ocarina-backends-utils.adb 125 KB
Newer Older
1 2 3 4 5 6 7 8
------------------------------------------------------------------------------
--                                                                          --
--                           OCARINA COMPONENTS                             --
--                                                                          --
--               O C A R I N A . B A C K E N D S . U T I L S                --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
--    Copyright (C) 2005-2009 Telecom ParisTech, 2010-2015 ESA & ISAE.      --
--                                                                          --
-- Ocarina  is free software; you can redistribute it and/or modify under   --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion. Ocarina is distributed in the hope that it will be useful, but     --
-- WITHOUT ANY WARRANTY; without even the implied warranty of               --
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
26
--                                                                          --
jhugues's avatar
jhugues committed
27 28
--                 Ocarina is maintained by the TASTE project               --
--                      (taste-users@lists.tuxfamily.org)                   --
29 30 31 32
--                                                                          --
------------------------------------------------------------------------------

with GNAT.OS_Lib;
33
with Ada.Directories;
34 35
with GNAT.Table;

36
with Ocarina.Namet;
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
with Locations;

with Ocarina.ME_AADL;
with Ocarina.ME_AADL.AADL_Tree.Nodes;
with Ocarina.ME_AADL.AADL_Tree.Nutils;
with Ocarina.ME_AADL.AADL_Tree.Entities.Properties;
with Ocarina.ME_AADL.AADL_Instances.Nodes;
with Ocarina.ME_AADL.AADL_Instances.Nutils;
with Ocarina.ME_AADL.AADL_Instances.Entities;
with Ocarina.Backends.Messages;
with Ocarina.Backends.Ada_Tree.Nodes;
with Ocarina.Backends.Ada_Tree.Nutils;
with Ocarina.Backends.Ada_Values;

package body Ocarina.Backends.Utils is

   package ATN renames Ocarina.ME_AADL.AADL_Tree.Nodes;
   package ATU renames Ocarina.ME_AADL.AADL_Tree.Nutils;
   package AIN renames Ocarina.ME_AADL.AADL_Instances.Nodes;
   package AAU renames Ocarina.ME_AADL.AADL_Instances.Nutils;
   package ADN renames Ocarina.Backends.Ada_Tree.Nodes;
   package ADU renames Ocarina.Backends.Ada_Tree.Nutils;
   package ADV renames Ocarina.Backends.Ada_Values;

   use GNAT.OS_Lib;
62 63
   use Ada.Directories;

64
   use Ocarina.Namet;
65 66 67 68 69 70 71 72 73 74
   use Locations;
   use Ocarina.ME_AADL;
   use Ocarina.ME_AADL.AADL_Instances.Nodes;
   use Ocarina.ME_AADL.AADL_Instances.Nutils;
   use Ocarina.ME_AADL.AADL_Instances.Entities;
   use Ocarina.Backends.Messages;
   use Ocarina.Backends.Ada_Tree.Nutils;

   --  The entered directories stack

75
   package Directories_Stack is new GNAT.Table (Name_Id, Int, 1, 5, 10);
76 77 78 79

   function Get_Handling_Internal_Name
     (E          : Node_Id;
      Comparison : Comparison_Kind;
80
      Handling   : Handling_Kind) return Name_Id;
81 82 83 84 85 86 87 88 89 90 91 92 93 94
   --  Code factorisation between Set_Handling and Get_Handling. This
   --  function computes an internal name used to store the handling
   --  information.

   function Map_Ada_Subprogram_Status_Name (S : Node_Id) return Name_Id;
   --  Maps an name for the record type corresponding to a hybrid
   --  subprogram.

   function Map_Ada_Call_Seq_Access_Name (S : Node_Id) return Name_Id;
   --  Maps an name for the subprogram access type corresponding to a
   --  hybrid subprogram.

   function Map_Ada_Call_Seq_Subprogram_Name
     (Spg : Node_Id;
95
      Seq : Node_Id) return Name_Id;
96 97 98 99 100 101 102 103 104 105 106 107 108 109
   --  Maps an name for the subprogram corresponding to a hybrid
   --  subprogram call sequence.

   type Repository_Entry is record
      E          : Node_Id;
      Comparison : Comparison_Kind;
      Handling   : Handling_Kind;
      A          : Node_Id;
   end record;
   --  One entry of the internal handling repository

   Recording_Requested : Boolean := False;

   package Handling_Repository is new GNAT.Table
110 111 112 113 114
     (Repository_Entry,
      Int,
      1,
      5,
      10);
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
   --  The internal handling repository

   procedure May_Be_Append_Handling_Entry
     (E          : Node_Id;
      Comparison : Comparison_Kind;
      Handling   : Handling_Kind;
      A          : Node_Id);
   --  Add a new entry corresponding to the given parameters to the
   --  internal handling repository. The addition is only done in case
   --  the user requested explicitely the recording of handling

   function Bind_Transport_API_Internal_Name (P : Node_Id) return Name_Id;
   --  For code factorization purpose

   ----------------------
   -- Create_Directory --
   ----------------------

   procedure Create_Directory (Dir_Full_Name : Name_Id) is
      Dir_Full_String : constant String := Get_Name_String (Dir_Full_Name);
   begin
      if Is_Regular_File (Dir_Full_String)
        or else Is_Symbolic_Link (Dir_Full_String)
      then
         Display_Error
140 141 142
           ("Cannot create " &
            Dir_Full_String &
            " because there is a file with the same name",
143 144 145 146 147
            Fatal => True);
         return;
      end if;

      if Is_Directory (Dir_Full_String) then
148 149
         if Dir_Full_String /= "." then
            Display_Error
150
              (Dir_Full_String & " already exists",
151 152 153
               Fatal   => False,
               Warning => True);
         end if;
154 155 156 157 158
         return;
      end if;

      --  The directory name does not clash with anything, create it

159
      Create_Directory (Dir_Full_String);
160 161 162 163 164 165 166 167 168
   end Create_Directory;

   ---------------------
   -- Enter_Directory --
   ---------------------

   procedure Enter_Directory (Dirname : Name_Id) is
      use Directories_Stack;

169 170
      Current_Dir : constant Name_Id := Get_String_Name (Current_Directory);

171 172
   begin
      Increment_Last;
173
      Table (Last) := Current_Dir;
174
      Display_Debug_Message ("Left    : " & Get_Name_String (Current_Dir));
175
      Set_Directory (Get_Name_String (Dirname));
176 177 178 179 180 181 182 183 184 185
      Display_Debug_Message ("Entered : " & Get_Name_String (Dirname));
   end Enter_Directory;

   ---------------------
   -- Leave_Directory --
   ---------------------

   procedure Leave_Directory is
      use Directories_Stack;

186 187
      Last_Directory : constant Name_Id := Table (Last);

188 189
   begin
      Decrement_Last;
190 191
      Display_Debug_Message ("Left    : " & Current_Directory);
      Set_Directory (Get_Name_String (Last_Directory));
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
      Display_Debug_Message ("Entered : " & Get_Name_String (Last_Directory));
   end Leave_Directory;

   -----------------------------
   -- Add_Directory_Separator --
   -----------------------------

   function Add_Directory_Separator (Path : Name_Id) return Name_Id is
   begin
      Get_Name_String (Path);
      if Name_Buffer (Name_Len) /= Directory_Separator then
         Add_Char_To_Name_Buffer (Directory_Separator);
      end if;
      return Name_Find;
   end Add_Directory_Separator;

   --------------------------------
   -- Remove_Directory_Separator --
   --------------------------------

   function Remove_Directory_Separator (Path : Name_Id) return Name_Id is
   begin
      Get_Name_String (Path);

      if Name_Buffer (Name_Len) = Directory_Separator then
         Name_Len := Name_Len - 1;
      end if;
      return Name_Find;
   end Remove_Directory_Separator;

   ----------------------------------
   -- May_Be_Append_Handling_Entry --
   ----------------------------------

   procedure May_Be_Append_Handling_Entry
     (E          : Node_Id;
      Comparison : Comparison_Kind;
      Handling   : Handling_Kind;
      A          : Node_Id)
   is
      package HR renames Handling_Repository;
      The_Entry : constant Repository_Entry :=
234 235
        Repository_Entry'
          (E => E, Comparison => Comparison, Handling => Handling, A => A);
236 237 238 239 240 241 242 243 244 245 246 247 248 249
   begin
      if Recording_Requested then
         HR.Increment_Last;
         HR.Table (HR.Last) := The_Entry;
      end if;
   end May_Be_Append_Handling_Entry;

   -------------------------------
   -- Start_Recording_Handlings --
   -------------------------------

   procedure Start_Recording_Handlings is
   begin
      if Recording_Requested then
250 251
         raise Program_Error
           with "Consecutive calls to Start_Recording_Handlings are forbidden";
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
      else
         Recording_Requested := True;
      end if;
   end Start_Recording_Handlings;

   ------------------------------
   -- Stop_Recording_Handlings --
   ------------------------------

   procedure Stop_Recording_Handlings is
   begin
      Recording_Requested := False;
   end Stop_Recording_Handlings;

   ---------------------
   -- Reset_Handlings --
   ---------------------

   procedure Reset_Handlings is
      package HR renames Handling_Repository;

      Index     : Int := HR.First;
      The_Entry : Repository_Entry;
   begin
      --  Disable the user handling request. It is important to do
      --  this at the beginning to avoid adding new entries when
      --  resetting.

      Recording_Requested := False;

      while Index <= HR.Last loop
         The_Entry := HR.Table (Index);

         --  Reset the handling information

         Set_Handling
           (The_Entry.E,
            The_Entry.Comparison,
            The_Entry.Handling,
            No_Node);

         Index := Index + 1;
      end loop;

      --  Deallocate and reinitialize the repository

      HR.Free;
      HR.Init;
   end Reset_Handlings;

   --------------------
   -- Normalize_Name --
   --------------------

306 307 308 309
   function Normalize_Name
     (Name      : Name_Id;
      Ada_Style : Boolean := False) return Name_Id
   is
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
      Normalized_Name : Name_Id;
   begin
      --  FIXME: The algorithm does not ensure a bijection between
      --  the input and the output. It should be improved.

      if Name = No_Name then
         Normalized_Name := Name;
      else
         declare
            Initial_Name : constant String := Get_Name_String (Name);
         begin
            Name_Len := 0;

            for Index in Initial_Name'First .. Initial_Name'Last loop
               if Initial_Name (Index) = '.' then
                  Add_Char_To_Name_Buffer ('_');
                  if Ada_Style then
                     Add_Char_To_Name_Buffer ('_');
                  end if;
               elsif Initial_Name (Index) = '-' then
                  Add_Char_To_Name_Buffer ('_');
                  if Ada_Style then
                     Add_Char_To_Name_Buffer ('_');
                  end if;
yoogx's avatar
yoogx committed
334 335 336 337 338 339
               elsif Initial_Name (Index) = ':' then
                  Add_Char_To_Name_Buffer ('_');
                  if Ada_Style then
                     Add_Char_To_Name_Buffer ('_');
                  end if;

340 341 342 343 344 345 346 347 348 349 350 351
               else
                  Add_Char_To_Name_Buffer (Initial_Name (Index));
               end if;
            end loop;

            Normalized_Name := Name_Find;
         end;
      end if;

      return Normalized_Name;
   end Normalize_Name;

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
   -----------------------------------
   -- Fully_Qualified_Instance_Name --
   -----------------------------------

   function Fully_Qualified_Instance_Name (E : Node_Id) return Name_Id is
      Current_Node : Node_Id := Parent_Subcomponent (E);
      Current_Name : Name_Id;

   begin
      Set_Str_To_Name_Buffer ("");
      Get_Name_String (Normalize_Name (Name (Identifier (Current_Node))));
      Current_Name := Name_Find;
      Current_Node := Parent_Component (Current_Node);

      while Present (Current_Node) loop
         exit when No (Parent_Subcomponent (Current_Node));

369 370 371 372 373 374 375
         Get_Name_String
           (Normalize_Name
              (Name (Identifier (Parent_Subcomponent (Current_Node)))));
         Set_Str_To_Name_Buffer
           (Get_Name_String (Name_Find) &
            "_" &
            Get_Name_String (Current_Name));
376 377 378 379 380 381 382 383
         Current_Name := Name_Find;

         Current_Node := Parent_Component (Parent_Subcomponent (Current_Node));
      end loop;

      return Current_Name;
   end Fully_Qualified_Instance_Name;

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
   ------------------
   -- Is_Namespace --
   ------------------

   function Is_Namespace (N : Node_Id) return Boolean is
   begin
      return Kind (N) = K_Namespace_Instance;
   end Is_Namespace;

   ----------------
   -- Is_Delayed --
   ----------------

   function Is_Delayed (E : Node_Id) return Boolean is
      C : Node_Id;
      S : Node_Id;
   begin
      pragma Assert
        (Kind (E) = K_Port_Spec_Instance and then not Is_Event (E));

      if not AAU.Is_Empty (Sources (E)) then
         C := Extra_Item (First_Node (Sources (E)));

         case AADL_Version is
            when AADL_V1 =>
409 410
               if ATN.Category (Corresponding_Declaration (C)) =
                 Connection_Type'Pos (CT_Data_Delayed)
411 412 413 414 415 416 417
               then
                  return True;
               else
                  --  Recurse through the connection path

                  S := Item (First_Node (Sources (E)));

418 419 420
                  return S /= E
                    and then Kind (S) = K_Port_Spec_Instance
                    and then Is_Delayed (S);
421 422 423 424 425 426 427 428 429 430
               end if;

            when AADL_V2 =>
               if Get_Port_Timing (E) = Port_Timing_Delayed then
                  return True;
               else
                  --  Recurse through the connection path

                  S := Item (First_Node (Sources (E)));

431 432 433
                  return S /= E
                    and then Kind (S) = K_Port_Spec_Instance
                    and then Is_Delayed (S);
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
               end if;
         end case;
      end if;

      return False;
   end Is_Delayed;

   -----------------------
   -- Has_In_Parameters --
   -----------------------

   function Has_In_Parameters (E : Node_Id) return Boolean is
      F : Node_Id;
   begin
      if not AAU.Is_Empty (Features (E)) then
         F := First_Node (Features (E));

         while Present (F) loop
            if Kind (F) = K_Parameter_Instance and then Is_In (F) then
               return True;
            end if;

            F := Next_Node (F);
         end loop;
      end if;

      return False;
   end Has_In_Parameters;

   ------------------------
   -- Has_Out_Parameters --
   ------------------------

   function Has_Out_Parameters (E : Node_Id) return Boolean is
      F : Node_Id;
   begin
      if not AAU.Is_Empty (Features (E)) then
         F := First_Node (Features (E));

         while Present (F) loop
            if Kind (F) = K_Parameter_Instance and then Is_Out (F) then
               return True;
            end if;

            F := Next_Node (F);
         end loop;
      end if;

      return False;
   end Has_Out_Parameters;

   ------------------
   -- Has_In_Ports --
   ------------------

   function Has_In_Ports (E : Node_Id) return Boolean is
      F : Node_Id;
   begin
      if not AAU.Is_Empty (Features (E)) then
         F := First_Node (Features (E));

         while Present (F) loop
            if Kind (F) = K_Port_Spec_Instance and then Is_In (F) then
               return True;
            end if;

            F := Next_Node (F);
         end loop;
      end if;

      return False;
   end Has_In_Ports;

   ------------------------
   -- Has_In_Event_Ports --
   ------------------------

   function Has_In_Event_Ports (E : Node_Id) return Boolean is
      F : Node_Id;
   begin
      if not AAU.Is_Empty (Features (E)) then
         F := First_Node (Features (E));

         while Present (F) loop
518 519 520
            if Kind (F) = K_Port_Spec_Instance
              and then Is_In (F)
              and then Is_Event (F)
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
            then
               return True;
            end if;

            F := Next_Node (F);
         end loop;
      end if;

      return False;
   end Has_In_Event_Ports;

   -------------------
   -- Has_Out_Ports --
   -------------------

   function Has_Out_Ports (E : Node_Id) return Boolean is
      F : Node_Id;
   begin
      if not AAU.Is_Empty (Features (E)) then
         F := First_Node (Features (E));

         while Present (F) loop
            if Kind (F) = K_Port_Spec_Instance and then Is_Out (F) then
               return True;
            end if;

            F := Next_Node (F);
         end loop;
      end if;

      return False;
   end Has_Out_Ports;

   -------------------------
   -- Has_Out_Event_Ports --
   -------------------------

   function Has_Out_Event_Ports (E : Node_Id) return Boolean is
      F : Node_Id;
   begin
      if not AAU.Is_Empty (Features (E)) then
         F := First_Node (Features (E));

         while Present (F) loop
565 566 567
            if Kind (F) = K_Port_Spec_Instance
              and then Is_Out (F)
              and then Is_Event (F)
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
            then
               return True;
            end if;

            F := Next_Node (F);
         end loop;
      end if;

      return False;
   end Has_Out_Event_Ports;

   ---------------
   -- Has_Ports --
   ---------------

   function Has_Ports (E : Node_Id) return Boolean is
      F : Node_Id;
   begin
      if not AAU.Is_Empty (Features (E)) then
         F := First_Node (Features (E));

         while Present (F) loop
            if Kind (F) = K_Port_Spec_Instance then
               return True;
            end if;

            F := Next_Node (F);
         end loop;
      end if;

      return False;
   end Has_Ports;

601 602 603 604 605 606 607 608 609 610 611
   ----------------------
   -- Has_Output_Ports --
   ----------------------

   function Has_Output_Ports (E : Node_Id) return Boolean is
      F : Node_Id;
   begin
      if not AAU.Is_Empty (Features (E)) then
         F := First_Node (Features (E));

         while Present (F) loop
612
            if Kind (F) = K_Port_Spec_Instance and then Is_Out (F) then
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
               return True;
            end if;

            F := Next_Node (F);
         end loop;
      end if;

      return False;
   end Has_Output_Ports;

   ---------------------
   -- Has_Input_Ports --
   ---------------------

   function Has_Input_Ports (E : Node_Id) return Boolean is
      F : Node_Id;
   begin
      if not AAU.Is_Empty (Features (E)) then
         F := First_Node (Features (E));

         while Present (F) loop
634
            if Kind (F) = K_Port_Spec_Instance and then Is_In (F) then
635 636 637 638 639 640 641 642 643 644
               return True;
            end if;

            F := Next_Node (F);
         end loop;
      end if;

      return False;
   end Has_Input_Ports;

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
   ---------------
   -- Has_Modes --
   ---------------

   function Has_Modes (E : Node_Id) return Boolean is
   begin
      pragma Assert (Kind (E) = K_Component_Instance);

      return not AAU.Is_Empty (Modes (E));
   end Has_Modes;

   ----------------------
   -- Get_Source_Ports --
   ----------------------

   function Get_Source_Ports (P : Node_Id) return List_Id is
      function Rec_Get_Source_Ports
        (P : Node_Id;
663
         B : Node_Id := No_Node) return List_Id;
664 665 666 667 668 669 670 671
      --  Recursive internal routine

      --------------------------
      -- Rec_Get_Source_Ports --
      --------------------------

      function Rec_Get_Source_Ports
        (P : Node_Id;
672
         B : Node_Id := No_Node) return List_Id
673 674 675 676 677 678 679
      is
         Result : constant List_Id := New_List (K_List_Id, No_Location);
         C      : Node_Id;
         S      : Node_Id;
         Bus    : Node_Id;
      begin
         if AAU.Is_Empty (Sources (P)) then
680
            AAU.Append_Node_To_List (Make_Node_Container (P, B), Result);
681 682 683 684 685 686 687 688 689 690 691 692
         end if;

         S := First_Node (Sources (P));

         while Present (S) loop
            if Kind (Item (S)) = K_Port_Spec_Instance
              and then Parent_Component (Item (S)) /= No_Node
              and then Is_Thread (Parent_Component (Item (S)))
            then
               --  We reached our end point, append it to the result list

               AAU.Append_Node_To_List
693 694
                 (Make_Node_Container (Item (S), B),
                  Result);
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
            elsif Kind (Item (S)) = K_Port_Spec_Instance
              and then Parent_Component (Item (S)) /= No_Node
              and then (Is_Process_Or_Device (Parent_Component (Item (S))))
            then

               if Is_In (Item (S)) then
                  --  See whether the connection to the process is
                  --  bound to a bus.

                  C := Extra_Item (S);

                  if No (C) then
                     --  There has been definitly a bug while
                     --  expanding connections.

                     raise Program_Error with "Wrong expansion of connections";
                  end if;

                  --  Get the bus of the connection

                  Bus := Get_Bound_Bus (C, False);
               else
                  Bus := No_Node;
               end if;

               if Present (B) and then Present (Bus) and then B /= Bus then
                  Display_Located_Error
                    (Loc (C),
723 724
                     "This connection is involved in a data flow" &
                     " mapped to several different buses",
725 726 727 728 729 730
                     Fatal => True);
               end if;

               --  Fetch recursively all the sources of S

               AAU.Append_Node_To_List
731 732
                 (First_Node (Rec_Get_Source_Ports (Item (S), Bus)),
                  Result);
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
            else
               Display_Located_Error
                 (Loc (P),
                  "This port has a source of a non supported kind",
                  Fatal => True);
            end if;

            S := Next_Node (S);
         end loop;

         return Result;
      end Rec_Get_Source_Ports;

   begin
      if AAU.Is_Empty (Sources (P)) then
         return No_List;
      else
         return Rec_Get_Source_Ports (P, No_Node);
      end if;
   end Get_Source_Ports;

   ---------------------------
   -- Get_Destination_Ports --
   ---------------------------

758
   function Get_Destination_Ports
759 760 761
     (P             : Node_Id;
      Custom_Parent : Node_Id := No_Node) return List_Id
   is
762 763

      function Rec_Get_Destination_Ports
764 765 766
        (P             : Node_Id;
         B             : Node_Id := No_Node;
         Custom_Parent : Node_Id := No_Node) return List_Id;
767 768 769 770 771 772 773
      --  Recursive internal routine

      -------------------------------
      -- Rec_Get_Destination_Ports --
      -------------------------------

      function Rec_Get_Destination_Ports
774 775 776
        (P             : Node_Id;
         B             : Node_Id := No_Node;
         Custom_Parent : Node_Id := No_Node) return List_Id
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
      is
         Result : constant List_Id := New_List (K_List_Id, No_Location);
         C      : Node_Id;
         D      : Node_Id;
         Bus    : Node_Id;
      begin
         D := First_Node (Destinations (P));

         while Present (D) loop
            if Kind (Item (D)) = K_Port_Spec_Instance
              and then Parent_Component (Item (D)) /= No_Node
              and then Is_Thread (Parent_Component (Item (D)))
            then
               --  We reached our end point, append it to the result list

               AAU.Append_Node_To_List
793 794
                 (Make_Node_Container (Item (D), B),
                  Result);
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822

            elsif Kind (Item (D)) = K_Port_Spec_Instance
              and then Parent_Component (Item (D)) /= No_Node
              and then Is_Process (Parent_Component (Item (D)))
            then
               if Is_In (Item (D)) then
                  --  See whether the connection to the process is
                  --  bound to a bus.

                  C := Extra_Item (D);

                  if No (C) then
                     --  There has been definitly a bug while
                     --  expanding connections.

                     raise Program_Error with "Wrong expansion of connections";
                  end if;

                  --  Get the bus of the connection

                  Bus := Get_Bound_Bus (C, False);
               else
                  Bus := No_Node;
               end if;

               if Present (B) and then Present (Bus) and then B /= Bus then
                  Display_Located_Error
                    (Loc (C),
823 824
                     "This connection is involved in a data flow" &
                     " mapped to several different buses",
825 826 827 828 829 830
                     Fatal => True);
               end if;

               --  Fetch recursively all the destinations of D

               AAU.Append_Node_To_List
831 832
                 (First_Node (Rec_Get_Destination_Ports (Item (D), Bus)),
                  Result);
833 834 835 836 837 838 839 840

            elsif Kind (Item (D)) = K_Port_Spec_Instance
              and then Parent_Component (Item (D)) /= No_Node
              and then Is_Device (Parent_Component (Item (D)))
            then
               --  We reached our end point, append it to the result list

               AAU.Append_Node_To_List
841 842 843 844 845 846
                 (Make_Node_Container (Item (D), B),
                  Result);
            elsif Custom_Parent /= No_Node
              and then Is_Device (Custom_Parent)
              and then Get_Port_By_Name (P, Custom_Parent) /= No_Node
            then
847

848 849
               AAU.Append_Node_To_List
                 (First_Node
850 851 852 853
                    (Rec_Get_Destination_Ports
                       (Get_Port_By_Name (P, Custom_Parent),
                        B,
                        No_Node)),
854
                  Result);
855 856 857 858 859 860 861 862 863 864 865 866 867
            else
               Display_Located_Error
                 (Loc (P),
                  "This port has a destination of a non supported kind",
                  Fatal => True);
            end if;

            D := Next_Node (D);
         end loop;

         return Result;
      end Rec_Get_Destination_Ports;
   begin
868
      return Rec_Get_Destination_Ports (P, No_Node, Custom_Parent);
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
   end Get_Destination_Ports;

   ----------------------
   -- Get_Actual_Owner --
   ----------------------

   function Get_Actual_Owner (Spg_Call : Node_Id) return Node_Id is
      Spg            : constant Node_Id := Corresponding_Instance (Spg_Call);
      Data_Component : Node_Id;
      F              : Node_Id;
   begin
      --  If the subprogram call is not a method return No_Node

      if AAU.Is_Empty (Path (Spg_Call)) then
         return No_Node;
      end if;

      Data_Component := Item (First_Node (Path (Spg_Call)));

      --  Traverse all the required access of the subprogram instance
      --  and find the one corresponding to the owner data component.

      if not AAU.Is_Empty (Features (Spg)) then
         F := First_Node (Features (Spg));

         while Present (F) loop
            if Kind (F) = K_Subcomponent_Access_Instance then
               --  FIXME: We stop at the first met feature that
               --  corresponds to our criteria.

               --  The corresponding declaration of Data_Component is
               --  always a component type and not a component
               --  implementation. However the type of the feature F
               --  may be a component type as well as a component
               --  implementation. We test both cases.

               declare
                  Dcl_Data_Component : constant Node_Id :=
                    Corresponding_Declaration (Data_Component);
908
                  Dcl_F : constant Node_Id :=
909 910 911 912 913
                    Corresponding_Declaration (Corresponding_Instance (F));

                  use Ocarina.ME_AADL.AADL_Tree.Nodes;
               begin
                  exit when
914 915
                    (ATN.Kind (Dcl_F) = K_Component_Type
                     and then Dcl_F = Dcl_Data_Component)
916
                    or else
917 918 919 920 921
                    (ATN.Kind (Dcl_F) = K_Component_Implementation
                     and then
                       ATN.Corresponding_Entity
                         (ATN.Component_Type_Identifier (Dcl_F)) =
                       Dcl_Data_Component);
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
               end;
            end if;

            F := Next_Node (F);
         end loop;
      end if;

      --  If no feature matched, raise an error

      if AAU.Is_Empty (Features (Spg)) or else No (F) then
         Display_Located_Error
           (Loc (Spg),
            "Feature subprogram has not access to its owner component",
            Fatal => True);
      end if;

      return Get_Subcomponent_Access_Source (F);
   end Get_Actual_Owner;

   ---------------------------
   -- Get_Container_Process --
   ---------------------------

   function Get_Container_Process (E : Node_Id) return Node_Id is
      pragma Assert (Present (E));
947
   begin
948 949 950 951 952 953 954 955
      case Kind (E) is
         when K_Call_Instance =>
            return Get_Container_Process (Parent_Sequence (E));

         when K_Call_Sequence_Instance | K_Subcomponent_Instance =>
            return Get_Container_Process (Parent_Component (E));

         when others =>
956 957
            if Is_Thread (E)
              or else Is_Subprogram (E)
958 959
              or else AAU.Is_Data (E)
            then
960
               return Get_Container_Process (Parent_Subcomponent (E));
961

962 963
            elsif Is_Process (E) or else Is_Device (E) then
               return Parent_Subcomponent (E);
964

965 966 967 968 969 970 971 972
            elsif Is_Abstract (E) then
               --  It is allowed for a thread to be part of an
               --  abstract component (e.g. a device driver). In this
               --  case, we cannot retrieve the corresponding process
               --  instance.

               return No_Node;

973
            else
974 975 976 977 978 979
               raise Program_Error
                 with "Wrong node kind in " &
                 "Get_Container_Process: " &
                 Kind (E)'Img &
                 " " &
                 Get_Category_Of_Component (E)'Img;
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001

            end if;
      end case;
   end Get_Container_Process;

   --------------------------
   -- Get_Container_Thread --
   --------------------------

   function Get_Container_Thread (E : Node_Id) return Node_Id is
   begin
      case Kind (E) is
         when K_Call_Instance =>
            return Get_Container_Thread (Parent_Sequence (E));

         when K_Call_Sequence_Instance =>
            return Parent_Component (E);

         when others =>
            if Is_Subprogram (E) then
               return Get_Container_Thread (Parent_Subcomponent (E));
            else
1002 1003 1004 1005
               raise Program_Error
                 with "Wrong node kind in " &
                 "Get_Container_Thread: " &
                 Kind (E)'Img;
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
            end if;
      end case;
   end Get_Container_Thread;

   --------------------------------
   -- Get_Handling_Internal_Name --
   --------------------------------

   function Get_Handling_Internal_Name
     (E          : Node_Id;
      Comparison : Comparison_Kind;
1017
      Handling   : Handling_Kind) return Name_Id
1018 1019 1020 1021
   is
   begin
      case Comparison is
         when By_Name =>
1022
            Get_Name_String (Map_Ada_Defining_Identifier (E));
1023
         --  Get_Name_String (Compute_Full_Name_Of_Instance (E));
1024

1025 1026 1027 1028 1029
         when By_Node =>
            Set_Nat_To_Name_Buffer (Nat (E));
      end case;

      Add_Str_To_Name_Buffer ("%Handling%" & Handling'Img);
1030

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
      return Name_Find;
   end Get_Handling_Internal_Name;

   ------------------
   -- Set_Handling --
   ------------------

   procedure Set_Handling
     (E          : Node_Id;
      Comparison : Comparison_Kind;
      Handling   : Handling_Kind;
      A          : Node_Id)
   is
1044 1045
      Internal_Name : constant Name_Id :=
        Get_Handling_Internal_Name (E, Comparison, Handling);
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
   begin
      Set_Name_Table_Info (Internal_Name, Nat (A));
      May_Be_Append_Handling_Entry (E, Comparison, Handling, A);
   end Set_Handling;

   ------------------
   -- Get_Handling --
   ------------------

   function Get_Handling
     (E          : Node_Id;
      Comparison : Comparison_Kind;
1059
      Handling   : Handling_Kind) return Node_Id
1060
   is
1061 1062
      Internal_Name : constant Name_Id :=
        Get_Handling_Internal_Name (E, Comparison, Handling);
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
   begin
      return Node_Id (Get_Name_Table_Info (Internal_Name));
   end Get_Handling;

   --------------------
   -- Bind_Two_Nodes --
   --------------------

   function Bind_Two_Nodes (N_1 : Node_Id; N_2 : Node_Id) return Node_Id is
      function Get_Binding_Internal_Name
        (N_1 : Node_Id;
1074
         N_2 : Node_Id) return Name_Id;
1075 1076 1077 1078 1079 1080 1081 1082
      --  Return an internal name id useful for the binding

      -------------------------------
      -- Get_Binding_Internal_Name --
      -------------------------------

      function Get_Binding_Internal_Name
        (N_1 : Node_Id;
1083
         N_2 : Node_Id) return Name_Id
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
      is
      begin
         Set_Nat_To_Name_Buffer (Nat (N_1));
         Add_Str_To_Name_Buffer ("%Binding%");
         Add_Nat_To_Name_Buffer (Nat (N_2));
         return Name_Find;
      end Get_Binding_Internal_Name;

      I_Name : constant Name_Id := Get_Binding_Internal_Name (N_1, N_2);
      N      : Node_Id;
   begin
      --  If the Bind_Two_Nodes has already been called on N_1 and
      --  N_1, return the result of the first call.

      if Get_Name_Table_Info (I_Name) /= 0 then
         return Node_Id (Get_Name_Table_Info (I_Name));
      end if;

      --  Otherwise, create a new binding node

1104
      N := Make_Identifier (No_Location, No_Name, No_Name, No_Node);
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
      Set_Name_Table_Info (I_Name, Int (N));

      return N;
   end Bind_Two_Nodes;

   --------------------------------------
   -- Bind_Transport_API_Internal_Name --
   --------------------------------------

   function Bind_Transport_API_Internal_Name (P : Node_Id) return Name_Id is
   begin
      pragma Assert (Is_Process (P));

      Set_Nat_To_Name_Buffer (Nat (P));
      Add_Str_To_Name_Buffer ("%transport%layer%binding%");
      return Name_Find;
   end Bind_Transport_API_Internal_Name;

   ------------------------
   -- Bind_Transport_API --
   ------------------------

1127
   procedure Bind_Transport_API (P : Node_Id; T : Supported_Transport_APIs) is
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
      I_Name : constant Name_Id := Bind_Transport_API_Internal_Name (P);
   begin
      Set_Name_Table_Byte (I_Name, Supported_Transport_APIs'Pos (T));
   end Bind_Transport_API;

   -------------------------
   -- Fetch_Transport_API --
   -------------------------

   function Fetch_Transport_API
1138
     (P : Node_Id) return Supported_Transport_APIs
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
   is
      I_Name : constant Name_Id := Bind_Transport_API_Internal_Name (P);
   begin
      return Supported_Transport_APIs'Val (Get_Name_Table_Byte (I_Name));
   end Fetch_Transport_API;

   -------------------------------
   -- Map_Ada_Full_Feature_Name --
   -------------------------------

   function Map_Ada_Full_Feature_Name
     (E      : Node_Id;
1151
      Suffix : Character := ASCII.NUL) return Name_Id
1152 1153
   is
   begin
1154 1155 1156 1157 1158
      Get_Name_String
        (Compute_Full_Name_Of_Instance
           (Instance         => E,
            Display_Name     => True,
            Keep_Root_System => False));
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
      Get_Name_String (ADU.To_Ada_Name (Name_Find));

      if Suffix /= ASCII.NUL then
         Add_Str_To_Name_Buffer ('_' & Suffix);
      end if;

      return Name_Find;
   end Map_Ada_Full_Feature_Name;

   ----------------------------------
   -- Map_Ada_Data_Type_Designator --
   ----------------------------------

   function Map_Ada_Data_Type_Designator (E : Node_Id) return Node_Id is
      pragma Assert (AAU.Is_Data (E));

1175
   begin
1176
      return ADU.Extract_Designator
1177
          (ADN.Type_Definition_Node (Backend_Node (Identifier (E))));
1178 1179 1180 1181 1182 1183 1184 1185 1186
   end Map_Ada_Data_Type_Designator;

   ---------------------------------
   -- Map_Ada_Full_Parameter_Name --
   ---------------------------------

   function Map_Ada_Full_Parameter_Name
     (Spg    : Node_Id;
      P      : Node_Id;
1187
      Suffix : Character := ASCII.NUL) return Name_Id
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
   is
   begin
      pragma Assert (Kind (P) = K_Parameter_Instance);

      if Kind (Spg) = K_Component_Instance and then Is_Subprogram (Spg) then
         Get_Name_String (Compute_Full_Name_Of_Instance (Spg, True));
      elsif Kind (Spg) = K_Call_Instance then
         Get_Name_String (Display_Name (Identifier (Spg)));
      else
         raise Program_Error with "Wrong subprogram kind";
      end if;

      Add_Char_To_Name_Buffer ('_');
      Get_Name_String_And_Append (Display_Name (Identifier (P)));

      --  Convert the name to a valid Ada identifier name

      Get_Name_String (ADU.To_Ada_Name (Name_Find));

      if Suffix /= ASCII.NUL then
         Add_Str_To_Name_Buffer ('_' & Suffix);
      end if;

      return Name_Find;
   end Map_Ada_Full_Parameter_Name;

   -----------------------------
   -- Map_Ada_Enumerator_Name --
   -----------------------------

   function Map_Ada_Enumerator_Name
     (E      : Node_Id;
1220
      Server : Boolean := False) return Name_Id
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
   is
      Ada_Name_1 : Name_Id;
      Ada_Name_2 : Name_Id;
   begin
      pragma Assert
        (Is_Subprogram (E) or else Kind (E) = K_Subcomponent_Instance);

      if Is_Subprogram (E)
        or else Is_Process (Corresponding_Instance (E))
        or else Is_Device (Corresponding_Instance (E))
      then
         --  For subprograms and processes, the enumerator name is
         --  mapped from the entity name.

         Get_Name_String (ADU.To_Ada_Name (Display_Name (Identifier (E))));
         Add_Str_To_Name_Buffer ("_K");

      elsif Is_Thread (Corresponding_Instance (E)) then
         --  For threads, the enumerator name is mapped from the
         --  containing process or abstract component name and the
         --  thread subcomponent name.

         --  Verifiy that the thread is a subcomponent of a process,
         --  or an abstract component (in the case of threads that
         --  belong to a device driver).

1247 1248 1249
         pragma Assert
           (Is_Process (Parent_Component (E))
            or else Is_Abstract (Parent_Component (E)));
1250 1251

         if Is_Process (Parent_Component (E)) then
1252 1253 1254 1255
            Ada_Name_1 :=
              ADU.To_Ada_Name
                (Display_Name
                   (Identifier (Parent_Subcomponent (Parent_Component (E)))));
1256 1257

         elsif Is_Abstract (Parent_Component (E)) then
1258 1259 1260
            Ada_Name_1 :=
              ADU.To_Ada_Name
                (Display_Name (Identifier (Parent_Component (E))));
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270

         end if;

         Ada_Name_2 := ADU.To_Ada_Name (Display_Name (Identifier (E)));

         Get_Name_String (Ada_Name_1);
         Add_Char_To_Name_Buffer ('_');
         Get_Name_String_And_Append (Ada_Name_2);
         Add_Str_To_Name_Buffer ("_K");
      else
1271 1272
         raise Program_Error
           with "Wrong node kind for Map_Ada_Enumerator_Name " & Kind (E)'Img;
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
      end if;

      if Server then
         Add_Str_To_Name_Buffer ("_Server");
      end if;

      return Name_Find;
   end Map_Ada_Enumerator_Name;

   ---------------------------------
   -- Map_Ada_Defining_Identifier --
   ---------------------------------

   function Map_Ada_Defining_Identifier
     (A      : Node_Id;
1288
      Suffix : String := "") return Name_Id
1289
   is
1290 1291 1292
      I         : Node_Id := A;
      N         : Node_Id := No_Node;
      J         : Node_Id;
1293 1294 1295 1296 1297 1298 1299 1300
      Name_List : List_Id;
   begin
      if Kind (A) /= K_Identifier then
         I := Identifier (A);
      end if;

      if Kind (A) = K_Component_Instance then
         N := Namespace (A);
1301

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
      elsif Kind (A) = K_Subcomponent_Instance then
         if Present (Parent_Component (A)) then
            N := Namespace (Parent_Component (A));
         end if;
      end if;

      if N /= No_Node
        and then Display_Name (Identifier (N)) /= No_Name
        and then Get_Category_Of_Component (A) /= CC_Data
      then
         --  Use both namespace and identifier to build the Ada
         --  defining identifier, to avoid collisions in the Ada
         --  namespace.

         --  XXX Note: we do not handle data component types for now,
         --  as their mapping is unclear for now, see Code generation
         --  annex for more details.

         Name_List := AAU.Split_Name (N);

         J := First_Node (Name_List);

         if Present (J) then
            Get_Name_String (To_Ada_Name (Display_Name (J)));
            J := Next_Node (J);

            while Present (J) loop
1329 1330
               Add_Str_To_Name_Buffer
                 ("_" & Get_Name_String (Display_Name (J)));
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
               J := Next_Node (J);
            end loop;
         end if;
         Add_Str_To_Name_Buffer ("_" & Get_Name_String (Display_Name (I)));

      else
         Get_Name_String (To_Ada_Name (Display_Name (I)));
      end if;

      if Suffix /= "" then
         Add_Str_To_Name_Buffer ("_" & Suffix);
      end if;

      return Name_Find;
   end Map_Ada_Defining_Identifier;

   function Map_Ada_Defining_Identifier
     (A      : Node_Id;
1349
      Suffix : String := "") return Node_Id
1350 1351 1352
   is
   begin
      return Make_Defining_Identifier
1353
          (Map_Ada_Defining_Identifier (A, Suffix));
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
   end Map_Ada_Defining_Identifier;

   ----------------------------
   -- Map_Ada_Component_Name --
   ----------------------------

   function Map_Ada_Component_Name (F : Node_Id) return Name_Id is
   begin
      Get_Name_String (To_Ada_Name (Display_Name (Identifier (F))));
      Add_Str_To_Name_Buffer ("_DATA");
      return Name_Find;
   end Map_Ada_Component_Name;

   --------------------------------------------
   -- Map_Ada_Protected_Aggregate_Identifier --
   --------------------------------------------

   function Map_Ada_Protected_Aggregate_Identifier
     (S : Node_Id;
1373
      A : Node_Id) return Node_Id
1374 1375 1376 1377
   is
      S_Name : Name_Id;
      A_Name : Name_Id;
   begin
1378 1379 1380
      pragma Assert
        (Kind (S) = K_Subcomponent_Access_Instance
         and then Kind (A) = K_Subcomponent_Instance);
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

      S_Name := To_Ada_Name (Display_Name (Identifier (S)));
      A_Name := To_Ada_Name (Display_Name (Identifier (A)));

      Get_Name_String (S_Name);
      Add_Char_To_Name_Buffer ('_');
      Get_Name_String_And_Append (A_Name);

      return Make_Defining_Identifier (Name_Find);
   end Map_Ada_Protected_Aggregate_Identifier;

   --------------------------------------
   -- Map_Ada_Default_Value_Identifier --
   --------------------------------------

   function Map_Ada_Default_Value_Identifier (D : Node_Id) return Node_Id is
      I : Node_Id;
   begin
      if Kind (D) /= K_Identifier then
         I := Identifier (D);
      end if;

      Get_Name_String (To_Ada_Name (Display_Name (I)));
      Add_Str_To_Name_Buffer ("_Default_Value");
      return Make_Defining_Identifier (Name_Find);
   end Map_Ada_Default_Value_Identifier;

   --------------------------------
   -- Map_Ada_Package_Identifier --
   --------------------------------

   function Map_Ada_Package_Identifier (E : Node_Id) return Node_Id is
      Port_Name   : Name_Id;
      Thread_Name : Name_Id;
   begin
1416
      pragma Assert (AAU.Is_Data (E) or else Kind (E) = K_Port_Spec_Instance);
1417 1418 1419 1420

      if AAU.Is_Data (E) then
         Get_Name_String (To_Ada_Name (Display_Name (Identifier (E))));
      else
1421 1422 1423 1424 1425
         Port_Name   := To_Ada_Name (Display_Name (Identifier (E)));
         Thread_Name :=
           To_Ada_Name
             (Display_Name
                (Identifier (Parent_Subcomponent (Parent_Component (E)))));
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
         Get_Name_String (Thread_Name);
         Add_Char_To_Name_Buffer ('_');
         Get_Name_String_And_Append (Port_Name);
      end if;

      Add_Str_To_Name_Buffer ("_Pkg");

      return Make_Defining_Identifier (Name_Find);
   end Map_Ada_Package_Identifier;

   -----------------------------------
   -- Map_Ada_Subprogram_Identifier --
   -----------------------------------

   function Map_Ada_Subprogram_Identifier (E : Node_Id) return Node_Id is
1441 1442 1443 1444
      pragma Assert
        (Is_Thread (E)
         or else Is_Subprogram (E)
         or else Kind (E) = K_Port_Spec_Instance);
yoogx's avatar
yoogx committed
1445

1446 1447
      Spg_Name : Name_Id;

yoogx's avatar
yoogx committed
1448
   begin
1449 1450 1451
      if Is_Subprogram (E)
        and then Get_Source_Language (E) /= Language_Ada_95
      then
1452 1453
         Display_Located_Error
           (Loc (E),
1454 1455
            "This is not an Ada subprogram",
            Fatal => True);
1456 1457 1458 1459 1460 1461
      end if;

      --  Get the subprogram name

      if Is_Subprogram (E) then
         Spg_Name := Get_Source_Name (E);
yoogx's avatar
yoogx committed
1462

1463 1464
      elsif Is_Thread (E) then
         Spg_Name := Get_Thread_Compute_Entrypoint (E);
yoogx's avatar
yoogx committed
1465

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
      else
         Spg_Name := Get_Port_Compute_Entrypoint (E);
      end if;

      return Map_Ada_Subprogram_Identifier (Spg_Name);
   end Map_Ada_Subprogram_Identifier;

   -----------------------------------
   -- Map_Ada_Subprogram_Identifier --
   -----------------------------------

   function Map_Ada_Subprogram_Identifier (N : Name_Id) return Node_Id is
      P_Name : Name_Id;
      Result : Node_Id;
      D      : Node_Id;
   begin
      --  Get the package implementation and add the 'with' clause

      P_Name := Unit_Name (N);

      if P_Name = No_Name then
         Display_Error
1488 1489
           ("You must give the subprogram implementation name",
            Fatal => True);
1490 1491 1492 1493
      end if;

      D := Make_Designator (P_Name);
      ADN.Set_Corresponding_Node
1494 1495
        (ADN.Defining_Identifier (D),
         New_Node (ADN.K_Package_Specification));
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
      Add_With_Package (D);

      --  Get the full implementation name

      Get_Name_String (Local_Name (N));
      Result := Make_Defining_Identifier (Name_Find);
      Set_Homogeneous_Parent_Unit_Name (Result, D);
      return Result;
   end Map_Ada_Subprogram_Identifier;

   -----------------------------
   -- Map_Ada_Subprogram_Spec --
   -----------------------------

   function Map_Ada_Subprogram_Spec (S : Node_Id) return Node_Id is
      Profile : constant List_Id := ADU.New_List (ADN.K_Parameter_Profile);
      Param   : Node_Id;
      Mode    : Mode_Id;
      F       : Node_Id;
      N       : Node_Id;
      D       : Node_Id;
      Field   : Node_Id;
   begin
      pragma Assert (Is_Subprogram (S));

      --  We build the parameter profile of the subprogram instance by
      --  adding:

      --  First, the parameter features mapping

      if not AAU.Is_Empty (Features (S)) then
         F := First_Node (Features (S));

         while Present (F) loop
            if Kind (F) = K_Parameter_Instance then
               if Is_In (F) and then Is_Out (F) then
                  Mode := Mode_Inout;
               elsif Is_Out (F) then
                  Mode := Mode_Out;
               elsif Is_In (F) then
                  Mode := Mode_In;
               else
                  Display_Located_Error
                    (Loc (F),
                     "Unspecified parameter mode",
                     Fatal => True);
               end if;

               D := Corresponding_Instance (F);

1546 1547 1548 1549 1550
               Param :=
                 ADU.Make_Parameter_Specification
                   (Map_Ada_Defining_Identifier (F),
                    Map_Ada_Data_Type_Designator (D),
                    Mode);
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589

               ADU.Append_Node_To_List (Param, Profile);
            end if;

            F := Next_Node (F);
         end loop;
      end if;

      --  Second, the data access mapping. The data accesses are not
      --  mapped in the case of pure call sequence subprogram because
      --  they are used only to close the access chain.

      if Get_Subprogram_Kind (S) /= Subprogram_Pure_Call_Sequence then
         if not AAU.Is_Empty (Features (S)) then
            F := First_Node (Features (S));

            while Present (F) loop
               if Kind (F) = K_Subcomponent_Access_Instance then
                  case Get_Required_Data_Access (Corresponding_Instance (F)) is
                     when Access_Read_Only =>
                        Mode := Mode_In;
                     when Access_Write_Only =>
                        Mode := Mode_Out;
                     when Access_Read_Write =>
                        Mode := Mode_Inout;
                     when Access_None =>
                        --  By default, we allow read/write access

                        Mode := Mode_Inout;
                     when others =>
                        Display_Located_Error
                          (Loc (F),
                           "Unsupported required access",
                           Fatal => True);
                  end case;

                  D := Corresponding_Instance (F);

                  case Get_Data_Representation (D) is
1590 1591 1592 1593 1594 1595 1596 1597 1598
                     when Data_Integer     |
                       Data_Boolean        |
                       Data_Float          |
                       Data_Fixed          |
                       Data_String         |
                       Data_Wide_String    |
                       Data_Character      |
                       Data_Wide_Character |
                       Data_Array          =>
1599 1600 1601 1602 1603
                        --  If the data component is a simple data
                        --  component (not a structure), we simply add a
                        --  parameter with the computed mode and with a
                        --  type mapped from the data component.

1604 1605 1606 1607 1608
                        Param :=
                          ADU.Make_Parameter_Specification
                            (Map_Ada_Defining_Identifier (F),
                             Map_Ada_Data_Type_Designator (D),
                             Mode);
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
                        ADU.Append_Node_To_List (Param, Profile);

                     when Data_Struct | Data_With_Accessors =>
                        --  If the data component is a complex data
                        --  component (which has subcomponents), we add a
                        --  parameter with the computed mode and with a
                        --  type mapped from each subcomponent type.

                        Field := First_Node (Subcomponents (D));

                        while Present (Field) loop
                           --  The parameter name is mapped from the
                           --  container data component and the data
                           --  subcomponent.

1624
                           if AAU.Is_Data (Corresponding_Instance (Field)) then
1625 1626 1627 1628 1629 1630 1631 1632
                              Param :=
                                ADU.Make_Parameter_Specification
                                  (Map_Ada_Protected_Aggregate_Identifier
                                     (F,
                                      Field),
                                   Map_Ada_Data_Type_Designator
                                     (Corresponding_Instance (Field)),
                                   Mode);
1633 1634
                              ADU.Append_Node_To_List (Param, Profile);
                           end if;
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655

                           Field := Next_Node (Field);
                        end loop;

                     when others =>
                        Display_Located_Error
                          (Loc (F),
                           "Unsupported data type",
                           Fatal => True);
                  end case;
               end if;

               F := Next_Node (F);
            end loop;
         end if;
      end if;

      --  Last, if the subprogram has OUT ports, we add an additional
      --  Status parameter.

      if Has_Out_Ports (S) then
1656 1657 1658 1659 1660 1661
         Param :=
           ADU.Make_Parameter_Specification
             (Make_Defining_Identifier (PN (P_Status)),
              Extract_Designator
                (ADN.Type_Definition_Node (Backend_Node (Identifier (S)))),
              Mode_Inout);
1662 1663 1664
         ADU.Append_Node_To_List (Param, Profile);
      end if;

1665 1666 1667 1668 1669
      N :=
        ADU.Make_Subprogram_Specification
          (Map_Ada_Defining_Identifier (S),
           Profile,
           No_Node);
1670 1671 1672 1673 1674 1675 1676 1677

      --  If the program is an Opaque_C, we add the pragma Import
      --  instruction in the private part of the current package

      if Get_Subprogram_Kind (S) = Subprogram_Opaque_C then
         declare
            use ADN;

1678 1679 1680 1681 1682 1683 1684 1685
            P : constant Node_Id :=
              Make_Pragma_Statement
                (Pragma_Import,
                 Make_List_Id
                   (Make_Defining_Identifier (PN (P_C)),
                    Map_Ada_Defining_Identifier (S),
                    Make_Literal
                      (ADV.New_String_Value (Get_Source_Name (S)))));
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
         begin
            --  We must ensure that we are inside the scope of a
            --  package spec before inserting the pragma. In fact,
            --  Map_Ada_Subprogram_Spec is called also when we build
            --  the body of the subprogram, and we do not want to
            --  insert the pragma when building the body.

            if ADN.Kind (Current_Package) = K_Package_Specification then
               ADU.Append_Node_To_List (P, Private_Part (Current_Package));
            end if;
         end;
      end if;
      return N;
   end Map_Ada_Subprogram_Spec;

   -----------------------------
   -- Map_Ada_Subprogram_Body --
   -----------------------------

   function Map_Ada_Subprogram_Body (S : Node_Id) return Node_Id is
      Spec         : constant Node_Id := Map_Ada_Subprogram_Spec (S);
      Declarations : constant List_Id := New_List (ADN.K_Declaration_List);
      Statements   : constant List_Id := New_List (ADN.K_Statement_List);

      Profile  : List_Id;
      N        : Node_Id;
      F        : Node_Id;
      Call_Seq : Node_Id;
   begin
      case Get_Subprogram_Kind (S) is
         when Subprogram_Empty =>
            --  An empty AADL subprogram is mapped into an Ada
            --  subprogram that raises an exception to warn the user.

1720 1721 1722
            N :=
              Make_Exception_Declaration
                (Make_Defining_Identifier (EN (E_NYI)));
1723 1724 1725 1726 1727 1728
            ADU.Append_Node_To_List (N, Declarations);

            N := Make_Raise_Statement (Make_Defining_Identifier (EN (E_NYI)));
            ADU.Append_Node_To_List (N, Statements);

            return Make_Subprogram_Implementation
1729 1730 1731
                (Spec,
                 Declarations,
                 Statements);
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741

         when Subprogram_Opaque_C =>
            --  An opaque C AADL subprogram is a subprogram which is
            --  implemented by a C subprogram. We perform the mapping
            --  between the two subprograms using the Ada `Import'
            --  pragma in the specification. Therefore, we have
            --  nothing to do in the body.

            return No_Node;

1742
         when Subprogram_Opaque_Ada_95 | Subprogram_Default =>
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
            --  An opaque Ada AADL subprogram is a subprogram which is
            --  implemented by an Ada subprogram. We perform the
            --  mapping between the two subprograms using the Ada
            --  renaming facility.

            --  Add the proper `with' clause

            N := Make_Designator (Unit_Name (Get_Source_Name (S)));
            Add_With_Package (N);

            --  Perform the renaming

1755 1756 1757 1758
            N :=
              Make_Designator
                (Local_Name (Get_Source_Name (S)),
                 Unit_Name (Get_Source_Name (S)));
1759 1760 1761 1762 1763 1764 1765 1766 1767
            ADN.Set_Renamed_Entity (Spec, N);
            return Spec;

         when Subprogram_Opaque_Ada_95_Transfo =>
            --  Same as above, but does not with the package, because
            --  it is actually an instanciated generic package

            --  Perform the renaming

1768 1769 1770 1771
            N :=
              Make_Designator
                (Local_Name (Get_Transfo_Source_Name (S)),
                 Unit_Name (Get_Transfo_Source_Name (S)));
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
            ADN.Set_Renamed_Entity (Spec, N);
            return Spec;

         when Subprogram_Pure_Call_Sequence =>
            --  A pure call sequence subprogram is a subprogram that
            --  has exactly one call sequence. The behaviour of this
            --  subprogram is simply the call to the subprograms
            --  present in its call list.

            Handle_Call_Sequence
              (S,
               Make_Defining_Identifier (PN (P_Status)),
               First_Node (Calls (S)),
               Declarations,
               Statements);
            return ADU.Make_Subprogram_Implementation
1788 1789 1790
                (Spec,
                 Declarations,
                 Statements);
1791 1792 1793 1794 1795 1796 1797

         when Subprogram_Hybrid_Ada_95 =>
            --  Hybrid subprograms are subprograms that contain more
            --  that one call sequence.

            --  Declare the Status local variable

1798 1799 1800 1801 1802 1803 1804
            N :=
              Make_Object_Declaration
                (Defining_Identifier =>
                   Make_Defining_Identifier (PN (P_Status)),
                 Object_Definition =>
                   Make_Defining_Identifier
                     (Map_Ada_Subprogram_Status_Name (S)));
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
            ADU.Append_Node_To_List (N, Declarations);

            --  Initialise the record fields that correspond to IN
            --  parameters.

            if not AAU.Is_Empty (Features (S)) then
               F := First_Node (Features (S));

               while Present (F) loop
                  if Kind (F) = K_Parameter_Instance and then Is_In (F) then
1815 1816 1817 1818 1819 1820 1821
                     N :=
                       Make_Assignment_Statement
                         (Make_Designator
                            (To_Ada_Name (Display_Name (Identifier (F))),
                             PN (P_Status)),
                          Make_Designator
                            (To_Ada_Name (Display_Name (Identifier (F)))));
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
                     ADU.Append_Node_To_List (N, Statements);
                  end if;

                  F := Next_Node (F);
               end loop;
            end if;

            Profile := New_List (ADN.K_Parameter_Profile);

            --  Append the 'Status' variable to the call profile

            N := Make_Defining_Identifier (PN (P_Status));
            ADU.Append_Node_To_List (N, Profile);

            --  For each call sequence, we add the subprogram that
            --  handles it.

            Call_Seq := First_Node (Calls (S));

            while Present (Call_Seq) loop
1842 1843 1844 1845 1846
               N :=
                 Make_Attribute_Designator
                   (Make_Defining_Identifier
                      (Map_Ada_Call_Seq_Subprogram_Name (S, Call_Seq)),
                    A_Access);
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
               ADU.Append_Node_To_List (N, Profile);

               Call_Seq := Next_Node (Call_Seq);
            end loop;

            --  Call the implementation subprogram

            --  Add the proper `with' clause

            N := Make_Designator (Unit_Name (Get_Source_Name (S)));
            Add_With_Package (N);

1859 1860 1861 1862
            N :=
              Make_Designator
                (Local_Name (Get_Source_Name (S)),
                 Unit_Name (Get_Source_Name (S)));
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874

            N := Make_Subprogram_Call (ADN.Defining_Identifier (N), Profile);
            ADU.Append_Node_To_List (N, Statements);

            --  Update the OUT parameters from the corresponding
            --  record fields.

            if not AAU.Is_Empty (Features (S)) then
               F := First_Node (Features (S));

               while Present (F) loop
                  if Kind (F) = K_Parameter_Instance and then Is_Out (F) then
1875 1876 1877 1878 1879 1880 1881
                     N :=
                       Make_Assignment_Statement
                         (Make_Designator
                            (To_Ada_Name (Display_Name (Identifier (F)))),
                          Make_Designator
                            (To_Ada_Name (Display_Name (Identifier (F))),
                             PN (P_Status)));
1882 1883 1884 1885 1886 1887 1888 1889
                     ADU.Append_Node_To_List (N, Statements);
                  end if;

                  F := Next_Node (F);
               end loop;
            end if;

            return Make_Subprogram_Implementation
1890 1891 1892
                (Spec,
                 Declarations,
                 Statements);
1893 1894 1895 1896 1897

         when Subprogram_Lustre =>
            --  In PolyORB-HI-Ada, a Lustre subprogram is mapped onto an Ada
            --  subprogram that raises an exception to warn the user.

1898 1899 1900
            N :=
              Make_Exception_Declaration
                (Make_Defining_Identifier (EN (E_NYI)));
1901 1902 1903 1904 1905 1906
            ADU.Append_Node_To_List (N, Declarations);

            N := Make_Raise_Statement (Make_Defining_Identifier (EN (E_NYI)));
            ADU.Append_Node_To_List (N, Statements);

            return Make_Subprogram_Implementation
1907 1908 1909
                (Spec,
                 Declarations,
                 Statements);
1910 1911 1912 1913

         when others =>
            Display_Located_Error
              (Loc (S),
1914 1915
               "This kind of subprogram is not supported: " &
               Get_Subprogram_Kind (S)'Img,
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
               Fatal => True);
            return No_Node;
      end case;
   end Map_Ada_Subprogram_Body;

   --------------------------------------
   -- Map_Ada_Call_Seq_Subprogram_Spec --
   --------------------------------------

   function Map_Ada_Call_Seq_Subprogram_Spec
     (Spg : Node_Id;
1927
      Seq : Node_Id) return Node_Id
1928 1929 1930 1931
   is
      Profile : constant List_Id := New_List (ADN.K_Parameter_Profile);
      N       : Node_Id;
   begin
1932 1933 1934 1935 1936
      N :=
        Make_Parameter_Specification
          (Make_Defining_Identifier (PN (P_Status)),
           Make_Defining_Identifier (Map_Ada_Subprogram_Status_Name (Spg)),
           Mode_Inout);
1937 1938
      ADU.Append_Node_To_List (N, Profile);

1939 1940 1941 1942 1943
      N :=
        Make_Subprogram_Specification
          (Make_Defining_Identifier
             (Map_Ada_Call_Seq_Subprogram_Name (Spg, Seq)),
           Profile);
1944 1945 1946 1947 1948 1949 1950 1951 1952
      return N;
   end Map_Ada_Call_Seq_Subprogram_Spec;

   --------------------------------------
   -- Map_Ada_Call_Seq_Subprogram_Body --
   --------------------------------------

   function Map_Ada_Call_Seq_Subprogram_Body
     (Spg : Node_Id;
1953
      Seq : Node_Id) return Node_Id
1954
   is
1955
      Spec : constant Node_Id := Map_Ada_Call_Seq_Subprogram_Spec (Spg, Seq);
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
      Declarations : constant List_Id := New_List (ADN.K_Declaration_List);
      Statements   : constant List_Id := New_List (ADN.K_Statement_List);
   begin
      Handle_Call_Sequence
        (Spg,
         Make_Defining_Identifier (PN (P_Status)),
         Seq,
         Declarations,
         Statements);

      return Make_Subprogram_Implementation (Spec, Declarations, Statements);
   end Map_Ada_Call_Seq_Subprogram_Body;

   ------------------------------------
   -- Map_Ada_Subprogram_Status_Name --
   ------------------------------------

   function Map_Ada_Subprogram_Status_Name (S : Node_Id) return Name_Id is
   begin
1975
      pragma Assert (Is_Subprogram (S) or else Kind (S) = K_Call_Instance);
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

      Get_Name_String (ADU.To_Ada_Name (Display_Name (Identifier (S))));
      Add_Str_To_Name_Buffer ("_Status");
      return Name_Find;
   end Map_Ada_Subprogram_Status_Name;

   --------------------------------------
   -- Map_Ada_Call_Seq_Subprogram_Name --
   --------------------------------------

   function Map_Ada_Call_Seq_Subprogram_Name
     (Spg : Node_Id;
1988
      Seq : Node_Id) return Name_Id
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
   is
      Spg_Name : Name_Id;
      Seg_Name : Name_Id;
   begin
      pragma Assert
        (Is_Subprogram (Spg) and then Kind (Seq) = K_Call_Sequence_Instance);

      Spg_Name := ADU.To_Ada_Name (Display_Name (Identifier (Spg)));
      Seg_Name := ADU.To_Ada_Name (Display_Name (Identifier (Seq)));

      Get_Name_String (Spg_Name);
      Add_Char_To_Name_Buffer ('_');
      Get_Name_String_And_Append (Seg_Name);
      return Name_Find;
   end Map_Ada_Call_Seq_Subprogram_Name;

   ----------------------------------
   -- Map_Ada_Call_Seq_Access_Name --
   ----------------------------------

2009
   function Map_Ada_Call_Seq_Access_Name (S : Node_Id) return Name_Id is
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
      Spg_Name : Name_Id;
   begin
      pragma Assert (Is_Subprogram (S));

      Spg_Name := ADU.To_Ada_Name (Display_Name (Identifier (S)));

      Get_Name_String (Spg_Name);
      Add_Str_To_Name_Buffer ("_Sequence_Access");
      return Name_Find;
   end Map_Ada_Call_Seq_Access_Name;

   -----------------------------
   -- Map_Ada_Call_Seq_Access --
   -----------------------------

   function Map_Ada_Call_Seq_Access (S : Node_Id) return Node_Id is
      Profile : constant List_Id := New_List (ADN.K_Parameter_Profile);
      N       : Node_Id;
   begin
2029 2030 2031 2032 2033
      N :=
        Make_Parameter_Specification
          (Make_Defining_Identifier (PN (P_Status)),
           Make_Defining_Identifier (Map_Ada_Subprogram_Status_Name (S)),
           Mode_Inout);
2034 2035 2036 2037
      ADU.Append_Node_To_List (N, Profile);

      N := Make_Subprogram_Specification (No_Node, Profile);

2038 2039 2040 2041
      N :=
        Make_Full_Type_Declaration
          (Make_Defining_Identifier (Map_Ada_Call_Seq_Access_Name (S)),
           Make_Access_Type_Definition (N));
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
      return N;
   end Map_Ada_Call_Seq_Access;

   -------------------------------
   -- Map_Ada_Subprogram_Status --
   -------------------------------

   function Map_Ada_Subprogram_Status (S : Node_Id) return Node_Id is
      Fields : constant List_Id := New_List (ADN.K_Component_List);
      F      : Node_Id;
      N      : Node_Id;
   begin
      pragma Assert (Is_Subprogram (S));

      if not AAU.Is_Empty (Features (S)) then
         F := First_Node (Features (S));

         while Present (F) loop
2060 2061 2062 2063
            N :=
              Make_Component_Declaration
                (Map_Ada_Defining_Identifier (F),
                 Map_Ada_Data_Type_Designator (Corresponding_Instance (F)));
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
            ADU.Append_Node_To_List (N, Fields);

            F := Next_Node (F);
         end loop;
      else
         Display_Located_Error
           (Loc (S),
            "This hybrid subprogram has no parameters",
            Fatal => True);
      end if;

2075 2076 2077 2078
      N :=
        Make_Full_Type_Declaration
          (Make_Defining_Identifier (Map_Ada_Subprogram_Status_Name (S)),
           Make_Record_Definition (Fields));
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
      return N;
   end Map_Ada_Subprogram_Status;

   --------------------------
   -- Handle_Call_Sequence --
   --------------------------

   procedure Handle_Call_Sequence
     (Caller       : Node_Id;
      Caller_State : Node_Id;
      Call_Seq     : Node_Id;
      Declarations : List_Id;
      Statements   : List_Id)
   is
      Spg_Call      : Node_Id;
      Spg           : Node_Id;
      Destination_F : Node_Id;
      Source_F      : Node_Id;
      Source_Parent : Node_Id;
      Call_Profile  : List_Id;
      Param_Value   : Node_Id;
      Owner_Object  : Node_Id;
      N             : Node_Id;
      M             : Node_Id;
      F             : Node_Id;
      Parent        : Node_Id;
2105 2106 2107
      Hybrid        : constant Boolean :=
        Is_Subprogram (Caller)
        and then Get_Subprogram_Kind (Caller) = Subprogram_Hybrid_Ada_95;
2108 2109 2110 2111
   begin
      --  The lists have to be created

      if Declarations = No_List or else Statements = No_List then
2112 2113 2114
         raise Program_Error
           with "Lists have to be created before any call " &
           "to Handle_Call_Sequence";
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
      end if;

      --  The call sequence must contain at least one call to a
      --  subprogram.

      if AAU.Is_Empty (Subprogram_Calls (Call_Seq)) then
         Display_Located_Error
           (Loc (Call_Seq),
            "Empty call sequence",
            Fatal   => False,
            Warning => True);
         return;
      end if;

      Spg_Call := First_Node (Subprogram_Calls (Call_Seq));

      while Present (Spg_Call) loop
         Spg := Corresponding_Instance (Spg_Call);

         Call_Profile := New_List (ADN.K_List_Id);

         if not AAU.Is_Empty (Features (Spg)) then
            F := First_Node (Features (Spg));

            while Present (F) loop
2140
               if Kind (F) = K_Parameter_Instance and then Is_Out (F) then