declare
               Src    : constant Node_Id := Source (List_Node);
               Dst    : constant Node_Id := Destination (List_Node);
               N      : Node_Id;
               I_Name : Name_Id;
            begin
               --  We use name_buffer hash codes for efficiency. First
               --  we inster the following string : Node%Path
               --  (Src)%Path (Dst)%dup%cnx%check and then we compute
               --  its byte info. If we find a non-zero info, this
               --  means the connection is duplicate and the info
               --  poits to the first met connection. Finally, we set
               --  the info of the string to point to the current
               --  connection.

               Set_Nat_To_Name_Buffer (Nat (Node));
               Add_Char_To_Name_Buffer ('%');

               N := First_Node (Path (Src));
               while Present (N) loop
                  Add_Nat_To_Name_Buffer
                    (Nat (Corresponding_Entity (Item (N))));
                  Add_Char_To_Name_Buffer ('%');

                  N := Next_Node (N);
               end loop;

               N := First_Node (Path (Dst));
               while Present (N) loop
                  Add_Nat_To_Name_Buffer
                    (Nat (Corresponding_Entity (Item (N))));
                  Add_Char_To_Name_Buffer ('%');

                  N := Next_Node (N);
               end loop;

               Add_Str_To_Name_Buffer ("dup%cnx%check");
               I_Name := Name_Find;
               Set_Name_Table_Info (I_Name, 0);
            end;

            List_Node := Next_Node (List_Node);
         end loop;
      end if;
   end Reset_Connections;

   ----------------------
   -- Reset_Connection --
   ----------------------

   procedure Reset_All_Connections (Root : Node_Id) is
      pragma Assert (Kind (Root) = K_AADL_Specification);

      List_Node         : Node_Id;
      Package_List_Node : Node_Id;
   begin
      if not Is_Empty (Declarations (Root)) then
         List_Node := First_Node (Declarations (Root));

         while Present (List_Node) loop
            case Kind (List_Node) is
               when  K_Component_Implementation =>
                  Reset_Connections (List_Node);

               when K_Package_Specification =>
                  if not Is_Empty (Declarations (List_Node)) then
                     Package_List_Node :=
                       First_Node (Declarations (List_Node));

                     while Present (Package_List_Node) loop
                        case Kind (Package_List_Node) is
                           when  K_Component_Implementation =>
                              Reset_Connections (Package_List_Node);

                           when others =>
                              null;
                        end case;

                        Package_List_Node := Next_Node (Package_List_Node);
                     end loop;
                  end if;

               when others =>
                  null;
            end case;

            List_Node := Next_Node (List_Node);
         end loop;
      end if;

   end Reset_All_Connections;

   -----------------------------------
   -- Check_Semantics_In_Components --
   -----------------------------------

   function Check_Semantics_In_Components (Root : Node_Id) return Boolean is

      pragma Assert (Kind (Root) = K_AADL_Specification);

      Success           : Boolean := True;
      List_Node         : Node_Id;
      Package_List_Node : Node_Id;
   begin
      if not Is_Empty (Declarations (Root)) then
         List_Node := First_Node (Declarations (Root));

         while Present (List_Node) loop
            case Kind (List_Node) is
               when  K_Component_Implementation =>
                  Success := Check_For_A_Unique_Initial_Mode (List_Node)
                    and then Check_Cycles_In_Subcomponents (List_Node)
                    and then Check_Connections (List_Node)
                    and then Success;

               when K_Package_Specification =>
                  if not Is_Empty (Declarations (List_Node)) then
                     Package_List_Node :=
                       First_Node (Declarations (List_Node));

                     while Present (Package_List_Node) loop
                        case Kind (Package_List_Node) is
                           when  K_Component_Implementation =>
                              Success :=
                                Check_For_A_Unique_Initial_Mode
                                (Package_List_Node)
                                and then Check_Cycles_In_Subcomponents
                                (Package_List_Node)
                                and then Check_Connections (Package_List_Node)
                                and then Success;

                           when others =>
                              null;
                        end case;

                        Package_List_Node := Next_Node (Package_List_Node);
                     end loop;
                  end if;

               when others =>
                  null;
            end case;

            List_Node := Next_Node (List_Node);
         end loop;
      end if;

      return Success;
   end Check_Semantics_In_Components;

   -----------------------------------
   -- Check_Semantics_In_Namespaces --
   -----------------------------------

   function Check_Semantics_In_Namespaces (Root : Node_Id) return Boolean is
      pragma Assert (Kind (Root) = K_AADL_Specification);

      Success           : Boolean := True;
      List_Node         : Node_Id;
      Package_List_Node : Node_Id;
   begin
      if not Is_Empty (Declarations (Root)) then
         List_Node := First_Node (Declarations (Root));

         while Present (List_Node) loop
            case Kind (List_Node) is
               when K_Component_Type =>
                  Success := Check_Cycles_In_Port_Group_Or_Component_Type
                    (List_Node)
                    and then Success;

               when  K_Component_Implementation =>
                  Success := Check_Cycles_In_Component_Implementation
                    (List_Node)
                    and then Success;

               when K_Feature_Group_Type =>
                  Success :=
                    (Check_Cycles_In_Port_Group_Or_Component_Type
                     (List_Node)
                     and then Check_Cycles_In_Inversions_Of_Port_Groups
                     (List_Node))
                    and then Success;

               when K_Package_Specification =>
                  if not Is_Empty (Declarations (List_Node)) then
                     Package_List_Node :=
                       First_Node (Declarations (List_Node));

                     while Present (Package_List_Node) loop
                        case Kind (Package_List_Node) is
                           when K_Component_Type =>
                              Success :=
                                Check_Cycles_In_Port_Group_Or_Component_Type
                                (Package_List_Node)
                                and then Success;

                           when  K_Component_Implementation =>
                              Success :=
                                Check_Cycles_In_Component_Implementation
                                (Package_List_Node)
                                and then Success;

                           when K_Feature_Group_Type =>
                              Success :=
                                (Check_Cycles_In_Port_Group_Or_Component_Type
                                 (Package_List_Node)
                                 and then
                                 Check_Cycles_In_Inversions_Of_Port_Groups
                                 (Package_List_Node))
                                and then Success;

                           when others =>
                              null;
                        end case;

                        Package_List_Node := Next_Node (Package_List_Node);
                     end loop;
                  end if;

               when others =>
                  null;
            end case;

            List_Node := Next_Node (List_Node);
         end loop;
      end if;

      return Success;
   end Check_Semantics_In_Namespaces;

   -----------------------------------
   -- Check_Semantics_Of_Properties --
   -----------------------------------

   function Check_Semantics_Of_Properties (Root : Node_Id) return Boolean is
      pragma Assert (Kind (Root) = K_AADL_Specification);

      Success           : Boolean;
      List_Node         : Node_Id;
      Package_List_Node : Node_Id;
   begin
      Success := Compute_Property_Values (Root);

      if Success and then Declarations (Root) /= No_List then
         List_Node := First_Node (Declarations (Root));

         while Present (List_Node) loop
            case Kind (List_Node) is
               when  K_Component_Implementation =>
                  Success :=
                    Check_Properties_Of_Component_Implementation (List_Node)
                    and then Success;

               when K_Component_Type =>
                  Success :=
                    Check_Properties_Of_Component_Type (List_Node)
                    and then Success;

               when K_Feature_Group_Type =>
                  Success :=
                    Check_Properties_Of_Port_Group_Type (List_Node)
                    and then Success;

               when K_Package_Specification =>
                  Success := Check_Property_Associations
                    (Ocarina.Me_AADL.AADL_Tree.Nodes.Properties (List_Node),
                     List_Node)
                    and then Success;

                  if Declarations (List_Node) /= No_List then
                     Package_List_Node :=
                       First_Node (Declarations (List_Node));

                     while Present (Package_List_Node) loop
                        case Kind (Package_List_Node) is
                           when  K_Component_Implementation =>
                              Success :=
                                Check_Properties_Of_Component_Implementation
                                (Package_List_Node)
                                and then Success;

                           when K_Component_Type =>
                              Success :=
                                Check_Properties_Of_Component_Type
                                (Package_List_Node)
                                and then Success;

                           when K_Feature_Group_Type =>
                              Success :=
                                Check_Properties_Of_Port_Group_Type
                                (Package_List_Node)
                                and then Success;

                           when others =>
                              null;
                        end case;

                        Package_List_Node := Next_Node (Package_List_Node);
                     end loop;
                  end if;

               when K_Property_Set =>
                  if Declarations (List_Node) /= No_List then
                     Package_List_Node :=
                       First_Node (Declarations (List_Node));

                     while Present (Package_List_Node) loop
                        case Kind (Package_List_Node) is
                           when  K_Property_Type_Declaration =>
                              Success :=
                                Check_Property_Type (Package_List_Node)
                                and then Success;
                           when others =>
                              null;
                        end case;

                        Package_List_Node := Next_Node (Package_List_Node);
                     end loop;
                  end if;

               when others =>
                  null;
            end case;

            List_Node := Next_Node (List_Node);
         end loop;
      end if;

      return Success;
   end Check_Semantics_Of_Properties;

   ------------------------------------------
   -- Check_Values_Of_Property_Association --
   ------------------------------------------

   function Check_Values_Of_Property_Association
     (Property_Association : Node_Id)
     return Boolean
   is
      pragma Assert (Kind (Property_Association) = K_Property_Association);

      Property_Name         : constant Node_Id := Get_Referenced_Entity
        (Ocarina.Me_AADL.AADL_Tree.Nodes.Property_Name (Property_Association));
      Type_Of_Property_Name : constant Property_Type := Get_Type_Of_Property
        (Property_Name);

      List_Node            : Node_Id;
      Success              : Boolean := True;
      Types_Are_Compatible : Boolean := True;
   begin
      if Value_Of_Property_Association_Is_Undefined (Property_Association) then
         Success := True;
      else
         --  Extract from the AADL 1.0 standard (paragraph 10.3 page 158):

         --  "If the property declaration for the associated property
         --  name *does not* contain the reserved words *list of*, the
         --  property value must be a single property value. If the
         --  property declaration for the associated property name
         --  contains the reserved words *list of*, the property value
         --  *can be a single property value*, which is interpreted to
         --  be a list of one value."

         --  So list properties can take single values after '=>' and
         --  '+=>'

         --  However we convert these property to their right form
         --  (and keep the old form) to make easier further tree
         --  manipulations.

         if Is_Additive_Association (Property_Association)
           and then Present
           (Expanded_Single_Value
            (Property_Association_Value
             (Property_Association)))
         then
            --  Additive association allowed only for list properties

            if not Type_Of_Property_Is_A_List (Property_Name) then
               Success := Convert_Single_Value_To_List (Property_Association);

               --  Even if the conversion succeded, this is an
               --  error. This is a workaround to get the proper error
               --  message.

               Display_Property_List_Discrepancy
                 (Property_Association => Property_Association,
                  Property_Name        => Property_Name);
               return False;
            else
               Success := Convert_Single_Value_To_List (Property_Association);

               --  We do not return since there are more tests to
               --  perform.
            end if;
         end if;

         --  To avoid endless recursion, we begin by testing list
         --  properties.

         if Expanded_Multi_Value
           (Property_Association_Value
            (Property_Association)) /= No_List
         then
            if Type_Of_Property_Is_A_List (Property_Name) then
               List_Node := First_Node
                 (Expanded_Multi_Value
                  (Property_Association_Value
                   (Property_Association)));

               while Present (List_Node) loop
                  Types_Are_Compatible := Test_Property_Type_Equivalence
                    (Type_Of_Property_Name,
                     Get_Type_Of_Property_Value
                     (List_Node))
                    and then Test_Property_Value_Validity
                    (Property_Name_Type (Property_Name), List_Node);

                  if not Types_Are_Compatible then
                     Display_Incompatible_Property_Types
                       (Property_Association => Property_Association,
                        Property_Value       => List_Node,
                        Property_Name        => Property_Name);
                     Success := False;
                  end if;

                  List_Node := Next_Node (List_Node);
               end loop;

            else
               --  Single value properties cannot have a list as
               --  value.

               Success := False;
               Display_Property_List_Discrepancy
                 (Property_Association => Property_Association,
                  Property_Name        => Property_Name);
            end if;

         elsif Expanded_Single_Value
           (Property_Association_Value (Property_Association)) /= No_Node
         then
            if Type_Of_Property_Is_A_List (Property_Name) then
               --  If the value is a single element while we are
               --  expecting a list, we build a list from the single
               --  element, and display a warning. and keep the single
               --  element untouched.

               Display_Conversion_To_Property_List
                 (Property_Association => Property_Association,
                  Property_Name        => Property_Name);
               Success := Convert_Single_Value_To_List (Property_Association)
                 and then Check_Values_Of_Property_Association
                 (Property_Association);
            else
               Success := Test_Property_Type_Equivalence
                 (Type_Of_Property_Name,
                  Get_Type_Of_Property_Value
                  (Expanded_Single_Value
                   (Property_Association_Value
1954
                      (Property_Association))))
1955 1956 1957
                 and then Test_Property_Value_Validity
                 (Property_Name_Type (Property_Name),
                  Expanded_Single_Value
1958 1959
                    (Property_Association_Value
                       (Property_Association)));
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

               if not Success then
                  Display_Incompatible_Property_Types
                    (Property_Association => Property_Association,
                     Property_Value       => Expanded_Single_Value
                       (Property_Association_Value
                        (Property_Association)),
                     Property_Name        => Property_Name);
               end if;
            end if;

         else
            --  If the property association has no actual value

            Success := True;
         end if;
      end if;

      return Success;
   end Check_Values_Of_Property_Association;

   ---------------------
   -- Compare_Numbers --
   ---------------------

   function Compare_Numbers
     (Number_1 : Node_Id;
      Number_2 : Node_Id)
     return Integer
   is
      pragma Assert (Kind (Number_1) = K_Literal or else
                     Kind (Number_1) = K_Signed_AADLNumber);
      pragma Assert (Kind (Number_2) = K_Literal or else
                     Kind (Number_2) = K_Signed_AADLNumber);

      Literal_1 : Node_Id;
      Literal_2 : Node_Id;
      Result    : Integer;
   begin
      if Kind (Number_1) = K_Literal and then Kind (Number_2) = K_Literal then
         Literal_1 := Number_1;
         Literal_2 := Number_2;
      else
         Homogenize_Unit_Numbers (Number_1, Number_2, Literal_1, Literal_2);
      end if;

      --  Use the routines of the AADL_Values package to compare the
2007
      --  values and wrap them to intercept any comparison error.
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

      begin
         if Value (Value (Literal_1)) < Value (Value (Literal_2)) then
            Result := 1;
         elsif Value (Value (Literal_2)) < Value (Value (Literal_1)) then
            Result := -1;
         else
            Result := 0;
         end if;
      exception
         when Constraint_Error =>
            Result := -2;
2020
            raise;
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
      end;

      return Result;
   end Compare_Numbers;

   -----------------------------
   -- Connection_End_Is_Local --
   -----------------------------

   function Connection_End_Is_Local (Node : Node_Id) return Boolean is

      pragma Assert (Kind (Node) = K_Entity_Reference);
   begin
      return Next_Node (First_Node (Path (Node))) = No_Node
        or else Kind (Corresponding_Entity
                      (Item (First_Node (Path (Node))))) =
                      K_Feature_Group_Spec;
   end Connection_End_Is_Local;

   ----------------------------------
   -- Convert_Single_Value_To_List --
   ----------------------------------

   function Convert_Single_Value_To_List
     (Property_Association : Node_Id)
     return Boolean
   is
      pragma Assert (Kind (Property_Association) = K_Property_Association);
   begin
      Set_Expanded_Multi_Value
        (Property_Association_Value (Property_Association),
         New_List (K_List_Id,
                   Loc (Expanded_Single_Value
                        (Property_Association_Value
                         (Property_Association)))));
      Append_Node_To_List
        (Expanded_Single_Value
         (Property_Association_Value (Property_Association)),
         Expanded_Multi_Value
         (Property_Association_Value (Property_Association)));

      Set_Multi_Value
        (Property_Association_Value (Property_Association),
         New_List (K_List_Id,
                   Loc (Single_Value
                        (Property_Association_Value
                         (Property_Association)))));
      Append_Node_To_List
        (Single_Value (Property_Association_Value (Property_Association)),
         Multi_Value (Property_Association_Value (Property_Association)));

      return True;
   end Convert_Single_Value_To_List;

   -----------------------------
   -- Homogenize_Unit_Numbers --
   -----------------------------

   procedure Homogenize_Unit_Numbers
     (Number_1  :     Node_Id;
      Number_2  :     Node_Id;
      Literal_1 : out Node_Id;
      Literal_2 : out Node_Id)
   is
      function Convert_To_Base (L : Node_Id; U : Node_Id) return Node_Id;
      --  Converts the literal L associated to the unit U into a
      --  literal associated with the base dentifier of the units
      --  type.

      procedure Fetch
        (U       :     Node_Id;
         Fetched : out Node_Id;
         Base    : out Boolean);
      --  Return the defining identifier corresponding to the
      --  multiplier U in the corresponding units type. Base is set to
      --  True if the fetched identifier is the base unit
      --  identifier. If the identifier is not found, return No_Node
      --  and False.

      ---------------------
      -- Convert_To_Base --
      ---------------------

      function Convert_To_Base (L : Node_Id; U : Node_Id) return Node_Id is
         Fetched        : Node_Id;
         N              : Node_Id;
         Base           : Boolean;
         Result         : Value_Type;
         Count          : Natural;
         Max_Iterations : Natural;
         Units_Type     : Node_Id;
      begin
         Fetch (U, Fetched, Base);

         if not Base then
            --  To avoid infinite loops and detect bad formed units
            --  types.

            Units_Type := Corresponding_Entity
              (Unit_Identifier
               (Corresponding_Entity
                (Fetched)));

            Max_Iterations := Length (Unit_Definitions (Units_Type));
         end if;

         Result := Value (Value (L));
         Count := 0;

         while not Base loop
            Result := Result * Value
              (Value
2133 2134 2135
                 (Numeric_Literal
                    (Corresponding_Entity
                       (Fetched))));
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147

            Fetch
              (Unit_Identifier (Corresponding_Entity (Fetched)),
               Fetched,
               Base);

            Count := Count + 1;

            if Count > Max_Iterations + 1 then
               DAE
                 (Message0 => "Units Type ",
                  Node1    =>  Units_Type,
2148
                  Message1 => " is ill-defined: it contains cycles");
2149 2150 2151 2152 2153 2154
               exit;
            end if;

         end loop;
         N := New_Node (K_Literal, Loc (L));
         Set_Value (N, New_Value (Result));
2155

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
         return N;
      end Convert_To_Base;

      -----------
      -- Fetch --
      -----------

      procedure Fetch
        (U       :     Node_Id;
         Fetched : out Node_Id;
         Base    : out Boolean)
      is
         Units_Type      : Node_Id;
         Unit_Definition : Node_Id;
      begin
         if Kind (Corresponding_Entity (U)) = K_Units_Type then
            --  We have the base identifier

            Units_Type := Corresponding_Entity (U);
         else
            Units_Type := Corresponding_Entity
              (Unit_Identifier
               (Corresponding_Entity
                (U)));
         end if;

         --  This phase is neccessary because the Unit_Identifier of a
         --  Unit_definition is not linked directly to its
         --  corresponding unit definition.

         Fetched := Base_Identifier (Units_Type);

         if To_Lower (Name (Fetched)) = To_Lower (Name (U)) then
            Base := True;
         else
            Base := False;
            Unit_Definition := First_Node (Unit_Definitions (Units_Type));

            while Present (Unit_Definition) loop
               Fetched := Identifier (Unit_Definition);

               exit when To_Lower (Name (Fetched)) = To_Lower (Name (U));

               Fetched := No_Node;
               Unit_Definition := Next_Node (Unit_Definition);
            end loop;
         end if;
      end Fetch;

      Unit_1 : Node_Id;
      Unit_2 : Node_Id;
   begin
      --  If one of the numbers is a literal (without a unit) this
      --  means that the corresponding unit type contains only one
2210
      --  unit identifier and that the node linker did not detect an
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
      --  error. So we return the literal without modifying them.

      if Kind (Number_1) = K_Literal then
         Literal_1 := Number_1;

         --  Number_2 is necessarily a K_Signed_AADLNumber

         Literal_2 := Number_Value (Number_2);

         --  Nothing else to do

         return;
      end if;

      if Kind (Number_2) = K_Literal then
         Literal_2 := Number_2;

         --  Number_1 is necessarily a K_Signed_AADLNumber

         Literal_1 := Number_Value (Number_1);

         --  Nothing more to do

         return;
      end if;

      --  At this stage, both numbers are K_Signed_AADLNumber's. But
      --  they may have null Unit identifiers.

      if No (Unit_Identifier (Number_1))
        or else No (Unit_Identifier (Number_2))
      then
         Literal_1 := Number_Value (Number_1);
         Literal_2 := Number_Value (Number_2);

         --  Nothing more to do

         return;
      end if;

      --  At this stage, we have two K_Signed_AADLNumber's with non
      --  null unit identifiers.

      --  Get the corresponding unit identifiers. If the name linker
      --  failed to find the corresponding unit identifier, do not
      --  cause error cascade.

      Unit_1 := Corresponding_Entity (Unit_Identifier (Number_1));
      Unit_2 := Corresponding_Entity (Unit_Identifier (Number_2));

      --  Convert the literals

      if Present (Unit_1) then
         Literal_1 := Convert_To_Base (Number_Value (Number_1), Unit_1);
      else
         Literal_1 := Number_Value (Number_1);
      end if;

      if Present (Unit_2) then
         Literal_2 := Convert_To_Base (Number_Value (Number_2), Unit_2);
      else
         Literal_2 := Number_Value (Number_2);
      end if;
   end Homogenize_Unit_Numbers;

   ------------------------------------
   -- Test_Property_Type_Equivalence --
   ------------------------------------

   function Test_Property_Type_Equivalence
     (Type_Of_Property_Name        :
      Ocarina.Me_AADL.AADL_Tree.Entities.Properties.Property_Type;
      Type_Of_Property_Association :
      Ocarina.Me_AADL.AADL_Tree.Entities.Properties.Property_Type)
     return Boolean
   is
      Success : Boolean;
   begin
      case Type_Of_Property_Name is
         when PT_Boolean =>
            Success := Type_Of_Property_Association = PT_Boolean_Expression
              or else Type_Of_Property_Association = PT_Boolean;

         when PT_Integer =>
            Success := Type_Of_Property_Association = PT_Integer
              or else Type_Of_Property_Association = PT_Unsigned_Integer;

         when PT_Float =>
            Success := Type_Of_Property_Association = PT_Float
              or else Type_Of_Property_Association = PT_Unsigned_Float
              or else Type_Of_Property_Association = PT_Integer
              or else Type_Of_Property_Association = PT_Unsigned_Integer;

         when PT_List =>
            Success := False;

         when PT_Reference =>
            Success := Type_Of_Property_Association = PT_Reference;

         when others =>
            Success := Type_Of_Property_Association = Type_Of_Property_Name;
      end case;

      return Success;
   end Test_Property_Type_Equivalence;

   ----------------------------------
   -- Test_Property_Value_Validity --
   ----------------------------------

   function Test_Property_Value_Validity
     (Property_Type  : Node_Id;
      Property_Value : Node_Id)
     return Boolean
   is
      pragma Assert (Kind (Property_Type) = K_Property_Type);
      pragma Assert (Kind (Property_Value) = K_Component_Classifier_Term
                     or else Kind (Property_Value) = K_Reference_Term
                     or else Kind (Property_Value) = K_Enumeration_Term
                     or else Kind (Property_Value) = K_Number_Range_Term
                     or else Kind (Property_Value) = K_Literal
                     or else Kind (Property_Value) = K_Signed_AADLNumber);

      List_Node       : Node_Id;
      Temp_Node       : Node_Id;
      Type_Designator : Node_Id;
      Is_Integer      : Boolean;
      Actual_Literal  : Node_Id;
      Success         : Boolean := True;
   begin
      Type_Designator := Expanded_Type_Designator (Property_Type);
      Success := Check_Property_Type (Type_Designator);

      if Success then
         case Kind (Type_Designator) is
            when K_Classifier_Type =>
               List_Node :=