ocarina-backends-utils.adb 122 KB
Newer Older
1
2
3
4
5
6
7
8
------------------------------------------------------------------------------
--                                                                          --
--                           OCARINA COMPONENTS                             --
--                                                                          --
--               O C A R I N A . B A C K E N D S . U T I L S                --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
9
--    Copyright (C) 2005-2009 Telecom ParisTech, 2010-2014 ESA & ISAE.      --
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
--                                                                          --
-- Ocarina  is free software;  you  can  redistribute  it and/or  modify    --
-- it under terms of the GNU General Public License as published by the     --
-- Free Software Foundation; either version 2, or (at your option) any      --
-- later version. Ocarina is distributed  in  the  hope  that it will be    --
-- useful, but WITHOUT ANY WARRANTY;  without even the implied warranty of  --
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General --
-- Public License for more details. You should have received  a copy of the --
-- GNU General Public License distributed with Ocarina; see file COPYING.   --
-- If not, write to the Free Software Foundation, 51 Franklin Street, Fifth --
-- Floor, Boston, MA 02111-1301, USA.                                       --
--                                                                          --
-- As a special exception,  if other files  instantiate  generics from this --
-- unit, or you link  this unit with other files  to produce an executable, --
-- this  unit  does not  by itself cause  the resulting  executable to be   --
-- covered  by the  GNU  General  Public  License. This exception does not  --
-- however invalidate  any other reasons why the executable file might be   --
-- covered by the GNU Public License.                                       --
--                                                                          --
jhugues's avatar
jhugues committed
29
30
--                 Ocarina is maintained by the TASTE project               --
--                      (taste-users@lists.tuxfamily.org)                   --
31
32
33
34
--                                                                          --
------------------------------------------------------------------------------

with GNAT.OS_Lib;
35
with Ada.Directories;
36
37
with GNAT.Table;

38
with Ocarina.Namet;
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
with Locations;

with Ocarina.ME_AADL;
with Ocarina.ME_AADL.AADL_Tree.Nodes;
with Ocarina.ME_AADL.AADL_Tree.Nutils;
with Ocarina.ME_AADL.AADL_Tree.Entities.Properties;
with Ocarina.ME_AADL.AADL_Instances.Nodes;
with Ocarina.ME_AADL.AADL_Instances.Nutils;
with Ocarina.ME_AADL.AADL_Instances.Entities;
with Ocarina.Backends.Messages;
with Ocarina.Backends.Ada_Tree.Nodes;
with Ocarina.Backends.Ada_Tree.Nutils;
with Ocarina.Backends.Ada_Values;

package body Ocarina.Backends.Utils is

   package ATN renames Ocarina.ME_AADL.AADL_Tree.Nodes;
   package ATU renames Ocarina.ME_AADL.AADL_Tree.Nutils;
   package AIN renames Ocarina.ME_AADL.AADL_Instances.Nodes;
   package AAU renames Ocarina.ME_AADL.AADL_Instances.Nutils;
   package ADN renames Ocarina.Backends.Ada_Tree.Nodes;
   package ADU renames Ocarina.Backends.Ada_Tree.Nutils;
   package ADV renames Ocarina.Backends.Ada_Values;

   use GNAT.OS_Lib;
64
65
   use Ada.Directories;

66
   use Ocarina.Namet;
67
68
69
70
71
72
73
74
75
76
   use Locations;
   use Ocarina.ME_AADL;
   use Ocarina.ME_AADL.AADL_Instances.Nodes;
   use Ocarina.ME_AADL.AADL_Instances.Nutils;
   use Ocarina.ME_AADL.AADL_Instances.Entities;
   use Ocarina.Backends.Messages;
   use Ocarina.Backends.Ada_Tree.Nutils;

   --  The entered directories stack

77
   package Directories_Stack is new GNAT.Table (Name_Id, Int, 1, 5, 10);
78
79
80
81

   function Get_Handling_Internal_Name
     (E          : Node_Id;
      Comparison : Comparison_Kind;
82
      Handling   : Handling_Kind) return Name_Id;
83
84
85
86
87
88
89
90
91
92
93
94
95
96
   --  Code factorisation between Set_Handling and Get_Handling. This
   --  function computes an internal name used to store the handling
   --  information.

   function Map_Ada_Subprogram_Status_Name (S : Node_Id) return Name_Id;
   --  Maps an name for the record type corresponding to a hybrid
   --  subprogram.

   function Map_Ada_Call_Seq_Access_Name (S : Node_Id) return Name_Id;
   --  Maps an name for the subprogram access type corresponding to a
   --  hybrid subprogram.

   function Map_Ada_Call_Seq_Subprogram_Name
     (Spg : Node_Id;
97
      Seq : Node_Id) return Name_Id;
98
99
100
101
102
103
104
105
106
107
108
109
110
111
   --  Maps an name for the subprogram corresponding to a hybrid
   --  subprogram call sequence.

   type Repository_Entry is record
      E          : Node_Id;
      Comparison : Comparison_Kind;
      Handling   : Handling_Kind;
      A          : Node_Id;
   end record;
   --  One entry of the internal handling repository

   Recording_Requested : Boolean := False;

   package Handling_Repository is new GNAT.Table
112
113
114
115
116
     (Repository_Entry,
      Int,
      1,
      5,
      10);
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
   --  The internal handling repository

   procedure May_Be_Append_Handling_Entry
     (E          : Node_Id;
      Comparison : Comparison_Kind;
      Handling   : Handling_Kind;
      A          : Node_Id);
   --  Add a new entry corresponding to the given parameters to the
   --  internal handling repository. The addition is only done in case
   --  the user requested explicitely the recording of handling

   function Bind_Transport_API_Internal_Name (P : Node_Id) return Name_Id;
   --  For code factorization purpose

   ----------------------
   -- Create_Directory --
   ----------------------

   procedure Create_Directory (Dir_Full_Name : Name_Id) is
      Dir_Full_String : constant String := Get_Name_String (Dir_Full_Name);
   begin
      if Is_Regular_File (Dir_Full_String)
        or else Is_Symbolic_Link (Dir_Full_String)
      then
         Display_Error
142
143
144
           ("Cannot create " &
            Dir_Full_String &
            " because there is a file with the same name",
145
146
147
148
149
            Fatal => True);
         return;
      end if;

      if Is_Directory (Dir_Full_String) then
150
151
         if Dir_Full_String /= "." then
            Display_Error
152
              (Dir_Full_String & " already exists",
153
154
155
               Fatal   => False,
               Warning => True);
         end if;
156
157
158
159
160
         return;
      end if;

      --  The directory name does not clash with anything, create it

161
      Create_Directory (Dir_Full_String);
162
163
164
165
166
167
168
169
170
   end Create_Directory;

   ---------------------
   -- Enter_Directory --
   ---------------------

   procedure Enter_Directory (Dirname : Name_Id) is
      use Directories_Stack;

171
172
      Current_Dir : constant Name_Id := Get_String_Name (Current_Directory);

173
174
   begin
      Increment_Last;
175
      Table (Last) := Current_Dir;
176
      Display_Debug_Message ("Left    : " & Get_Name_String (Current_Dir));
177
      Set_Directory (Get_Name_String (Dirname));
178
179
180
181
182
183
184
185
186
187
      Display_Debug_Message ("Entered : " & Get_Name_String (Dirname));
   end Enter_Directory;

   ---------------------
   -- Leave_Directory --
   ---------------------

   procedure Leave_Directory is
      use Directories_Stack;

188
189
      Last_Directory : constant Name_Id := Table (Last);

190
191
   begin
      Decrement_Last;
192
193
      Display_Debug_Message ("Left    : " & Current_Directory);
      Set_Directory (Get_Name_String (Last_Directory));
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
      Display_Debug_Message ("Entered : " & Get_Name_String (Last_Directory));
   end Leave_Directory;

   -----------------------------
   -- Add_Directory_Separator --
   -----------------------------

   function Add_Directory_Separator (Path : Name_Id) return Name_Id is
   begin
      Get_Name_String (Path);
      if Name_Buffer (Name_Len) /= Directory_Separator then
         Add_Char_To_Name_Buffer (Directory_Separator);
      end if;
      return Name_Find;
   end Add_Directory_Separator;

   --------------------------------
   -- Remove_Directory_Separator --
   --------------------------------

   function Remove_Directory_Separator (Path : Name_Id) return Name_Id is
   begin
      Get_Name_String (Path);

      if Name_Buffer (Name_Len) = Directory_Separator then
         Name_Len := Name_Len - 1;
      end if;
      return Name_Find;
   end Remove_Directory_Separator;

   ----------------------------------
   -- May_Be_Append_Handling_Entry --
   ----------------------------------

   procedure May_Be_Append_Handling_Entry
     (E          : Node_Id;
      Comparison : Comparison_Kind;
      Handling   : Handling_Kind;
      A          : Node_Id)
   is
      package HR renames Handling_Repository;
      The_Entry : constant Repository_Entry :=
236
237
        Repository_Entry'
          (E => E, Comparison => Comparison, Handling => Handling, A => A);
238
239
240
241
242
243
244
245
246
247
248
249
250
251
   begin
      if Recording_Requested then
         HR.Increment_Last;
         HR.Table (HR.Last) := The_Entry;
      end if;
   end May_Be_Append_Handling_Entry;

   -------------------------------
   -- Start_Recording_Handlings --
   -------------------------------

   procedure Start_Recording_Handlings is
   begin
      if Recording_Requested then
252
253
         raise Program_Error
           with "Consecutive calls to Start_Recording_Handlings are forbidden";
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
      else
         Recording_Requested := True;
      end if;
   end Start_Recording_Handlings;

   ------------------------------
   -- Stop_Recording_Handlings --
   ------------------------------

   procedure Stop_Recording_Handlings is
   begin
      Recording_Requested := False;
   end Stop_Recording_Handlings;

   ---------------------
   -- Reset_Handlings --
   ---------------------

   procedure Reset_Handlings is
      package HR renames Handling_Repository;

      Index     : Int := HR.First;
      The_Entry : Repository_Entry;
   begin
      --  Disable the user handling request. It is important to do
      --  this at the beginning to avoid adding new entries when
      --  resetting.

      Recording_Requested := False;

      while Index <= HR.Last loop
         The_Entry := HR.Table (Index);

         --  Reset the handling information

         Set_Handling
           (The_Entry.E,
            The_Entry.Comparison,
            The_Entry.Handling,
            No_Node);

         Index := Index + 1;
      end loop;

      --  Deallocate and reinitialize the repository

      HR.Free;
      HR.Init;
   end Reset_Handlings;

   --------------------
   -- Normalize_Name --
   --------------------

308
309
310
311
   function Normalize_Name
     (Name      : Name_Id;
      Ada_Style : Boolean := False) return Name_Id
   is
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
      Normalized_Name : Name_Id;
   begin
      --  FIXME: The algorithm does not ensure a bijection between
      --  the input and the output. It should be improved.

      if Name = No_Name then
         Normalized_Name := Name;
      else
         declare
            Initial_Name : constant String := Get_Name_String (Name);
         begin
            Name_Len := 0;

            for Index in Initial_Name'First .. Initial_Name'Last loop
               if Initial_Name (Index) = '.' then
                  Add_Char_To_Name_Buffer ('_');
                  if Ada_Style then
                     Add_Char_To_Name_Buffer ('_');
                  end if;
               elsif Initial_Name (Index) = '-' then
                  Add_Char_To_Name_Buffer ('_');
                  if Ada_Style then
                     Add_Char_To_Name_Buffer ('_');
                  end if;
               else
                  Add_Char_To_Name_Buffer (Initial_Name (Index));
               end if;
            end loop;

            Normalized_Name := Name_Find;
         end;
      end if;

      return Normalized_Name;
   end Normalize_Name;

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
   -----------------------------------
   -- Fully_Qualified_Instance_Name --
   -----------------------------------

   function Fully_Qualified_Instance_Name (E : Node_Id) return Name_Id is
      Current_Node : Node_Id := Parent_Subcomponent (E);
      Current_Name : Name_Id;

   begin
      Set_Str_To_Name_Buffer ("");
      Get_Name_String (Normalize_Name (Name (Identifier (Current_Node))));
      Current_Name := Name_Find;
      Current_Node := Parent_Component (Current_Node);

      while Present (Current_Node) loop
         exit when No (Parent_Subcomponent (Current_Node));

365
366
367
368
369
370
371
         Get_Name_String
           (Normalize_Name
              (Name (Identifier (Parent_Subcomponent (Current_Node)))));
         Set_Str_To_Name_Buffer
           (Get_Name_String (Name_Find) &
            "_" &
            Get_Name_String (Current_Name));
372
373
374
375
376
377
378
379
         Current_Name := Name_Find;

         Current_Node := Parent_Component (Parent_Subcomponent (Current_Node));
      end loop;

      return Current_Name;
   end Fully_Qualified_Instance_Name;

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
   ------------------
   -- Is_Namespace --
   ------------------

   function Is_Namespace (N : Node_Id) return Boolean is
   begin
      return Kind (N) = K_Namespace_Instance;
   end Is_Namespace;

   ----------------
   -- Is_Delayed --
   ----------------

   function Is_Delayed (E : Node_Id) return Boolean is
      C : Node_Id;
      S : Node_Id;
   begin
      pragma Assert
        (Kind (E) = K_Port_Spec_Instance and then not Is_Event (E));

      if not AAU.Is_Empty (Sources (E)) then
         C := Extra_Item (First_Node (Sources (E)));

         case AADL_Version is
            when AADL_V1 =>
405
406
               if ATN.Category (Corresponding_Declaration (C)) =
                 Connection_Type'Pos (CT_Data_Delayed)
407
408
409
410
411
412
413
               then
                  return True;
               else
                  --  Recurse through the connection path

                  S := Item (First_Node (Sources (E)));

414
415
416
                  return S /= E
                    and then Kind (S) = K_Port_Spec_Instance
                    and then Is_Delayed (S);
417
418
419
420
421
422
423
424
425
426
               end if;

            when AADL_V2 =>
               if Get_Port_Timing (E) = Port_Timing_Delayed then
                  return True;
               else
                  --  Recurse through the connection path

                  S := Item (First_Node (Sources (E)));

427
428
429
                  return S /= E
                    and then Kind (S) = K_Port_Spec_Instance
                    and then Is_Delayed (S);
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
               end if;
         end case;
      end if;

      return False;
   end Is_Delayed;

   -----------------------
   -- Has_In_Parameters --
   -----------------------

   function Has_In_Parameters (E : Node_Id) return Boolean is
      F : Node_Id;
   begin
      if not AAU.Is_Empty (Features (E)) then
         F := First_Node (Features (E));

         while Present (F) loop
            if Kind (F) = K_Parameter_Instance and then Is_In (F) then
               return True;
            end if;

            F := Next_Node (F);
         end loop;
      end if;

      return False;
   end Has_In_Parameters;

   ------------------------
   -- Has_Out_Parameters --
   ------------------------

   function Has_Out_Parameters (E : Node_Id) return Boolean is
      F : Node_Id;
   begin
      if not AAU.Is_Empty (Features (E)) then
         F := First_Node (Features (E));

         while Present (F) loop
            if Kind (F) = K_Parameter_Instance and then Is_Out (F) then
               return True;
            end if;

            F := Next_Node (F);
         end loop;
      end if;

      return False;
   end Has_Out_Parameters;

   ------------------
   -- Has_In_Ports --
   ------------------

   function Has_In_Ports (E : Node_Id) return Boolean is
      F : Node_Id;
   begin
      if not AAU.Is_Empty (Features (E)) then
         F := First_Node (Features (E));

         while Present (F) loop
            if Kind (F) = K_Port_Spec_Instance and then Is_In (F) then
               return True;
            end if;

            F := Next_Node (F);
         end loop;
      end if;

      return False;
   end Has_In_Ports;

   ------------------------
   -- Has_In_Event_Ports --
   ------------------------

   function Has_In_Event_Ports (E : Node_Id) return Boolean is
      F : Node_Id;
   begin
      if not AAU.Is_Empty (Features (E)) then
         F := First_Node (Features (E));

         while Present (F) loop
514
515
516
            if Kind (F) = K_Port_Spec_Instance
              and then Is_In (F)
              and then Is_Event (F)
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
            then
               return True;
            end if;

            F := Next_Node (F);
         end loop;
      end if;

      return False;
   end Has_In_Event_Ports;

   -------------------
   -- Has_Out_Ports --
   -------------------

   function Has_Out_Ports (E : Node_Id) return Boolean is
      F : Node_Id;
   begin
      if not AAU.Is_Empty (Features (E)) then
         F := First_Node (Features (E));

         while Present (F) loop
            if Kind (F) = K_Port_Spec_Instance and then Is_Out (F) then
               return True;
            end if;

            F := Next_Node (F);
         end loop;
      end if;

      return False;
   end Has_Out_Ports;

   -------------------------
   -- Has_Out_Event_Ports --
   -------------------------

   function Has_Out_Event_Ports (E : Node_Id) return Boolean is
      F : Node_Id;
   begin
      if not AAU.Is_Empty (Features (E)) then
         F := First_Node (Features (E));

         while Present (F) loop
561
562
563
            if Kind (F) = K_Port_Spec_Instance
              and then Is_Out (F)
              and then Is_Event (F)
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
            then
               return True;
            end if;

            F := Next_Node (F);
         end loop;
      end if;

      return False;
   end Has_Out_Event_Ports;

   ---------------
   -- Has_Ports --
   ---------------

   function Has_Ports (E : Node_Id) return Boolean is
      F : Node_Id;
   begin
      if not AAU.Is_Empty (Features (E)) then
         F := First_Node (Features (E));

         while Present (F) loop
            if Kind (F) = K_Port_Spec_Instance then
               return True;
            end if;

            F := Next_Node (F);
         end loop;
      end if;

      return False;
   end Has_Ports;

597
598
599
600
601
602
603
604
605
606
607
   ----------------------
   -- Has_Output_Ports --
   ----------------------

   function Has_Output_Ports (E : Node_Id) return Boolean is
      F : Node_Id;
   begin
      if not AAU.Is_Empty (Features (E)) then
         F := First_Node (Features (E));

         while Present (F) loop
608
            if Kind (F) = K_Port_Spec_Instance and then Is_Out (F) then
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
               return True;
            end if;

            F := Next_Node (F);
         end loop;
      end if;

      return False;
   end Has_Output_Ports;

   ---------------------
   -- Has_Input_Ports --
   ---------------------

   function Has_Input_Ports (E : Node_Id) return Boolean is
      F : Node_Id;
   begin
      if not AAU.Is_Empty (Features (E)) then
         F := First_Node (Features (E));

         while Present (F) loop
630
            if Kind (F) = K_Port_Spec_Instance and then Is_In (F) then
631
632
633
634
635
636
637
638
639
640
               return True;
            end if;

            F := Next_Node (F);
         end loop;
      end if;

      return False;
   end Has_Input_Ports;

641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
   ---------------
   -- Has_Modes --
   ---------------

   function Has_Modes (E : Node_Id) return Boolean is
   begin
      pragma Assert (Kind (E) = K_Component_Instance);

      return not AAU.Is_Empty (Modes (E));
   end Has_Modes;

   ----------------------
   -- Get_Source_Ports --
   ----------------------

   function Get_Source_Ports (P : Node_Id) return List_Id is
      function Rec_Get_Source_Ports
        (P : Node_Id;
659
         B : Node_Id := No_Node) return List_Id;
660
661
662
663
664
665
666
667
      --  Recursive internal routine

      --------------------------
      -- Rec_Get_Source_Ports --
      --------------------------

      function Rec_Get_Source_Ports
        (P : Node_Id;
668
         B : Node_Id := No_Node) return List_Id
669
670
671
672
673
674
675
      is
         Result : constant List_Id := New_List (K_List_Id, No_Location);
         C      : Node_Id;
         S      : Node_Id;
         Bus    : Node_Id;
      begin
         if AAU.Is_Empty (Sources (P)) then
676
            AAU.Append_Node_To_List (Make_Node_Container (P, B), Result);
677
678
679
680
681
682
683
684
685
686
687
688
         end if;

         S := First_Node (Sources (P));

         while Present (S) loop
            if Kind (Item (S)) = K_Port_Spec_Instance
              and then Parent_Component (Item (S)) /= No_Node
              and then Is_Thread (Parent_Component (Item (S)))
            then
               --  We reached our end point, append it to the result list

               AAU.Append_Node_To_List
689
690
                 (Make_Node_Container (Item (S), B),
                  Result);
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
            elsif Kind (Item (S)) = K_Port_Spec_Instance
              and then Parent_Component (Item (S)) /= No_Node
              and then (Is_Process_Or_Device (Parent_Component (Item (S))))
            then

               if Is_In (Item (S)) then
                  --  See whether the connection to the process is
                  --  bound to a bus.

                  C := Extra_Item (S);

                  if No (C) then
                     --  There has been definitly a bug while
                     --  expanding connections.

                     raise Program_Error with "Wrong expansion of connections";
                  end if;

                  --  Get the bus of the connection

                  Bus := Get_Bound_Bus (C, False);
               else
                  Bus := No_Node;
               end if;

               if Present (B) and then Present (Bus) and then B /= Bus then
                  Display_Located_Error
                    (Loc (C),
719
720
                     "This connection is involved in a data flow" &
                     " mapped to several different buses",
721
722
723
724
725
726
                     Fatal => True);
               end if;

               --  Fetch recursively all the sources of S

               AAU.Append_Node_To_List
727
728
                 (First_Node (Rec_Get_Source_Ports (Item (S), Bus)),
                  Result);
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
            else
               Display_Located_Error
                 (Loc (P),
                  "This port has a source of a non supported kind",
                  Fatal => True);
            end if;

            S := Next_Node (S);
         end loop;

         return Result;
      end Rec_Get_Source_Ports;

   begin
      if AAU.Is_Empty (Sources (P)) then
         return No_List;
      else
         return Rec_Get_Source_Ports (P, No_Node);
      end if;
   end Get_Source_Ports;

   ---------------------------
   -- Get_Destination_Ports --
   ---------------------------

754
   function Get_Destination_Ports
755
756
757
     (P             : Node_Id;
      Custom_Parent : Node_Id := No_Node) return List_Id
   is
758
759

      function Rec_Get_Destination_Ports
760
761
762
        (P             : Node_Id;
         B             : Node_Id := No_Node;
         Custom_Parent : Node_Id := No_Node) return List_Id;
763
764
765
766
767
768
769
      --  Recursive internal routine

      -------------------------------
      -- Rec_Get_Destination_Ports --
      -------------------------------

      function Rec_Get_Destination_Ports
770
771
772
        (P             : Node_Id;
         B             : Node_Id := No_Node;
         Custom_Parent : Node_Id := No_Node) return List_Id
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
      is
         Result : constant List_Id := New_List (K_List_Id, No_Location);
         C      : Node_Id;
         D      : Node_Id;
         Bus    : Node_Id;
      begin
         D := First_Node (Destinations (P));

         while Present (D) loop
            if Kind (Item (D)) = K_Port_Spec_Instance
              and then Parent_Component (Item (D)) /= No_Node
              and then Is_Thread (Parent_Component (Item (D)))
            then
               --  We reached our end point, append it to the result list

               AAU.Append_Node_To_List
789
790
                 (Make_Node_Container (Item (D), B),
                  Result);
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818

            elsif Kind (Item (D)) = K_Port_Spec_Instance
              and then Parent_Component (Item (D)) /= No_Node
              and then Is_Process (Parent_Component (Item (D)))
            then
               if Is_In (Item (D)) then
                  --  See whether the connection to the process is
                  --  bound to a bus.

                  C := Extra_Item (D);

                  if No (C) then
                     --  There has been definitly a bug while
                     --  expanding connections.

                     raise Program_Error with "Wrong expansion of connections";
                  end if;

                  --  Get the bus of the connection

                  Bus := Get_Bound_Bus (C, False);
               else
                  Bus := No_Node;
               end if;

               if Present (B) and then Present (Bus) and then B /= Bus then
                  Display_Located_Error
                    (Loc (C),
819
820
                     "This connection is involved in a data flow" &
                     " mapped to several different buses",
821
822
823
824
825
826
                     Fatal => True);
               end if;

               --  Fetch recursively all the destinations of D

               AAU.Append_Node_To_List
827
828
                 (First_Node (Rec_Get_Destination_Ports (Item (D), Bus)),
                  Result);
829
830
831
832
833
834
835
836

            elsif Kind (Item (D)) = K_Port_Spec_Instance
              and then Parent_Component (Item (D)) /= No_Node
              and then Is_Device (Parent_Component (Item (D)))
            then
               --  We reached our end point, append it to the result list

               AAU.Append_Node_To_List
837
838
839
840
841
842
                 (Make_Node_Container (Item (D), B),
                  Result);
            elsif Custom_Parent /= No_Node
              and then Is_Device (Custom_Parent)
              and then Get_Port_By_Name (P, Custom_Parent) /= No_Node
            then
843

844
845
               AAU.Append_Node_To_List
                 (First_Node
846
847
848
849
                    (Rec_Get_Destination_Ports
                       (Get_Port_By_Name (P, Custom_Parent),
                        B,
                        No_Node)),
850
                  Result);
851
852
853
854
855
856
857
858
859
860
861
862
863
            else
               Display_Located_Error
                 (Loc (P),
                  "This port has a destination of a non supported kind",
                  Fatal => True);
            end if;

            D := Next_Node (D);
         end loop;

         return Result;
      end Rec_Get_Destination_Ports;
   begin
864
      return Rec_Get_Destination_Ports (P, No_Node, Custom_Parent);
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
   end Get_Destination_Ports;

   ----------------------
   -- Get_Actual_Owner --
   ----------------------

   function Get_Actual_Owner (Spg_Call : Node_Id) return Node_Id is
      Spg            : constant Node_Id := Corresponding_Instance (Spg_Call);
      Data_Component : Node_Id;
      F              : Node_Id;
   begin
      --  If the subprogram call is not a method return No_Node

      if AAU.Is_Empty (Path (Spg_Call)) then
         return No_Node;
      end if;

      Data_Component := Item (First_Node (Path (Spg_Call)));

      --  Traverse all the required access of the subprogram instance
      --  and find the one corresponding to the owner data component.

      if not AAU.Is_Empty (Features (Spg)) then
         F := First_Node (Features (Spg));

         while Present (F) loop
            if Kind (F) = K_Subcomponent_Access_Instance then
               --  FIXME: We stop at the first met feature that
               --  corresponds to our criteria.

               --  The corresponding declaration of Data_Component is
               --  always a component type and not a component
               --  implementation. However the type of the feature F
               --  may be a component type as well as a component
               --  implementation. We test both cases.

               declare
                  Dcl_Data_Component : constant Node_Id :=
                    Corresponding_Declaration (Data_Component);
904
                  Dcl_F : constant Node_Id :=
905
906
907
908
909
                    Corresponding_Declaration (Corresponding_Instance (F));

                  use Ocarina.ME_AADL.AADL_Tree.Nodes;
               begin
                  exit when
910
911
                    (ATN.Kind (Dcl_F) = K_Component_Type
                     and then Dcl_F = Dcl_Data_Component)
912
                    or else
913
914
915
916
917
                    (ATN.Kind (Dcl_F) = K_Component_Implementation
                     and then
                       ATN.Corresponding_Entity
                         (ATN.Component_Type_Identifier (Dcl_F)) =
                       Dcl_Data_Component);
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
               end;
            end if;

            F := Next_Node (F);
         end loop;
      end if;

      --  If no feature matched, raise an error

      if AAU.Is_Empty (Features (Spg)) or else No (F) then
         Display_Located_Error
           (Loc (Spg),
            "Feature subprogram has not access to its owner component",
            Fatal => True);
      end if;

      return Get_Subcomponent_Access_Source (F);
   end Get_Actual_Owner;

   ---------------------------
   -- Get_Container_Process --
   ---------------------------

   function Get_Container_Process (E : Node_Id) return Node_Id is
   begin
      pragma Assert (Present (E));

      case Kind (E) is
         when K_Call_Instance =>
            return Get_Container_Process (Parent_Sequence (E));

         when K_Call_Sequence_Instance | K_Subcomponent_Instance =>
            return Get_Container_Process (Parent_Component (E));

         when others =>
953
954
            if Is_Thread (E)
              or else Is_Subprogram (E)
955
956
              or else AAU.Is_Data (E)
            then
957
               return Get_Container_Process (Parent_Subcomponent (E));
958

959
960
            elsif Is_Process (E) or else Is_Device (E) then
               return Parent_Subcomponent (E);
961

962
            else
963
964
965
966
967
968
               raise Program_Error
                 with "Wrong node kind in " &
                 "Get_Container_Process: " &
                 Kind (E)'Img &
                 " " &
                 Get_Category_Of_Component (E)'Img;
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990

            end if;
      end case;
   end Get_Container_Process;

   --------------------------
   -- Get_Container_Thread --
   --------------------------

   function Get_Container_Thread (E : Node_Id) return Node_Id is
   begin
      case Kind (E) is
         when K_Call_Instance =>
            return Get_Container_Thread (Parent_Sequence (E));

         when K_Call_Sequence_Instance =>
            return Parent_Component (E);

         when others =>
            if Is_Subprogram (E) then
               return Get_Container_Thread (Parent_Subcomponent (E));
            else
991
992
993
994
               raise Program_Error
                 with "Wrong node kind in " &
                 "Get_Container_Thread: " &
                 Kind (E)'Img;
995
996
997
998
999
1000
1001
1002
1003
1004
1005
            end if;
      end case;
   end Get_Container_Thread;

   --------------------------------
   -- Get_Handling_Internal_Name --
   --------------------------------

   function Get_Handling_Internal_Name
     (E          : Node_Id;
      Comparison : Comparison_Kind;
1006
      Handling   : Handling_Kind) return Name_Id
1007
1008
1009
1010
   is
   begin
      case Comparison is
         when By_Name =>
1011
            Get_Name_String (Map_Ada_Defining_Identifier (E));
1012
         --  Get_Name_String (Compute_Full_Name_Of_Instance (E));
1013

1014
1015
1016
1017
1018
         when By_Node =>
            Set_Nat_To_Name_Buffer (Nat (E));
      end case;

      Add_Str_To_Name_Buffer ("%Handling%" & Handling'Img);
1019

1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
      return Name_Find;
   end Get_Handling_Internal_Name;

   ------------------
   -- Set_Handling --
   ------------------

   procedure Set_Handling
     (E          : Node_Id;
      Comparison : Comparison_Kind;
      Handling   : Handling_Kind;
      A          : Node_Id)
   is
1033
1034
      Internal_Name : constant Name_Id :=
        Get_Handling_Internal_Name (E, Comparison, Handling);
1035

1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
   begin
      Set_Name_Table_Info (Internal_Name, Nat (A));
      May_Be_Append_Handling_Entry (E, Comparison, Handling, A);
   end Set_Handling;

   ------------------
   -- Get_Handling --
   ------------------

   function Get_Handling
     (E          : Node_Id;
      Comparison : Comparison_Kind;
1048
      Handling   : Handling_Kind) return Node_Id
1049
   is
1050
1051
      Internal_Name : constant Name_Id :=
        Get_Handling_Internal_Name (E, Comparison, Handling);
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
   begin
      return Node_Id (Get_Name_Table_Info (Internal_Name));
   end Get_Handling;

   --------------------
   -- Bind_Two_Nodes --
   --------------------

   function Bind_Two_Nodes (N_1 : Node_Id; N_2 : Node_Id) return Node_Id is
      function Get_Binding_Internal_Name
        (N_1 : Node_Id;
1063
         N_2 : Node_Id) return Name_Id;
1064
1065
1066
1067
1068
1069
1070
1071
      --  Return an internal name id useful for the binding

      -------------------------------
      -- Get_Binding_Internal_Name --
      -------------------------------

      function Get_Binding_Internal_Name
        (N_1 : Node_Id;
1072
         N_2 : Node_Id) return Name_Id
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
      is
      begin
         Set_Nat_To_Name_Buffer (Nat (N_1));
         Add_Str_To_Name_Buffer ("%Binding%");
         Add_Nat_To_Name_Buffer (Nat (N_2));
         return Name_Find;
      end Get_Binding_Internal_Name;

      I_Name : constant Name_Id := Get_Binding_Internal_Name (N_1, N_2);
      N      : Node_Id;
   begin
      --  If the Bind_Two_Nodes has already been called on N_1 and
      --  N_1, return the result of the first call.

      if Get_Name_Table_Info (I_Name) /= 0 then
         return Node_Id (Get_Name_Table_Info (I_Name));
      end if;

      --  Otherwise, create a new binding node

1093
      N := Make_Identifier (No_Location, No_Name, No_Name, No_Node);
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
      Set_Name_Table_Info (I_Name, Int (N));

      return N;
   end Bind_Two_Nodes;

   --------------------------------------
   -- Bind_Transport_API_Internal_Name --
   --------------------------------------

   function Bind_Transport_API_Internal_Name (P : Node_Id) return Name_Id is
   begin
      pragma Assert (Is_Process (P));

      Set_Nat_To_Name_Buffer (Nat (P));
      Add_Str_To_Name_Buffer ("%transport%layer%binding%");
      return Name_Find;
   end Bind_Transport_API_Internal_Name;

   ------------------------
   -- Bind_Transport_API --
   ------------------------

1116
   procedure Bind_Transport_API (P : Node_Id; T : Supported_Transport_APIs) is
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
      I_Name : constant Name_Id := Bind_Transport_API_Internal_Name (P);
   begin
      Set_Name_Table_Byte (I_Name, Supported_Transport_APIs'Pos (T));
   end Bind_Transport_API;

   -------------------------
   -- Fetch_Transport_API --
   -------------------------

   function Fetch_Transport_API
1127
     (P : Node_Id) return Supported_Transport_APIs
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
   is
      I_Name : constant Name_Id := Bind_Transport_API_Internal_Name (P);
   begin
      return Supported_Transport_APIs'Val (Get_Name_Table_Byte (I_Name));
   end Fetch_Transport_API;

   -------------------------------
   -- Map_Ada_Full_Feature_Name --
   -------------------------------

   function Map_Ada_Full_Feature_Name
     (E      : Node_Id;
1140
      Suffix : Character := ASCII.NUL) return Name_Id
1141
1142
   is
   begin
1143
1144
1145
1146
1147
      Get_Name_String
        (Compute_Full_Name_Of_Instance
           (Instance         => E,
            Display_Name     => True,
            Keep_Root_System => False));
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
      Get_Name_String (ADU.To_Ada_Name (Name_Find));

      if Suffix /= ASCII.NUL then
         Add_Str_To_Name_Buffer ('_' & Suffix);
      end if;

      return Name_Find;
   end Map_Ada_Full_Feature_Name;

   ----------------------------------
   -- Map_Ada_Data_Type_Designator --
   ----------------------------------

   function Map_Ada_Data_Type_Designator (E : Node_Id) return Node_Id is
      pragma Assert (AAU.Is_Data (E));

1164
   begin
1165
      return ADU.Extract_Designator
1166
          (ADN.Type_Definition_Node (Backend_Node (Identifier (E))));
1167
1168
1169
1170
1171
1172
1173
1174
1175
   end Map_Ada_Data_Type_Designator;

   ---------------------------------
   -- Map_Ada_Full_Parameter_Name --
   ---------------------------------

   function Map_Ada_Full_Parameter_Name
     (Spg    : Node_Id;
      P      : Node_Id;
1176
      Suffix : Character := ASCII.NUL) return Name_Id
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
   is
   begin
      pragma Assert (Kind (P) = K_Parameter_Instance);

      if Kind (Spg) = K_Component_Instance and then Is_Subprogram (Spg) then
         Get_Name_String (Compute_Full_Name_Of_Instance (Spg, True));
      elsif Kind (Spg) = K_Call_Instance then
         Get_Name_String (Display_Name (Identifier (Spg)));
      else
         raise Program_Error with "Wrong subprogram kind";
      end if;

      Add_Char_To_Name_Buffer ('_');
      Get_Name_String_And_Append (Display_Name (Identifier (P)));

      --  Convert the name to a valid Ada identifier name

      Get_Name_String (ADU.To_Ada_Name (Name_Find));

      if Suffix /= ASCII.NUL then
         Add_Str_To_Name_Buffer ('_' & Suffix);
      end if;

      return Name_Find;
   end Map_Ada_Full_Parameter_Name;

   -----------------------------
   -- Map_Ada_Enumerator_Name --
   -----------------------------

   function Map_Ada_Enumerator_Name
     (E      : Node_Id;
1209
      Server : Boolean := False) return Name_Id
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
   is
      Ada_Name_1 : Name_Id;
      Ada_Name_2 : Name_Id;
   begin
      pragma Assert
        (Is_Subprogram (E) or else Kind (E) = K_Subcomponent_Instance);

      if Is_Subprogram (E)
        or else Is_Process (Corresponding_Instance (E))
        or else Is_Device (Corresponding_Instance (E))
      then
         --  For subprograms and processes, the enumerator name is
         --  mapped from the entity name.

         Get_Name_String (ADU.To_Ada_Name (Display_Name (Identifier (E))));
         Add_Str_To_Name_Buffer ("_K");

      elsif Is_Thread (Corresponding_Instance (E)) then
         --  For threads, the enumerator name is mapped from the
         --  containing process or abstract component name and the
         --  thread subcomponent name.

         --  Verifiy that the thread is a subcomponent of a process,
         --  or an abstract component (in the case of threads that
         --  belong to a device driver).

1236
1237
1238
         pragma Assert
           (Is_Process (Parent_Component (E))
            or else Is_Abstract (Parent_Component (E)));
1239
1240

         if Is_Process (Parent_Component (E)) then
1241
1242
1243
1244
            Ada_Name_1 :=
              ADU.To_Ada_Name
                (Display_Name
                   (Identifier (Parent_Subcomponent (Parent_Component (E)))));
1245
1246

         elsif Is_Abstract (Parent_Component (E)) then
1247
1248
1249
            Ada_Name_1 :=
              ADU.To_Ada_Name
                (Display_Name (Identifier (Parent_Component (E))));
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259

         end if;

         Ada_Name_2 := ADU.To_Ada_Name (Display_Name (Identifier (E)));

         Get_Name_String (Ada_Name_1);
         Add_Char_To_Name_Buffer ('_');
         Get_Name_String_And_Append (Ada_Name_2);
         Add_Str_To_Name_Buffer ("_K");
      else
1260
1261
         raise Program_Error
           with "Wrong node kind for Map_Ada_Enumerator_Name " & Kind (E)'Img;
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
      end if;

      if Server then
         Add_Str_To_Name_Buffer ("_Server");
      end if;

      return Name_Find;
   end Map_Ada_Enumerator_Name;

   ---------------------------------
   -- Map_Ada_Defining_Identifier --
   ---------------------------------

   function Map_Ada_Defining_Identifier
     (A      : Node_Id;
1277
      Suffix : String := "") return Name_Id
1278
   is
1279
1280
1281
      I         : Node_Id := A;
      N         : Node_Id := No_Node;
      J         : Node_Id;
1282
1283
1284
1285
1286
1287
1288
1289
      Name_List : List_Id;
   begin
      if Kind (A) /= K_Identifier then
         I := Identifier (A);
      end if;

      if Kind (A) = K_Component_Instance then
         N := Namespace (A);
1290

1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
      elsif Kind (A) = K_Subcomponent_Instance then
         if Present (Parent_Component (A)) then
            N := Namespace (Parent_Component (A));
         end if;
      end if;

      if N /= No_Node
        and then Display_Name (Identifier (N)) /= No_Name
        and then Get_Category_Of_Component (A) /= CC_Data
      then
         --  Use both namespace and identifier to build the Ada
         --  defining identifier, to avoid collisions in the Ada
         --  namespace.

         --  XXX Note: we do not handle data component types for now,
         --  as their mapping is unclear for now, see Code generation
         --  annex for more details.

         Name_List := AAU.Split_Name (N);

         J := First_Node (Name_List);

         if Present (J) then
            Get_Name_String (To_Ada_Name (Display_Name (J)));
            J := Next_Node (J);

            while Present (J) loop
1318
1319
               Add_Str_To_Name_Buffer
                 ("_" & Get_Name_String (Display_Name (J)));
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
               J := Next_Node (J);
            end loop;
         end if;
         Add_Str_To_Name_Buffer ("_" & Get_Name_String (Display_Name (I)));

      else
         Get_Name_String (To_Ada_Name (Display_Name (I)));
      end if;

      if Suffix /= "" then
         Add_Str_To_Name_Buffer ("_" & Suffix);
      end if;

      return Name_Find;
   end Map_Ada_Defining_Identifier;

   function Map_Ada_Defining_Identifier
     (A      : Node_Id;
1338
      Suffix : String := "") return Node_Id
1339
1340
1341
   is
   begin
      return Make_Defining_Identifier
1342
          (Map_Ada_Defining_Identifier (A, Suffix));
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
   end Map_Ada_Defining_Identifier;

   ----------------------------
   -- Map_Ada_Component_Name --
   ----------------------------

   function Map_Ada_Component_Name (F : Node_Id) return Name_Id is
   begin
      Get_Name_String (To_Ada_Name (Display_Name (Identifier (F))));
      Add_Str_To_Name_Buffer ("_DATA");
      return Name_Find;
   end Map_Ada_Component_Name;

   --------------------------------------------
   -- Map_Ada_Protected_Aggregate_Identifier --
   --------------------------------------------

   function Map_Ada_Protected_Aggregate_Identifier
     (S : Node_Id;
1362
      A : Node_Id) return Node_Id
1363
1364
1365
1366
   is
      S_Name : Name_Id;
      A_Name : Name_Id;
   begin
1367
1368
1369
      pragma Assert
        (Kind (S) = K_Subcomponent_Access_Instance
         and then Kind (A) = K_Subcomponent_Instance);
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404

      S_Name := To_Ada_Name (Display_Name (Identifier (S)));
      A_Name := To_Ada_Name (Display_Name (Identifier (A)));

      Get_Name_String (S_Name);
      Add_Char_To_Name_Buffer ('_');
      Get_Name_String_And_Append (A_Name);

      return Make_Defining_Identifier (Name_Find);
   end Map_Ada_Protected_Aggregate_Identifier;

   --------------------------------------
   -- Map_Ada_Default_Value_Identifier --
   --------------------------------------

   function Map_Ada_Default_Value_Identifier (D : Node_Id) return Node_Id is
      I : Node_Id;
   begin
      if Kind (D) /= K_Identifier then
         I := Identifier (D);
      end if;

      Get_Name_String (To_Ada_Name (Display_Name (I)));
      Add_Str_To_Name_Buffer ("_Default_Value");
      return Make_Defining_Identifier (Name_Find);
   end Map_Ada_Default_Value_Identifier;

   --------------------------------
   -- Map_Ada_Package_Identifier --
   --------------------------------

   function Map_Ada_Package_Identifier (E : Node_Id) return Node_Id is
      Port_Name   : Name_Id;
      Thread_Name : Name_Id;
   begin
1405
      pragma Assert (AAU.Is_Data (E) or else Kind (E) = K_Port_Spec_Instance);
1406
1407
1408
1409

      if AAU.Is_Data (E) then
         Get_Name_String (To_Ada_Name (Display_Name (Identifier (E))));
      else
1410
1411
1412
1413
1414
         Port_Name   := To_Ada_Name (Display_Name (Identifier (E)));
         Thread_Name :=
           To_Ada_Name
             (Display_Name
                (Identifier (Parent_Subcomponent (Parent_Component (E)))));
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
         Get_Name_String (Thread_Name);
         Add_Char_To_Name_Buffer ('_');
         Get_Name_String_And_Append (Port_Name);
      end if;

      Add_Str_To_Name_Buffer ("_Pkg");

      return Make_Defining_Identifier (Name_Find);
   end Map_Ada_Package_Identifier;

   -----------------------------------
   -- Map_Ada_Subprogram_Identifier --
   -----------------------------------

   function Map_Ada_Subprogram_Identifier (E : Node_Id) return Node_Id is
1430
1431
1432
1433
      pragma Assert
        (Is_Thread (E)
         or else Is_Subprogram (E)
         or else Kind (E) = K_Port_Spec_Instance);
yoogx's avatar
yoogx committed
1434

1435
1436
      Spg_Name : Name_Id;

yoogx's avatar
yoogx committed
1437
   begin
1438
1439
1440
      if Is_Subprogram (E)
        and then Get_Source_Language (E) /= Language_Ada_95
      then
1441
1442
         Display_Located_Error
           (Loc (E),
1443
1444
            "This is not an Ada subprogram",
            Fatal => True);
1445
1446
1447
1448
1449
1450
      end if;

      --  Get the subprogram name

      if Is_Subprogram (E) then
         Spg_Name := Get_Source_Name (E);
yoogx's avatar
yoogx committed
1451

1452
1453
      elsif Is_Thread (E) then
         Spg_Name := Get_Thread_Compute_Entrypoint (E);
yoogx's avatar
yoogx committed
1454

1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
      else
         Spg_Name := Get_Port_Compute_Entrypoint (E);
      end if;

      return Map_Ada_Subprogram_Identifier (Spg_Name);
   end Map_Ada_Subprogram_Identifier;

   -----------------------------------
   -- Map_Ada_Subprogram_Identifier --
   -----------------------------------

   function Map_Ada_Subprogram_Identifier (N : Name_Id) return Node_Id is
      P_Name : Name_Id;
      Result : Node_Id;
      D      : Node_Id;
   begin
      --  Get the package implementation and add the 'with' clause

      P_Name := Unit_Name (N);

      if P_Name = No_Name then
         Display_Error
1477
1478
           ("You must give the subprogram implementation name",
            Fatal => True);
1479
1480
1481
1482
      end if;

      D := Make_Designator (P_Name);
      ADN.Set_Corresponding_Node
1483
1484
        (ADN.Defining_Identifier (D),
         New_Node (ADN.K_Package_Specification));
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
      Add_With_Package (D);

      --  Get the full implementation name

      Get_Name_String (Local_Name (N));
      Result := Make_Defining_Identifier (Name_Find);
      Set_Homogeneous_Parent_Unit_Name (Result, D);
      return Result;
   end Map_Ada_Subprogram_Identifier;

   -----------------------------
   -- Map_Ada_Subprogram_Spec --
   -----------------------------

   function Map_Ada_Subprogram_Spec (S : Node_Id) return Node_Id is
      Profile : constant List_Id := ADU.New_List (ADN.K_Parameter_Profile);
      Param   : Node_Id;
      Mode    : Mode_Id;
      F       : Node_Id;
      N       : Node_Id;
      D       : Node_Id;
      Field   : Node_Id;
   begin
      pragma Assert (Is_Subprogram (S));

      --  We build the parameter profile of the subprogram instance by
      --  adding:

      --  First, the parameter features mapping

      if not AAU.Is_Empty (Features (S)) then
         F := First_Node (Features (S));

         while Present (F) loop
            if Kind (F) = K_Parameter_Instance then
               if Is_In (F) and then Is_Out (F) then
                  Mode := Mode_Inout;
               elsif Is_Out (F) then
                  Mode := Mode_Out;
               elsif Is_In (F) then
                  Mode := Mode_In;
               else
                  Display_Located_Error
                    (Loc (F),
                     "Unspecified parameter mode",
                     Fatal => True);
               end if;

               D := Corresponding_Instance (F);

1535
1536
1537
1538
1539
               Param :=
                 ADU.Make_Parameter_Specification
                   (Map_Ada_Defining_Identifier (F),
                    Map_Ada_Data_Type_Designator (D),
                    Mode);
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578

               ADU.Append_Node_To_List (Param, Profile);
            end if;

            F := Next_Node (F);
         end loop;
      end if;

      --  Second, the data access mapping. The data accesses are not
      --  mapped in the case of pure call sequence subprogram because
      --  they are used only to close the access chain.

      if Get_Subprogram_Kind (S) /= Subprogram_Pure_Call_Sequence then
         if not AAU.Is_Empty (Features (S)) then
            F := First_Node (Features (S));

            while Present (F) loop
               if Kind (F) = K_Subcomponent_Access_Instance then
                  case Get_Required_Data_Access (Corresponding_Instance (F)) is
                     when Access_Read_Only =>
                        Mode := Mode_In;
                     when Access_Write_Only =>
                        Mode := Mode_Out;
                     when Access_Read_Write =>
                        Mode := Mode_Inout;
                     when Access_None =>
                        --  By default, we allow read/write access

                        Mode := Mode_Inout;
                     when others =>
                        Display_Located_Error
                          (Loc (F),
                           "Unsupported required access",
                           Fatal => True);
                  end case;

                  D := Corresponding_Instance (F);

                  case Get_Data_Representation (D) is
1579
1580
1581
1582
1583
1584
1585
1586
1587
                     when Data_Integer     |
                       Data_Boolean        |
                       Data_Float          |
                       Data_Fixed          |
                       Data_String         |
                       Data_Wide_String    |
                       Data_Character      |
                       Data_Wide_Character |
                       Data_Array          =>
1588
1589
1590
1591
1592
                        --  If the data component is a simple data
                        --  component (not a structure), we simply add a
                        --  parameter with the computed mode and with a
                        --  type mapped from the data component.

1593
1594
1595
1596
1597
                        Param :=
                          ADU.Make_Parameter_Specification
                            (Map_Ada_Defining_Identifier (F),
                             Map_Ada_Data_Type_Designator (D),
                             Mode);
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
                        ADU.Append_Node_To_List (Param, Profile);

                     when Data_Struct | Data_With_Accessors =>
                        --  If the data component is a complex data
                        --  component (which has subcomponents), we add a
                        --  parameter with the computed mode and with a
                        --  type mapped from each subcomponent type.

                        Field := First_Node (Subcomponents (D));

                        while Present (Field) loop
                           --  The parameter name is mapped from the
                           --  container data component and the data
                           --  subcomponent.

1613
                           if AAU.Is_Data (Corresponding_Instance (Field)) then
1614
1615
1616
1617
1618
1619
1620
1621
                              Param :=
                                ADU.Make_Parameter_Specification
                                  (Map_Ada_Protected_Aggregate_Identifier
                                     (F,
                                      Field),
                                   Map_Ada_Data_Type_Designator
                                     (Corresponding_Instance (Field)),
                                   Mode);
1622
1623
                              ADU.Append_Node_To_List (Param, Profile);
                           end if;
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

                           Field := Next_Node (Field);
                        end loop;

                     when others =>
                        Display_Located_Error
                          (Loc (F),
                           "Unsupported data type",
                           Fatal => True);
                  end case;
               end if;

               F := Next_Node (F);
            end loop;
         end if;
      end if;

      --  Last, if the subprogram has OUT ports, we add an additional
      --  Status parameter.

      if Has_Out_Ports (S) then
1645
1646
1647
1648
1649
1650
         Param :=
           ADU.Make_Parameter_Specification
             (Make_Defining_Identifier (PN (P_Status)),
              Extract_Designator
                (ADN.Type_Definition_Node (Backend_Node (Identifier (S)))),
              Mode_Inout);
1651
1652
1653
         ADU.Append_Node_To_List (Param, Profile);
      end if;

1654
1655
1656
1657
1658
      N :=
        ADU.Make_Subprogram_Specification
          (Map_Ada_Defining_Identifier (S),
           Profile,
           No_Node);
1659
1660
1661
1662
1663
1664
1665
1666

      --  If the program is an Opaque_C, we add the pragma Import
      --  instruction in the private part of the current package

      if Get_Subprogram_Kind (S) = Subprogram_Opaque_C then
         declare
            use ADN;

1667
1668
1669
1670
1671
1672
1673
1674
            P : constant Node_Id :=
              Make_Pragma_Statement
                (Pragma_Import,
                 Make_List_Id
                   (Make_Defining_Identifier (PN (P_C)),
                    Map_Ada_Defining_Identifier (S),
                    Make_Literal
                      (ADV.New_String_Value (Get_Source_Name (S)))));
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
         begin
            --  We must ensure that we are inside the scope of a
            --  package spec before inserting the pragma. In fact,
            --  Map_Ada_Subprogram_Spec is called also when we build
            --  the body of the subprogram, and we do not want to
            --  insert the pragma when building the body.

            if ADN.Kind (Current_Package) = K_Package_Specification then
               ADU.Append_Node_To_List (P, Private_Part (Current_Package));
            end if;
         end;
      end if;
      return N;
   end Map_Ada_Subprogram_Spec;

   -----------------------------
   -- Map_Ada_Subprogram_Body --
   -----------------------------

   function Map_Ada_Subprogram_Body (S : Node_Id) return Node_Id is
      Spec         : constant Node_Id := Map_Ada_Subprogram_Spec (S);
      Declarations : constant List_Id := New_List (ADN.K_Declaration_List);
      Statements   : constant List_Id := New_List (ADN.K_Statement_List);

      Profile  : List_Id;
      N        : Node_Id;
      F        : Node_Id;
      Call_Seq : Node_Id;
   begin
      case Get_Subprogram_Kind (S) is
         when Subprogram_Empty =>
            --  An empty AADL subprogram is mapped into an Ada
            --  subprogram that raises an exception to warn the user.

1709
1710
1711
            N :=
              Make_Exception_Declaration
                (Make_Defining_Identifier (EN (E_NYI)));
1712
1713
1714
1715
1716
1717
            ADU.Append_Node_To_List (N, Declarations);

            N := Make_Raise_Statement (Make_Defining_Identifier (EN (E_NYI)));
            ADU.Append_Node_To_List (N, Statements);

            return Make_Subprogram_Implementation
1718
1719
1720
                (Spec,
                 Declarations,
                 Statements);
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730

         when Subprogram_Opaque_C =>
            --  An opaque C AADL subprogram is a subprogram which is
            --  implemented by a C subprogram. We perform the mapping
            --  between the two subprograms using the Ada `Import'
            --  pragma in the specification. Therefore, we have
            --  nothing to do in the body.

            return No_Node;

1731
         when Subprogram_Opaque_Ada_95 | Subprogram_Default =>
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
            --  An opaque Ada AADL subprogram is a subprogram which is
            --  implemented by an Ada subprogram. We perform the
            --  mapping between the two subprograms using the Ada
            --  renaming facility.

            --  Add the proper `with' clause

            N := Make_Designator (Unit_Name (Get_Source_Name (S)));
            Add_With_Package (N);

            --  Perform the renaming

1744
1745
1746
1747
            N :=
              Make_Designator
                (Local_Name (Get_Source_Name (S)),
                 Unit_Name (Get_Source_Name (S)));
1748
1749
1750
1751
1752
1753
1754
1755
1756
            ADN.Set_Renamed_Entity (Spec, N);
            return Spec;

         when Subprogram_Opaque_Ada_95_Transfo =>
            --  Same as above, but does not with the package, because
            --  it is actually an instanciated generic package

            --  Perform the renaming

1757
1758
1759
1760
            N :=
              Make_Designator
                (Local_Name (Get_Transfo_Source_Name (S)),
                 Unit_Name (Get_Transfo_Source_Name (S)));
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
            ADN.Set_Renamed_Entity (Spec, N);
            return Spec;

         when Subprogram_Pure_Call_Sequence =>
            --  A pure call sequence subprogram is a subprogram that
            --  has exactly one call sequence. The behaviour of this
            --  subprogram is simply the call to the subprograms
            --  present in its call list.

            Handle_Call_Sequence
              (S,
               Make_Defining_Identifier (PN (P_Status)),
               First_Node (Calls (S)),
               Declarations,
               Statements);
            return ADU.Make_Subprogram_Implementation
1777
1778
1779
                (Spec,
                 Declarations,
                 Statements);
1780
1781
1782
1783
1784
1785
1786

         when Subprogram_Hybrid_Ada_95 =>
            --  Hybrid subprograms are subprograms that contain more
            --  that one call sequence.

            --  Declare the Status local variable

1787
1788
1789
1790
1791
1792
1793
            N :=
              Make_Object_Declaration
                (Defining_Identifier =>
                   Make_Defining_Identifier (PN (P_Status)),
                 Object_Definition =>
                   Make_Defining_Identifier
                     (Map_Ada_Subprogram_Status_Name (S)));
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
            ADU.Append_Node_To_List (N, Declarations);

            --  Initialise the record fields that correspond to IN
            --  parameters.

            if not AAU.Is_Empty (Features (S)) then
               F := First_Node (Features (S));

               while Present (F) loop
                  if Kind (F) = K_Parameter_Instance and then Is_In (F) then
1804
1805
1806
1807
1808
1809
1810
                     N :=
                       Make_Assignment_Statement
                         (Make_Designator
                            (To_Ada_Name (Display_Name (Identifier (F))),
                             PN (P_Status)),
                          Make_Designator
                            (To_Ada_Name (Display_Name (Identifier (F)))));
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
                     ADU.Append_Node_To_List (N, Statements);
                  end if;

                  F := Next_Node (F);
               end loop;
            end if;

            Profile := New_List (ADN.K_Parameter_Profile);

            --  Append the 'Status' variable to the call profile

            N := Make_Defining_Identifier (PN (P_Status));
            ADU.Append_Node_To_List (N, Profile);

            --  For each call sequence, we add the subprogram that
            --  handles it.

            Call_Seq := First_Node (Calls (S));

            while Present (Call_Seq) loop
1831
1832
1833
1834
1835
               N :=
                 Make_Attribute_Designator
                   (Make_Defining_Identifier
                      (Map_Ada_Call_Seq_Subprogram_Name (S, Call_Seq)),
                    A_Access);
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
               ADU.Append_Node_To_List (N, Profile);

               Call_Seq := Next_Node (Call_Seq);
            end loop;

            --  Call the implementation subprogram

            --  Add the proper `with' clause

            N := Make_Designator (Unit_Name (Get_Source_Name (S)));
            Add_With_Package (N);

1848
1849
1850
1851
            N :=
              Make_Designator
                (Local_Name (Get_Source_Name (S)),
                 Unit_Name (Get_Source_Name (S)));
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863

            N := Make_Subprogram_Call (ADN.Defining_Identifier (N), Profile);
            ADU.Append_Node_To_List (N, Statements);

            --  Update the OUT parameters from the corresponding
            --  record fields.

            if not AAU.Is_Empty (Features (S)) then
               F := First_Node (Features (S));

               while Present (F) loop
                  if Kind (F) = K_Parameter_Instance and then Is_Out (F) then
1864
1865
1866
1867
1868
1869
1870
                     N :=
                       Make_Assignment_Statement
                         (Make_Designator
                            (To_Ada_Name (Display_Name (Identifier (F)))),
                          Make_Designator
                            (To_Ada_Name (Display_Name (Identifier (F))),
                             PN (P_Status)));
1871
1872
1873
1874
1875
1876
1877
1878
                     ADU.Append_Node_To_List (N, Statements);
                  end if;

                  F := Next_Node (F);
               end loop;
            end if;

            return Make_Subprogram_Implementation
1879
1880
1881
                (Spec,
                 Declarations,
                 Statements);
1882
1883
1884
1885
1886

         when Subprogram_Lustre =>
            --  In PolyORB-HI-Ada, a Lustre subprogram is mapped onto an Ada
            --  subprogram that raises an exception to warn the user.

1887
1888
1889
            N :=
              Make_Exception_Declaration
                (Make_Defining_Identifier (EN (E_NYI)));
1890
1891
1892
1893
1894
1895
            ADU.Append_Node_To_List (N, Declarations);

            N := Make_Raise_Statement (Make_Defining_Identifier (EN (E_NYI)));
            ADU.Append_Node_To_List (N, Statements);

            return Make_Subprogram_Implementation
1896
1897
1898
                (Spec,
                 Declarations,
                 Statements);
1899
1900
1901
1902

         when others =>
            Display_Located_Error
              (Loc (S),
1903
1904
               "This kind of subprogram is not supported: " &
               Get_Subprogram_Kind (S)'Img,
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
               Fatal => True);
            return No_Node;
      end case;
   end Map_Ada_Subprogram_Body;

   --------------------------------------
   -- Map_Ada_Call_Seq_Subprogram_Spec --
   --------------------------------------

   function Map_Ada_Call_Seq_Subprogram_Spec
     (Spg : Node_Id;
1916
      Seq : Node_Id) return Node_Id
1917
1918
1919
1920
   is
      Profile : constant List_Id := New_List (ADN.K_Parameter_Profile);
      N       : Node_Id;
   begin
1921
1922
1923
1924
1925
      N :=
        Make_Parameter_Specification
          (Make_Defining_Identifier (PN (P_Status)),
           Make_Defining_Identifier (Map_Ada_Subprogram_Status_Name (Spg)),
           Mode_Inout);
1926
1927
      ADU.Append_Node_To_List (N, Profile);

1928
1929
1930
1931
1932
      N :=
        Make_Subprogram_Specification
          (Make_Defining_Identifier
             (Map_Ada_Call_Seq_Subprogram_Name (Spg, Seq)),
           Profile);
1933
1934
1935
1936
1937
1938
1939
1940
1941
      return N;
   end Map_Ada_Call_Seq_Subprogram_Spec;

   --------------------------------------
   -- Map_Ada_Call_Seq_Subprogram_Body --
   --------------------------------------

   function Map_Ada_Call_Seq_Subprogram_Body
     (Spg : Node_Id;
1942
      Seq : Node_Id) return Node_Id
1943
   is
1944
      Spec : constant Node_Id := Map_Ada_Call_Seq_Subprogram_Spec (Spg, Seq);
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
      Declarations : constant List_Id := New_List (ADN.K_Declaration_List);
      Statements   : constant List_Id := New_List (ADN.K_Statement_List);
   begin
      Handle_Call_Sequence
        (Spg,
         Make_Defining_Identifier (PN (P_Status)),
         Seq,
         Declarations,
         Statements);

      return Make_Subprogram_Implementation (Spec, Declarations, Statements);
   end Map_Ada_Call_Seq_Subprogram_Body;

   ------------------------------------
   -- Map_Ada_Subprogram_Status_Name --
   ------------------------------------

   function Map_Ada_Subprogram_Status_Name (S : Node_Id) return Name_Id is
   begin